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a b s t r a c t

We introduce a multi-target tracking algorithm that operates on prerecorded video as typically found in
post-incident surveillance camera investigation. Apart from being robust to visual challenges such as
occlusion and variation in camera view, our algorithm is also robust to temporal challenges, in particular
unknown variation in frame rate. The complication with variation in frame rate is that it invalidates
motion estimation. As such, tracking algorithms based on motion models will show decreased perfor-
mance. On the other hand, appearance based detection in individual frames suffers from a plethora of
false detections. Our tracking algorithm, albeit relying on appearance based detection, deals robustly
with the caveats of both approaches. The solution rests on the fact that for prerecorded video we can
make fully informed choices; not only based on preceding, but also based on following frames. We start
off from an appearance based object detection algorithm able to detect in each frame all target objects.
From this we build a graph structure. The detections form the graph’s nodes and the vertices are formed
by connecting each detection in a frame to all detections in the following frame. Thus, each path through
the graph shows some particular selection of successive detections. Tracking is then reformulated as a
heuristic search for optimal paths, where optimal means to find all detections belonging to a single object
and excluding any other detection. We show that this approach, without an explicit motion model, is
robust to both the visual and temporal challenges.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Surveillance cameras are at present a widespread tool for the
observation of large areas, allowing a single officer to monitor mul-
tiple locations at once. This live monitoring is mainly used for early
intervention and the prevention of street crime. Another use of the
video, the one this paper focuses on, is when previously recorded
video is retrieved and reviewed for evidence in forensic cases or
any other post-incident investigation. In such cases it is common
to have large amounts of video data which need to be reviewed
in their entirety.

Clearly, the most important subjects of observation are people.
When we would be able to automatically find and track all re-
corded persons, it would greatly alleviate the exhausting process
of video reviewing, but tracking all persons is a challenging task.
One of the main problems of multiple person tracking is that peo-
ple may occlude each other, in which case it is difficult for a com-
puter to tell them apart. Another major challenge, and very
common in operated surveillance video, is that the camera may
pan, tilt, and zoom. Such operations drastically alter the perceptual

location of all objects (their xy-position within the frame), and thus
trajectories become more chaotic. This effect is amplified by the
fact that, mostly to save bandwidth, many cameras use a variable
recording frame rate. In other words, the elapsed time between
any two successive frames varies. All those aspects raise severe dif-
ficulties in the prediction of object location, and thus in tracking
persons.

In one of the earliest approaches towards multiple target track-
ing [24], alternative hypotheses about the configuration of tracks
are maintained. Hence the name multiple hypothesis tracking
(MHT). In MHT, a graph is constructed where each node is a
hypothesis (a possible track) and the edges show how a hypothesis
can change with the addition of new object detections. Thus in this
graph each hypothesis that is currently not the most likely is still
stored for a later moment, with the idea that future information
may shed new light on which configuration is actually the most
likely. Essentially this allows it to recover from tracking errors
and it is particularly helpful for dealing with occlusion. However,
for each new detection all leaves in the tree shaped graph need
to be split into two new options: the track with the new detection
added and the track without it. So with every single new detection
the number of leaves doubles and the tree grows exponential in the
number of detections. For large videos, such as surveillance videos,
this process becomes computationally prohibitive. To alleviate the
situation some works try to reduce the temporal context or prune
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the graph [22,25], but the inherent problem is storing each hypoth-
esis separately while in fact there is just one set of underlying data;
the detections. If instead we were to create a graph of the detec-
tions, then it implicitly models all hypotheses at once as it is the
superset of paths through the graph. Adding a new detection is a
linear operation and changing a hypothesis is just altering its path
through the graph. This is the idea behind the approach taken in
this paper and we will demonstrate its efficiency.

Current tracking methods that are based on sequential Monte-
Carlo integration like [14,8,30] derive the direction of movement
(and thus the updated object location) from a partial match of
the object at its old location in the new frame. Although such
methods are efficient in tracking arbitrary objects, this localization
approach fails when objects move too much over successive
frames. Instead of using local object-based shift, a global approach
towards object tracking is achieved using optical flow fields in 17]
and in [6]. Here the orientation and magnitude of movement are
calculated for each pixel. Albeit being computationally costly, large
object displacement is still problematic [2,6]. An interesting varia-
tion on this theme is given in [32] who compute flow over object
detections rather than the pixels. Similar to linear programming
[15,4] object tracks emerge from optimising (minimising) a cost
function with respect to posed boundary conditions. Often how-
ever these boundaries need to be quite restrictive. For example
in [4] the ground plane is manually subdivided into a grid which
determines object motion (objects move only to neighboring cells)
and which fixes their number by allowing entrance and exit only at
designated cells. In general, approaches that focus more on the ex-
plicit detection of objects assume that object motion follows the
physical laws of motion and acceleration, i.e. motion is not chaotic.
This assumption allows the use of Kalman filters [24,23] or more
general Markov models [13,28] for efficient localization of target
objects. Although this is beneficial for fast object motion, it is less
adequate for slow and particularly variable recording speeds as
that generally causes object trajectories to behave more chaotic.
So, for prerecorded video other tracking methods are needed.

In an effort to solve the problem of occlusion [3,16] incorporate
the recordings of multiple cameras that film the same situation
from different angles. Using a homography based approach they
deal with occlusion in 3D space. Using only a single camera [7]
show a combination of kernel density estimation with particle
based data association to be robust against partial occlusion for
articulated objects. Other single camera approaches incorporate
the context around target objects: [21] learn a set of discrimination
functions between foreground and background texture using linear
discriminant analysis. Yang et al. [31] use data mining to detect
auxiliary objects that temporarily move along with the marked tar-
get object. Although context information proves to give robustness
against occlusion, both algorithms track only one single and artic-
ulated object, based primarily on appearance. An approach to
explicitly model multiple object occlusion is proposed by Nillius
et al. [22] and similarly by Torabi and Bilodeau [27]. Both methods
differentiate between isolated tracks capturing a single target and
compound tracks where multiple targets are likely to occlude each
other. In doing so mutual occlusion is solved by inference on the
identities joining and leaving the compound tracks. Occlusion from
the scene itself however remains unsolved. The necessity of mod-
eling compound tracks is removed when using explicit object rec-
ognition (e.g. person recognition) methods instead of blob
representations. In this case an object can be ’away’ for some time
when it is not detected. Shafique and Shah [25], Berclaz et al. [3]
and Wu et al. [29] employ a sliding time window for the explicit
detection of target object reappearance after short occlusion. The
window is kept quite small to minimize the rapidly growing com-
putational overhead. Consequently it deals with occlusion of max-
imally this amount of time. The shared limitation of all approaches

is that they cannot freely search in time for the first next clear
unoccluded occurrence of each target, simply because that search
space would be far too large.

In short, there are clearly two major challenges within the area
of video forensics which we address in this paper; large and chaotic
target object displacements and occlusion between target objects.
Unlike the aforementioned methods (MHT being the exception),
our method does not process video sequentially. In fact, we provide
the tracking algorithm with a large temporal context, theoretically
as large as the entire video. We capture detected objects in a graph
structure and use A⁄ to find optimal paths in this graph at a mini-
mal memory footprint. A heuristic is used that favors smooth ob-
ject movement and appearance change, while allowing chaotic
movement and even large gaps of missing detections because of
occlusion.

In Section 2 we describe in detail our multiple person tracking
algorithm. Then, in Section 3 we explore the algorithm complexity.
Evaluation is performed in Section 4, followed by a discussion in
Section 5. We conclude this paper with an outlook on future
investigations.

2. Multiple person tracking

Our multiple person tracking algorithm builds on the availabil-
ity of a person detector that can locate persons in still images – in
this situation being the video frames. Our so-called Backtracking
algorithm is composed of three stages. First it creates a graph con-
necting the person detections in each frame. Then, the most similar
of those detections are used to form tracks based on the graph.
These tracks may span many more frames than they hold detec-
tions, leaving gaps of skipped frames between them. Hence we
term this stage of the algorithm coarse tracking. In the final stage
the gaps are filled using a graph search algorithm to find the opti-
mal path. We call this process refinement. Because refinement is
essentially an interpolation, it is robust to the large amounts of
noise present in surveillance video data, while still being applica-
ble to the more general case of gaps in tracks. The whole process
is schematically depicted in Fig. 1.

2.1. A graph of person images

We start by detecting the persons in all video frames. We use
the method by Dalal and Triggs [9] as is, also trained on their per-
son detection data set. Run frame-by-frame on the video data, the
algorithm produces a set of person detections with associated like-
lihood ratios. The result is a set B of N detections, collected over T
frames,

B ¼ fb1; . . . ; bNg ð1Þ

where for each moment in time, t, we have the set

Bt � B; t ¼ 1; . . . ; T ð2Þ

The likelihood of a detection, denoted by L(b), represents the sys-
tem’s confidence in the detection being correct with:

0 6 LðbÞ 6 1 ð3Þ

A person track then, is modeled as a concatenation of detections
with the superset of B holding all conceivable tracks. To express the
choice for particular tracks (and the rejection of others) we call
each track a hypothesis, h. Noticing that a person has only one
appearance per frame we define

h ¼ ½bi; . . . ; bj�; jh \ Bt j 6 1 ð4Þ

where j � j denotes the number of elements in the set.
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The hypothesis space is quite large. Taking an average number
of m detections per frame over n frames, there are (m + 1)n differ-
ent hypotheses: At every frame we can pick one of the m detections
or none at all. A few boundary conditions may be excluded where a
track consists of one or zero detections. These boundary cases ac-
count for mn + 1 hypotheses and do not really reduce the hypoth-
esis space.

To search this space efficiently we therefore represent it using
a graph, where the vertices are formed of person detections and
edges mark the possibility that two detections are of the same
person. This results in a k-partite graph where vertices are adja-
cent if the respective detections are from successive frames.

However, this representation would be overly restrictive with
respect to the set of hypotheses because it disallows gaps—
where intermediate frames in a hypothesis are skipped, e.g.
due to occlusion. One solution would be to extend the set of
edges to connect each vertex to all later vertices. This is for
example done in [25]. It is, however, not only unattractive for
its computational complexity, it is also less meaningful to di-
rectly link a detection in the first frame to one in the last frame.

We propose to introduce at each frame an empty vertex, �t.
Selecting this vertex means that for the moment no good detection
was found just in that particular frame. In other words, it marks the
case h \ Bt = ;. Multiple �’s can be visited in order to form larger
gaps. This leads us to the following definition of the graph:

G ¼ ðV ; EÞ ð5Þ
V ¼ B [ �
E ¼ ðBt [ �tÞ � ðBtþ1 [ �tþ1Þ

In this representation the analogy between graph searching and ob-
ject tracking is better reflected, and also the representation is very
efficient because at each point in the graph we only need to con-
sider m + 1 options.

2.2. Coarse tracking

In order to search the graph for person tracks, we first need start
and goal nodes. Operating on a subset of reliable estimates, as per
L(�), we can use a simple matching algorithm to find those. More
precisely, we find sets of two or more very similar detections with
possibly large gaps in between. These sets can be regarded as

outlines of tracks, or as we call them, coarse tracks, which we will
now describe in detail. A pseudocode version of the algorithm is
presented in Algorithm 1.

Using the detection likelihood from Eq. 3 we filter out the poor
detections with a threshold, i.e., only keeping detections with
L(b) > h. We start with a relatively restrictive threshold so that
we are confident to only include the best detections where the per-
son is clearly in view. In track refinement, at which stage there is
more information on track appearance, we will decrease the likeli-
hood threshold to include the omitted detections.

The process of coarse tracking is an incremental approach
maintaining a growing collection of tracks. We start at frame 1
and walk through the video frame by frame. At each frame we
match all detections, b 2 Bt, against the current set of tracks, H.
Each track can be assigned maximally one detection and each
detection can be assigned maximally once. This means that using
the Hungarian algorithm [19] we find the optimal assignment,
which is the assignment yielding the minimal summed cost.

We define the cost of matching a new detection to a track sim-
ply as the Bhattacharyya distance between the RGB color histo-
grams of the new detection, bi, and the hypothesis hj.

Aij ¼ DBðbi;hjÞ ð6Þ

Of course the hypothesis hj contains more than one detection, so
we need to define how the Bhattacharyya distance is computed
in this case. We experimented with different weighed combina-
tions of elements in h but found simply matching to the detection
closest to the frame of reference yields the best results, suggesting
that the last detection is the most representative for matching
against future detections.

A natural concern with the use of RGB is that it has no invari-
ance to lighting or other properties to enhance the matching of a
person under different conditions. The general topic of color
invariance spans a whole separate area of research [11], but spe-
cifically in the case of surveillance video it has been shown that
invariance does actually not bring much—if any—performance
gain [18]. This confirms our own experiments with the L⁄a⁄b⁄ col-
or space which is more similar to human perception, normalized
RGB which is invariant to lightness, and HSL which models chro-
ma and luminosity separately.
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Fig. 1. Tracking process data flow. Person detection is performed for each frame separately. The detections in connected frames are linked to form a graph. A path in this
graph represents a person track. The tracking algorithm proposed in this paper starts by searching for initial – coarse – paths. The empty vertex, �, is used here as a
placeholder so that in cases of occlusion or poor detection tracks can leap over some frames. Such gaps are then (iteratively) refined in a second stage, again using the graph.
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Algorithm 1. Coarse tracking

Require: B = {b1, . . . ,bN}

Require: 0 < h0 < 1

1: B0 = {b 2 BjL(b) > h0}
2: Hopen = {}
3: Hclosed = {}
4: for t = 1, . . ., T do
5: A( DBðbi;hjÞ; bi 2 B0t ;hj 2 Hopen

6: temp � {}
7: for (bi,hj,d) 2 Hungarian(A) do
8: if d < l then
9: Add bi to hj

10: else
11: Add bi to temp
12: if GapSize(hj, t) < c then
13: Add �t to hj

14: else
15: Strip any trailing � and move hj from Hopen to

Hclosed

16: end if
17: end if
18: end for
19: Extend Hopen with temp as new tracks
20: end for
21: Extend Hclosed with Hopen

22: return {h 2 Hclosedjkhk > 1}

Although by definition the Hungarian algorithm performs an
exhaustive assignment, it is not required that the number of detec-
tions Bt equal the number of hypothesis Ht. Hence after processing
frame t, some detections may not have been assigned to a hypoth-
esis. This may for example be the case when a new person enters
the scene. We thus use these detections to initialize new hypothe-
ses in Ht+1, used for processing the next frame. This is also per-
formed when a detection was in fact assigned, but its assignment
cost is simply too high (see Algorithm 1 lines 10, 11 and 19).

2.3. Track refinement

Coarse tracks contain many gaps. Writing h ¼ ½. . . ; ba;

�t1 ; . . . ; �tn ; bz; . . .� for a coarse track in G, with a gap ½�t1 ; . . . ; �tn �, we call
ba and bz the spanning vertices. Cause to the gap are the strict matching
constraints in coarse tracking. Hence the empty vertices were preferred
over other detections. At this stage however, using the spanning verti-
ces as a context, we relax the matching constraints and replace occur-
rences of � by proper detections whenever possible. Furthermore we
decrease the likelihood threshold to include also the more difficult
detections. This is what we have denoted as track refinement, and
pseudocode is shown in Algorithm 2.

Algorithm 2. Track refinement

Require: B = {b1, . . . ,bN}
Require: G = (V,E) {Cost of edges defined by Eq. (7)}
Require: h = [h0,h1, . . . ,0]

1: H � CoarseTracking(B,h0)
2: for hi 2 [h1, . . . ,0] do
3: V0 = {b 2 BjL(b) > hi} [ �
4: G0 = (V0,E)
5: for h 2 H do

6: for every gap ½ba; �t1 ; . . . ; �tn ; bz� in h do
7: p � A⁄(ba,bz,G0)
8: Replace ½ba; �t1 ; . . . ; �tn ; bz� in h with p
9: end for

10: end for
11: end for
12: return H

So, in track refinement we iteratively search for alternative
(better) paths between each pair of spanning vertices. That is, we
perform refinement with hysteresis: At each iteration we decrease
the likelihood threshold, h0 > h1 > h2 > � � � (where h0 was used for
coarse tracking), and search for a path that includes more detec-
tions and less empty vertices. This is performed as a directed graph
search (in our case A⁄) in G.

2.3.1. Cost and heuristic
A⁄ depends on two measures; the cost and the heuristic func-

tion. The cost should somehow reflect the difference between
two vertices. The nature of the graph search, which is a directed
search and thus an interpolation, allows us to use more measures
in addition to the Bhattacharyya measure that we used in coarse
tracking. The Euclidean distance in the xy-position between detec-
tions, for example, was unstable for coarse tracking because of pos-
sible panning and tilting of the camera. Now that we have a start
and goal detection however, the Euclidean distance provides a
good grip on how near the person is to its final (relative to the
search) position. Similarly we now measure the size of detections,
which would previously have led to difficulties e.g. when the cam-
era zooms.

The sum of the three measures could form a good cost function
if their values would be somehow aligned. However, although the
Bhattacharyya distance is by definition bound between 0 and 1, the
upperbound on Euclidean distance and size difference is difficult to
define. We decided to divide each of the distances by their sample
mean, which is determined in a separate training set of annotated
data. This leads to the following cost between two vertices bi and bj

Cðbi; bjÞ ¼
DBðbi; bjÞ

DB
þ DEðbi; bjÞ

DE
þ Dsizeðbi; bjÞ

Dsize

ð7Þ

where DB is the Bhattacharyya distance as in the previous section,
DE is the Euclidean distance between the two detection centers,
and Dsize is the difference in size.

The size is here calculated as the square root of the surface area.
The distance measures are normalized with respect to the indepen-
dent training data, and are thus decorrelated.

We notice that C is a metric and hence the cost between the
spanning nodes C(bi,bj) is the absolute minimal cost. That is,

8bk : Cðbi; bjÞ 6 Cðbi; bkÞ þ Cðbk; bjÞ ð8Þ

By definition this means the cost function is admissible, which
makes it an ideal heuristic as well.

2.3.2. Cost to �
As defined by A⁄ the path cost (between two spanning vertices)

is the summed cost over all its edges:

Cð½ba; �t1 ; . . . ; �tn ; bz�Þ ¼ Cðba; �t1 Þ þ Cð�t1 ; �t2 Þ þ � � � þ Cð�tn ; bzÞ ð9Þ

As we noticed in the previous section, the absolute minimal cost for
this path is C(ba,bz), and thus an average cost of 1/(n + 2) C(ba,bz) at
each edge. Knowing this value allows us to control the variation in
the appearance of target objects. It allows us to control a preference
between smooth tracks with large gaps and noisy tracks with al-
most no gaps. We express this preference in the parameter a.
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Cð�; �Þ ¼ a
nþ 2

Cðba; bzÞ a > 1; ba; bz spanning vertices: ð10Þ

Setting a close to one causes the algorithm to select only the very
best matching detections, and more often than not to pick the
empty vertex as an alternative instead. Conversely setting a very
high (in the order of 3 or above) will cause the algorithm to prefer
selecting dissimilar detections over gaps in the track. So in general
higher values of a produce further refined, but also more noisy,
tracks. An adequate value for a depends on the similarity between
different targets.

2.4. Summary

The tracking algorithm we proposed in this section focuses on
matching detections over large temporal volumes. To efficiently
search in such large sets of detections we represent them in a
graph and use a heuristic search to find optimal paths. We find
an initial set of coarse tracks which are then refined with hystere-
sis, slowly loosening the initially strong matching constraints. The
parameter of primary interest here is h which controls that pace.

Track refinement revisits all skipped frames and based on a
heuristic makes a decision to leave or replace each empty vertex.
Because empty vertices have no appearance, the cost of selecting
such a node is calculated as a fraction of the absolute minimal cost
between their spanning vertices. This fraction is determined in the
parameter a. Higher values of a put a preference on selecting ac-
tual detections and thus produce further refined tracks.

3. Tracking complexity

In the previous section we described how we perform tracking
in the discretized space of person detections. In this section we
analyze the approach from a resources perspective and examine
the computational complexity in both time and memory.

The coarse tracking algorithm is efficient in that it iterates only
once over the complete sequence of frames. At each frame it as-
signs the new detections to the existing hypotheses (Algorithm 1
lines 8 and 9), and creates new hypotheses from the unassigned
detections (lines 11 and 19). As the assignment at each frame is
solved in O(n3) time [19] with n the number of hypotheses,1 it is
important to keep n low. Taking m as the average number of detec-
tions per frame, then after t frames, maximally mt hypotheses have
been added. This can only be the case when in Algorithm 1 the con-
dition in line 8 is never met, and thus no assignment was made.
Seemingly the number of hypotheses is unbounded. However, a
boundary is posed by the maximum allowed gap size, which closes
hypotheses that have not been assigned a detection over c frames
as shown in lines 14 and 15. Thus, in the worst case no hypothesis
is assigned a detection before exactly c frames. This means that all
of the available hypotheses must have one detection in c frames.
With m detections per frame, there are thus maximally cm simulta-
neous hypotheses, which makes the time complexity for the assign-
ment polynomial in the number of detections and the maximum
allowed gap; O((cm)3).

In terms of memory the coarse tracking algorithm is comprised
of two parts. For one, it has all open hypotheses in memory. In the
worst case the hypotheses cover all detections throughout the en-
tire video, in which case we need to store ml detections where l is
the length of the video. Exploiting the fact that coarse tracking uses
only the last detection in each hypothesis though (see Algorithm 1
line 5), we could reduce the memory burden to not exceed cm
detections (plus some references to elements of � which can be ig-

nored as it is only fictitious). Second, the Hungarian algorithm takes
roughly (cm)2 for the assignment matrix plus some pointers. Added
together, the coarse tracking memory footprint is O((cm)2 + (cm)).

Overall we can say that coarse tracking is very efficient. In fact,
most computation is spent refining the tracks, primarily because
that is repeated multiple times.

Track refinement finds more detections to each hypothesis by
examining its gaps one by one (see Algorithm 2 lines 6–9). A path
is searched from one detection to a later detection through a graph
of intermediate detections. The complexity of a graph search is
generally determined by the branching factor, m, and the depth
of the solution, c. In general this would yield a search space of size
mc, i.e., if we were to search a tree. However, because the graph is
k-partite, the size (in terms of vertices) is linear in the number of
frames. Adding the empty vertex to the average branching factor
this yields a search complexity of c(m + 1).

In the worst case, A⁄ thus expands c(m + 1) nodes. For this
behavior, A⁄ must track back m times in each frame. Backtracking
is only performed if, after expanding a node, each of the new nodes
have an f value that is worse than that of previous nodes. Noticing
that the empty vertex is relatively cheap to pick, backtracking over
all nodes only happens when all m nodes are good candidates. As
the heuristic measures the color histogram together with the xy
position and scale (see Eq. 7), this means that the good candidates
are all similar looking and at the same location in the scene. In
other words, they are probably multiple detections of the same
person. This is not likely to happen over each of the c frames, espe-
cially because the person detection algorithm automatically elim-
inates largely overlapping candidates. So in practice the worst
case will never appear.

Finally, coarse tracking maintains at most cm simultaneous
tracks, with each having at least one detection in c + 1 frames.
Therefore in the worst case clm

cþ1 c-length gaps are refined, taking
(m + 1)p steps to compute each. Track refinement time complexity
is thus linear in the length of the video and the maximum allowed
gap. It is quadratic in the number of detections per frame.

On a practical note, on each of the videos in the datasets track-
ing cost well under a second. Setting the maximum gap to more
than 300 frames we have been able to find the algorithm take
about three seconds. This clearly shows that in practice the algo-
rithm has virtually no constraints and consequently a detailed
analysis of practical runtime and memory usage, as opposed to
the theoretical worst case, was left out of this paper.

Overall we conclude that, although a video may contain a large
amount of detections, person tracking is performed fast and effi-
cient, amongst others due to the structure of the graph, G, that is
exploited in our algorithm. Viewed from a calculation perspective,
the analysis performed by our multiple person tracking algorithm
can save much time in reviewing large amounts of video. As
shown, the complexity of the whole tracking algorithm is polyno-
mial in time and memory. Most computation depends on the max-
imum allowed gap size and the number of detections per frame.

4. Experiments

In this section we present an evaluation of our tracking algo-
rithm. Section 4.1 regards our dataset and Section 4.2 the evalua-
tion methodology. Experimental results on our dataset are
presented in Section 4.3 and on the PETS2009 dataset in Section
4.4.

4.1. Dataset

The video data comprises 32 separate one-hour recordings ta-
ken from real-life police operated surveillance cameras in the

1 Actually n is the maximum of the number of hypotheses and the number of
detections, though generally the first is much larger.
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Amsterdam city center. Each of the videos shows vast amounts of
people walking around plus loads of other activity. A few examples
are given in Fig. 2. The advantage of such recordings is that the
evaluation is very realistic, not only in the sense of how people
interact with the environment, but also in the sense of surveillance
video characteristics like moderate image resolution and extre-
mely low and variable frame rates. In fact regulations dictate that
at least three frames are recorded every two seconds [12].

At the time of recording ten actors walked different routes
through the city center. On average five actors appear in each vi-
deo. Aside from the actors there are many other people present;
roughly 700 per video, with an average of two people visible per
frame. Not occasionally, however, more than five people are visible
simultaneously, both in groups and as individuals.

The visual quality of the video frames, although with a resolu-
tion of 720 � 576 pixels, is quite degraded showing large compres-
sion artifacts and signal noise (unstable pixel values). The frame
rate is variable, with an average of four frames per second. In the
scene, shadow, reflections, water and trees cause fair amounts of
noise. The lighting fluctuates rapidly and in some cases also the
overall chroma changes significantly.

Next to our own dataset, we also run the algorithm on a publicly
available benchmark pedestrian dataset, PETS2009 [10]. The S2
part of the dataset is aimed at pedestrian tracking and contains se-
ven different recordings of a crowd in a relatively clean scene with-
out other traffic. Each video fragment consists of roughly 800
frames of 768 � 576 pixels each, shot with a static camera. At each
time instant there are about ten people in the scene simulta-
neously. Unfortunately the dataset’s ground truth labels are not
publicly available and consequently we are unable to evaluate
our tracker on this data in the same way we do it on our own
dataset.

4.1.1. Annotation
Because of the huge amount of persons in the video data, we re-

stricted ourselves to annotating only the actors. Each annotation
marks an entire person track as a sequence of bounding boxes
tightly fit around the person’s contour. Person images that are
more than half occluded by objects in the scene (i.e. non-persons)
are not counted and thus the track is interrupted. If this interrup-
tion is less than the maximum allowed gap, c (as introduced in Sec-
tion 3), the track is still continued after the gap. In total this led to
240 tracks comprised of 30,772 bounding boxes.

Because we felt that the annotation of only the actors is not suf-
ficient for a good evaluation of the tracking algorithm, we also fully
annotated a five minute video fragment showing one of our actors
plus 49 other people. This resulted in the annotation of 56 tracks
(some people reappear in the scene at a later moment), and com-
prises 2896 bounding boxes. The fact that tracks in this fragment
are much shorter than in other videos is due to a slightly zoomed
camera and the scene, which contains large occluding objects.

4.2. Evaluation

A natural way of evaluating tracks is to count the overlaps be-
tween detected tracks and annotated tracks. This works well when
for each detected track it is known which object it is tracking, for
example when initial object locations are assigned by a user. In
our case however, tracking is performed fully autonomously and
there is no explicit correspondence between hypotheses and anno-
tated tracks. As a consequence we use different measures to assess
the tracking performance.

First we evaluate each stage in our tracking algorithm sepa-
rately. We quickly evaluate our input, the person detections result-
ing from Dalal and Triggs [9], and then its impact on coarse
tracking, followed by an evaluation of track refinement. We con-
clude with the multiple object tracking (MOT) performance metric
as proposed by Bernardin and Stiefelhagen [5]. Before we com-
mence on the actual evaluation though, we first put forward some
simple definitions that are used throughout the evaluation.

4.2.1. The annotation
Evaluation is performed by matching detections to the manu-

ally annotated ground-truth. Writing O for the complete set of
annotated person tracks,

o ¼ ½l1; . . . ; ln�; o 2 O ð11Þ

is a single person track consisting of n annotations. From this point
onwards we will call annotated person tracks objects. Just as with
the hypotheses an object can hold no more than one annotation
per frame.

To determine if an annotation, l, is matched by a detection, b, we
calculate the ratio of the area of overlap with respect to the indi-
vidual areas. A threshold determines if the overlap is sufficient to
accept it as a match.

Fig. 2. Sample frames. A few frames to show the diversity in real-life video.

Fig. 3. Detection evaluation. Precision-recall curve for the used person detection
algorithm.
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Pðr1; r2Þ ¼
1 if Aðr1\r2Þ

1
2ðAðr1ÞþAðr2ÞÞ

> s

0 otherwise

(
ð12Þ

where A(�) denotes the surface area of its argument. The fraction di-
vides the overlapping surface by the average surface area of the two
polygons. Whereas a threshold of s = 0 accepts any two touching re-
gions, s = 1 would only accept identical regions in shape, size, and
location. We take s = 0.6 as a reasonable evaluation, accepting only
regions that clearly mark the same area and thus the same object.

This function is easily extended to compare whole tracks:

Qðh; oÞ ¼
X

t

Pðht; otÞ ð13Þ

counting the number of matched annotations in o (or equally, the
number of matching detections in h), where P(ht,ot) is taken to be
0 when either h or o has no polygon at time t.

4.2.2. Recall of annotations and objects
As indicated before, we use the person detection algorithm from

Dalal and Triggs [9]. With a posterior threshold on the detection
likelihood from Eq. 3, we calculate the precision and recall aver-
aged over all frames. The curve is shown in Fig. 3. It confirms that
the confidence of correctly detecting persons (precision) increases
with L(b), and similarly the recall decreases. Please notice that the
precision and recall are measured here over the individual detec-
tions, not regarding tracks.

On a final note of evaluating the detections, we can evaluate the
recall of the individual detections with respect to the annotated ob-
jects. Although a measure for precision cannot be expressed this

way, we can calculate the number of tracks that are matched by
detections. Since tracks are only built from these detections, this
measure poses an upper limit for the tracking performance, and
hence is crucial for the interpretation of tracking results in the fol-
lowing sections.

We define an object in the ground truth to be detected when at
least two of its annotations are matched. The number of detected
objects with respect to the total number of objects can be regarded
as a sort of recall with respect to the annotated tracks, O.

To evaluate the tracking algorithm we need more detailed mea-
surements than simply calculating the precision and recall mea-

Fig. 4. Cost between detections. The box and whisker plots show the variation of
cost, C(�), between successive detections. The first three show variation within
labeled tracks over 1, 10, and 50 frames respectively. The last plot shows the
variation between detections of different tracks. In this latter case the gap size has
no noticeable effect and so only that for a 10 frame gap is shown.

Fig. 5. Choosing h. The left figure shows the continuity-coverage values for coarse tracking at different parameter values (top left h0 = 1, bottom right h0 = 0.05). Each point
averages the scores over all tracks in the dataset. The right figure extends on the first and shows the performance increase resulting from track refinement. Each circle marks
the continuity-coverage values at hn = 0. The highlighted points mark h0 = 0.5.

Fig. 6. Tracking progress. Each line represents a track. The direction of the line
shows the performance change over iterations of track refinement. Because non-
person tracks have no coverage value defined, we set it to 0.

Table 1
MOT metrics. We evaluate both on all generated hypotheses H, and on the subset of
hypotheses that—after refinement—mark a person in at least one detection. Recalling
Eq. (13) that is the subset of hypotheses for which $o: Q(h, o) > 0. As this selection by
definition only affects fp, and consequently MOTA, the other values have been printed
in a gray tint.

MOTP MOTA �m (%) fp (%) mme (%)

Coarse 0.7821 �0.5038 76.7 72.9 0.8
Refine 0.7464 �0.6084 67.5 92.4 0.9
Coarse, Q > 0 0.7821 0.1796 76.7 4.6 0.8
Refine, Q > 0 0.7464 0.2186 67.5 9.7 0.9
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sured over numbers of tracks. For example because a hypothesis
can match multiple objects and because objects can be matched
by multiple hypotheses. Therefore in the following section we
introduce a more thorough evaluation measure of multiple target
tracking algorithms.

4.2.3. Quality of tracks
One characteristic of good tracks is that they follow one object

(person) continuously, i.e., not accidentally matching other objects.
We calculate the continuity by comparing each detection in a track
to its next detection. An error is counted when the detections do
not mark the same person. The track continuity is expressed as
the number of continuous detections with respect to the total track
length as follows:

FðhÞ ¼ j fhi 2 h j hi ¼ hiþ1g j
j h j �1

ð14Þ

resulting in a continuity score between 1 for monotonous tracks of
exactly one object and 0 for completely discontinuous tracks.

Continuity measures the tracking performance within the
hypothesis, but it does not tell how much of the original object
was covered. To that end we introduce the coverage. It divides

the track length of the hypothesis by the track length of the object
that it matches best.

GðhÞ ¼ Qðh; oÞ
j o j ; o ¼ arg max

o2O
Qðh; oÞ ð15Þ

This leads to a value between 1 for a fully matched annotation and a
very low value (not zero because obviously the annotation has a po-
sitive length) for matching only a fraction of the annotation.

Optimally a hypothesis would fully cover an object without
matching any other annotation. In that case both continuity and
coverage will have a value of 1. If, however, the object is fully
matched but another object is also sometimes matched, we expect
the continuity to drop while the coverage stays at 1. Conversely,
when all detections match the single object but the hypothesis fails
to match all of its annotations, the continuity is 1 while coverage is
very low. This shows that the continuity and coverage conve-
niently describe two complementary object tracking qualities.

4.2.4. Multiple target tracking
The accuracy and coverage metrics proposed in this paper illus-

trate the performance effects of coarse tracking and refinement
specifically. For a more general evaluation of multiple object track-
ing certainly more evaluation metrics exist [26,20,5]. Particular to
the approach by Bernardin and Stiefelhagen [5] is that they try to
provide a ‘‘human’’ value of judgment. This is achieved by accept-
ing only one hypothesis per object and by rejecting a hypothesis
not before it truly fails to match the object. In other words, alterna-
tive hypotheses may – on a per-frame basis – match the object bet-
ter, but they do not contribute to refuting the first hypothesis.

Using this linking strategy, the method employs two perfor-
mance measures, MOTP and MOTA. The first measures the localiza-
tion error measured as the average distance between each
detection in a hypothesis and its corresponding annotation in the
object. We calculate the distance as one minus the overlap ratio,
which in turn is calculated as the surface area of the overlapping
region divided by the sum of surface areas (see also part of Eq.

Table 2
Comparing performance. We compare the overall performance of our tracking
algorithm against the algorithms described in Section 4.2.5. Our algorithm outper-
forms the OpenCV multiple object trackers on both MOTP (remember lower MOTP
values are better) and MOTA even though the best individual miss rate is achieved by
OpenCV23MTTa and the best mismatch rate by OpenCV23MTT. The odd value of
111.2% false positive rate is actually correct (see the final remark in Section 4.2.4).

MOTP MOTA �m (%) fp (%) mme (%)

Refine 0.2724 0.1198 73.7 12.2 2.2
OpenCV23MTT 0.7759 �0.6557 53.9 111.2 0.5
OpenCV23MTTa 0.7743 �0.1523 37.4 75.9 1.9

Bold values mark the best performance.

Fig. 7. A simple example. The person contrasts well with the rest of the frame and is thus easily tracked.

Fig. 8. Noisy images. Noise in the scene and noise from image compression reduce detection quality and likelihood values – here not all bounding boxes are placed accurately.
Still, with only two detections from coarse tracking (the two outermost images) the rest can be recovered with hysteresis.
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12). The second measure, MOTA, expresses an average of three dif-
ferent error rates—the miss rate �m, mismatch error rate mme, and
false positive per object rate fp. Each measure relates their error to

the number of objects that are present in the video. A miss counts
when an object is not detected, a mismatch means the hypothesis
for an object is switched, and the false positives count the surplus

Fig. 9. Occlusion. Two examples of occlusion. The person marked in black walks in front of the person marked in white. Using coarse tracks the gap is automatically skipped.
Refinement adds a few detections to narrow the gap afterwards.

Fig. 10. Selecting poorer detections. As seen in this example refinement selects detections of inferior quality. Still the detections may be very useful.

Fig. 11. Refinement errors. Two examples of mistakes in track refinement. The left and right most images are taken from the coarse track while images in the middle were
added by refinement. In the first example the correct person was simply not detected with a satisfactory likelihood causing refinement to prefer a nearby alternative. In the
second example the spanning detections were already discontinuous. Refinement as interpolation finds intermediate detections similar to both endpoints, which causes these
alternations.

W.P. Koppen, M. Worring / Computer Vision and Image Understanding 116 (2012) 967–980 975



Author's personal copy

of hypotheses. Notice that the false positive rate in this calculation
differs from the generally accepted false positive rate. Where the
regular false positive rate divides by the number of hypotheses,
resulting in a value between 0 and 1, the false positive per object
rate divides by the total number of objects which consequently
leads to a value between 0 and infinity.

4.2.5. Comparison to other work
We compare our results against the publicly available multiple

object tracker shipped with OpenCV 2.3 [1]. The code uses con-
nected components for blob entrance detection, mean shift particle
filtering for blob tracking, and Kalman filtering for blob trajectory
post processing. We will label this tracker OpenCV23MTT. Compar-
ing against this tracker will highlight the performance of our track-
ing algorithm as a whole – including the person detection module.

To evaluate the performance of our coarse tracking + refine-
ment procedure regardless of the underlying person detection,
we slightly modified the OpenCV tracker by having the blob en-
trance detection read the same bounding boxes from the person
detection module. Here, both our tracking algorithm and the
OpenCV tracker have the same basis of detected objects and there-
fore any performance difference must be purely due to the tracking
mechanism rather than the detection. We will label this tracker
OpenCV23MTTa.

4.3. Results

To give us an idea of the cost function, as defined in Eq. 7, the
box plot in Fig. 4 shows the cost between detections of a single per-
son and the cost between detections of different people. On con-
secutive frames the top 25% within-track cost values start to
overlap with the smallest between-track cost values. Ten frames
apart the detections still seem to be reasonably separable.

Following the suggested evaluation in Section 4.2.2, we calcu-
late the number of objects that are detected in the person detection
algorithm for varying thresholds. At h0 = 0, so using the full set of
detections B, two thirds of the tracks are hit. This means that one
in three persons cannot be tracked at all simply because it is not
detected in any of the frames, a discussion of which we will come
to in the next section. At h0 = 0.5 we have the subset of detections
{b 2 BjL(b) > 0.5}. This subset omits a few more tracks, i.e. 50% of
the tracks are still hit. This performance is maintained in coarse
tracking which does indeed find all of these tracks. Thus, setting
h0 = 0.5 results in a set of coarse hypotheses matching half of the
annotated objects – counted in the number of tracks.

We will come to an evaluation of different threshold values be-
low, but for now we accept a recall of 50% of the tracks and perform
coarse tracking at h0 = 0.5. At this level the matching hypotheses
hold 23.8 detections on average. When we refine the tracks,
decreasing h to 0 in steps of 0.1, the algorithm overall adds 13.7
more detections per track, roughly 57%. This is reflected in the in-
creased coverage as shown in Fig. 5bb. At the same time the figure

Fig. 12. Walking side by side. Two people walk side by side. The tracks are kept separate.

Fig. 13. False positives. The space of detections B consists of mainly false positives. As a consequence these detections are tracked as well. There is little interference though
with the real person tracks and thus they are easily removed in a post-processing step.
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shows that track refinement increases the continuity. In Fact 83%
of the added detections is correct.

We now evaluate possible values for h0. Fig. 5aa shows a de-
crease in coarse tracking coverage when h0 is increased. Thus the
tracks contain larger gaps. At the same time however, the continu-
ity increases with h0. So although the tracks contain fewer detec-
tions, they are qualitatively better, which makes sense because
particularly correct person detections tend to have high likelihood
scores. The choice for this threshold thus poses a trade-off on the
tracks: either they contain smaller gaps but the tracks are less con-
tinuous, or the tracks are more continuous but contain larger gaps
to be refined. Fig. 5bb shows that refinement is particularly capable
of refining large gaps, i.e., increase in coverage is larger at higher
values for h0. The optimal value for h0 does indeed lie at 0.5, where
the performance on average lies closest to the optimum continuity
and coverage which is at (1,1).

In Fig. 6 we have chosen h = [0.5,0.4,0.3, . . . ,0] and zoom in on
the performance of individual tracks. The figure shows that most
tracks are actually fully continuous to start with. For those tracks
their coverage increases and their continuity stays at 1 which
means that every added detection from refinement is correct. In
some cases though, we do notice a decreased continuity. In these
cases the coarse tracks already contain some discontinuities that
are propagated and sometimes worsened by track refinement. An
often seen scenario is that a gap between a detection of person A
and a detection of person B (thus being discontinuous already in
the coarse track) is filled with alternating detections of person A
and B, which pulls down the continuity even further. An example
of this is given in Fig. 11.

Table 1 shows the tracking performance in terms of the MOT
metrics. We notice three particular properties of the tracker. First
we notice the MOTP, the average overlap ratio of successful detec-

tions, which is on average 0.78 in coarse tracks. This means that
the overlap between a detection and annotation of the person is
on average 0.22. Refinement decreases this value slightly, and thus
increases the performance, probably because it has the coarse track
as a context and is better capable of finding the right detections.
This proves the relevance of first having a coarse tracking stage.
A clear example of this is shown in Fig. 10.

Secondly we see that by far the most false positives are found in
hypotheses that do not mark a person at all. This is because of two
effects. For one, the dataset was only annotated with the actors, so
detected non-actors will be counted as false positive. Secondly, the
person detection algorithm we used simply generates an over-
whelming number of false detections. However, as is shown in
Fig. 13, these detections are all very well ‘‘tracked’’ too, in the sense
that parts of the scene that often cause false positives are collected
together in separate tracks. With a post-processing step these non-
person tracks can easily be discarded at once.

Then the third property we regard is the miss rate �m which is
decreased almost 10% by track refinement. Even stronger, after
removing the non-person tracks we see that the performance gain
from including missed detections does indeed outweigh the in-
creased false positive rate. Consequently we see the MOTA rise.
Refinement thus not only adds to the number of detections per
track, but at the same time increases the accuracy.

Table 2 contrasts the performance of our algorithm with the
other two multiple object trackers. The evaluation is carried out
on the fully annotated video fragment in the Amsterdam dataset.
The numbers illustrate clearly the robustness of our method to
time-lapse and low quality video data. The increase in MOTA for
OpenCV23MTTa shows that in this kind of video it is better to stick
with actual pedestrian detections rather than tracking any ‘‘blob’’
that enters the scene.

Fig. 14. Large scale change. Two examples of perspective. Both people walk away from the camera causing their scale (as measured in pixels) to decrease tremendously. Still
we are able to track them. Also notice that in the first example the person is taking his bag to his front, hiding it from the camera.
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We show some examples of tracks in Fig. 7–14, with different
figures highlighting different aspects about the tracks. Each row
of images shows a selection of detections. The cut-outs are taken
all at the same pixel size to provide clear insight in scale changes.

Most sequences are also cut out at the exact same position within
the frame to provide an understanding of people’s motions. In
some cases multiple tracks are jointly shown to illustrate the
multiple person aspect of tracking. In these cases the different

Fig. 15. Track refinement. Two illustrations of detections added by refinement. In both cases the first and last image (in reading order) are taken from the coarse track and the
intermediate detections result from refinement. Track (a) is refined from 10 to 43 detections and track (b) from 13 to 30.

Fig. 16. Skipping many frames. After wandering around a bit, the person stops and stands still. The person detection algorithm, which utilizes background subtraction, soon
enough looses the person ‘out of sight’. After more than 60 frames the person starts walking again, he is detected and the track resumes.
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tracks are annotated in contrasting tints, i.e., black bounding
boxes mark one track, white boxes the other. Particular attention
should be drawn to the examples in Fig. 9, showing how coarse
tracks are a very powerful way to deal with occlusions and multi-
ple persons. In both the examples the occluded person’s track
shows a gap for the duration of the occlusion and successfully
continues thereafter.

4.4. PETS

In this section we present results obtained from running the
presented algorithm on the public benchmark pedestrian dataset
PETS2009. Because this dataset does not provide the ground truth
labels, rather than presenting a numerical evaluation, we instead
show some fragments of generated tracks for analysis.

In comparison with tracking on our own dataset, we notice that
the precision of the person detection seems to be higher. This is
probably because the quality of the images is much higher and less
effected by sunlight, dust, reflections and other noise from the
scene. This has also a bearing on the amount of detections present
in coarse tracking, which is a bit higher because more detections
have a high likelihood score.

Similar to the case on our dataset the improvement on the miss
rate after refinement is much higher than the increase in false po-
sitive rate. Examples of this are shown in Fig. 15. In the first exam-
ple refinement adds 33 more to the 10 detections in the coarse
track. Two of those are false positives (one shown in its second im-
age). In the second example the number of detections increases
from 13 to 30 without any false positive, even though the occlud-
ing person looks quite similar.

The distinct advantage of our tracking algorithm—being able to
skip many frames—is clearly illustrated in Fig. 16 where the track is
continued after the person has been ’out of sight’ for over 60
frames. Because here the person is standing still for a long time,
its pixels are gradually incorporated into the background model.
As soon as the person starts moving again, he is detected and track-
ing continues. The gap cannot be refined however, because detec-
tions of the person are truly missing.

Finally we show a nice example of the tracker being able to cope
with scale change of the target objects. The track shown in Fig. 17
follows a person walking away from the camera, turning around,
and walking back to the camera. Due to perspective the size of
the person in the frames changes roughly threefold. The track is
more than 300 frames long with only two misses.

5. Conclusion

As performance of object detection algorithms in static images
is growing, the fields of object detection and object tracking are
coming together. In fact, in this paper we introduced a tracking
algorithm that is entirely based on such object detections. This ap-
proach has two clear advantages. First, by building a graph from
the detections we allow our algorithm to ‘backtrack’ over many
frames. As such it is guaranteed to find globally optimal paths. Sec-
ondly, because of this structure we can create paths that skip many
frames, and this is actually meaningful! Often, either because of
occlusion or camera noise or other circumstances, the uncertainty
is too large to continue a track. Whereas current trackers in such
situations blindly choose a continuation that maximizes some cri-
terion, we skip those frames and process them later, when there is
more information from surrounding frames.

Evaluation of the algorithm has shown that indeed our ap-
proach deals particularly well with occlusion of target objects.
When multiple people cross their paths, we see that tracking of oc-
cluded persons is postponed until they are again fully visible.
Moreover, as refinement is repeated with hysteresis, also the
semi-occluded detections are correctly added.

Provided that person detections are available the algorithm pro-
cesses an hour length video in a matter of seconds. We have ana-
lyzed the complexity and have shown that, in contrast with
traditional MHT algorithms which scale exponentially, our algo-
rithm scales polynomial in the number of detections. So our meth-
od is very efficient and fast.

Regarding the detections however, the detection algorithm we
used has shown not to be very accurate with around 90% false pos-
itives. One reason might be that the it was trained with images en-
tirely different from our video data. The images used for training
were taken from a horizontal angle and show people in high qual-
ity and under good lighting conditions. In contrast, our surveillance
video data shows people from a birds view perspective, the images
show a great deal of compression artifacts, and due to the contrast
in sunny and shadowy regions the lighting conditions vary tremen-
dously. Still, despite these real-life video conditions, and despite
the amount of false detections, the tracking algorithm has shown
good performance keeping non-person and person detections in
separate tracks.

On a final note, the presented tracker can be applied on any set
of detections, as long as the detections are defined as polygons. It is
not limited to persons. For example, using a car detector in traffic
video data our backtracker can be used to track cars as well.

Fig. 17. Scale. A track over 313 frames with a change in scale due to perspective. Furthest away the person appears in the image three times smaller than when closest to the
camera.
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