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In this paper, we address the incoherence problem of the visual words in bag-of-words vocabularies. Dif-
ferent from existing work, which assigns words based on closeness in descriptor space, we focus on iden-
tifying pairs of independent, distant words – the visual synonyms – that are likely to host image patches
of similar visual reality. We focus on landmark images, where the image geometry guides the detection of
synonym pairs. Image geometry is used to find those image features that lie in the nearly identical phys-
ical location, yet are assigned to different words of the visual vocabulary. Defined in this way, we evaluate
the validity of visual synonyms. We also examine the closeness of synonyms in the L2-normalized feature
space. We show that visual synonyms may successfully be used for vocabulary reduction. Furthermore,
we show that combining the reduced visual vocabularies with synonym augmentation, we perform on
par with the state-of-the-art bag-of-words approach, while having a 98% smaller vocabulary.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In recent years several local visual features have been proposed,
which encode the richness of localized visual patches [1,2].
Although these features perform well in object and concept recog-
nition as exemplified in the advances of TRECVID and PASCAL [3,4],
the detection and transformation of the visual reality of an image
patch into a feature vector is far from perfect [5,6]. Despite this fact
and to the best of our knowledge, there has been so far limited re-
search of the high dimensional visual feature space formed and its
properties.

For their ability to capture local visual information well enough,
local feature detectors and descriptors are mostly used. Feature
detectors and descriptors operate directly on the raw visual data
of image patches, which are affected by common image deforma-
tions. These image deformations affect either image appearance,
which accounts for the way the image content is displayed, or im-
age geometry, which accounts for the spatial distribution of the
image content inside the image. Image appearance variations in-
clude the abrupt changes of illumination, shading and color con-
stancy [7]. Image geometry variations are related to viewpoint
changes, non-linear scale variations and occlusion [8–12]. Several
feature descriptors that provide invariance against image appear-
ance deformations have been proposed [7]. However, there are
no specific features that deal adequately with image geometry
deformations. Instead, this level of invariance is partly reached
on the next level of image representation, using for example the
ll rights reserved.
bag-of-words model [13–16]. Despite this a posteriori acquired
invariance under geometric deformations, feature vectors of simi-
lar visual reality are still erroneously placed in very different parts
of the feature space. Thus, the image feature space spanned by lo-
cal feature detectors and descriptors is fuzzily populated.

Moreover, to be sufficiently rich to capture any local concept
the visual feature space has to be of high dimensionality. However,
distance measures in high dimensional spaces exhibit a more sen-
sitive nature [17]. Thus distance measures, a cornerstone of most
machine learning algorithms, are less indicative of the true similar-
ity of two vectors, which as a result disturbs the image retrieval
process. Therefore, error-prone distance measures also contribute
to the fuzzily populated feature space.

By treating local image descriptors as orderless words, images
in the bag-of-words model may be classified in a class on the basis
of word histograms. In effect, bag-of-words hopes for large number
statistics to even out the consequences of the aforementioned im-
age deformations. Words are obtained by clustering in the descrip-
tor space [18], implicitly assuming that all patches covered by one
word represent the same part of reality. And, that different clusters
correspond to different parts of reality. These clusters lie inside the
fuzzily populated feature space, resulting in visual words that have
little coherence in the semantics of the patches they contain, see
Fig. 1. For standard challenges, like PASCAL which targets at gen-
eral object recognition, visual word incoherence does not affect
the performance drastically and vocabularies of size up to 4 K clus-
ters suffice. However, for more challenging datasets, like Oxford5k
[14] or [19], image appearance and geometry deformations start to
have a much greater impact. Hence techniques that make better
use of the feature space are needed. For complex datasets, larger
vocabularies have proven to operate more effectively [14,19].
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Fig. 1. (a) Image patches mapped to one visual word of the bag-of-words vocabulary. Note the visual incoherence. (b) Comparison between image patches from two different
words. Note their perceptual similarity.
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Larger vocabularies fragment feature space finer yielding visual
words that are more concise, albeit less populated. Despite their
effectiveness, large vocabularies merely postpone rather than solve
the problem of the fuzzily populated feature space. Another tech-
nique that helps to ameliorate the errors during feature acquisition
is the use of soft assignment for mapping features to clusters. Un-
like hard assignment that performs a crude binary assignment to a
single cluster, soft assignment distributes the probability mass of
the mapping to a number of adjacent clusters [20]. Unfortunately,
soft assignment compensates only for the assignment errors near
the cluster borders. Errors that might occur because of the mis-
placement of features in distant parts of the feature space remain
unaffected.

In this paper we propose visual synonyms, a method for linking
semantically similar words in a visual vocabulary, let them be dis-
tant in feature space or not. The bag-of-words model is used on
landmark images, because their unchanged geometry allows for
mapping between different images with different recording condi-
tions, which opens the door to perspectives for linking words as
synonyms. When a link to the same spot is found, it is clear the
word represents nearly the identical patch in reality. However,
due to the accidental recording conditions in each of the words,
the features may differ significantly. Thus, this link establishes a
connection between two parts of the feature space, which, despite
their distance, correspond to image patches of similar visual real-
ity. Visual synonyms comprise a vehicle for finding the parts of fea-
ture space, which are nearly identical in reality. This allows for
further refinement of visual word definitions. Also, visual syn-
onyms can be used for vocabulary reduction. By using a fraction
of visual synonym words, we are able to reduce vastly the vocab-
ulary size without a prohibitive drop in performance.

This paper extends [21] with additional experiments and a
more deep analysis of the behavior of visual synonyms and visual
words. The rest of the paper is organized as follows. In Section 2 we
present some related work. In Section 3 we introduce the notion of
visual synonyms and we propose an algorithm for their extraction.
We describe our experiments in Section 4 and we present the re-
sults in Section 5. We conclude this paper with a short discussion
of the acquired results.
2. Related work

The bag-of-words method is the state-of-the-art approach in
landmark image retrieval [14]. The core element of the bag-of-
words model is the vocabulary W = {w1, . . . ,wK}, which is a set of
vectors that span a basis on the feature vector space. Given the
vocabulary and a descriptor d, an assignment qr 2 1, . . . ,K to the
closest visual word is obtained. We may construct the vocabulary
W on a variety of ways, the most popular being k-means [22].
Based on the bag-of-words model, an image is represented by a
histogram, with as many bins as the words in the vocabulary.
The word bins are populated according to the appearance of the
respective visual word in the image. Therefore, an image I is repre-
sented by hI ¼ g w1

I

� �
; . . . ; g wK

I

� �
, where g(�) is a response function

assigning a value usually according to the frequency of the visual
word in the image. More advanced techniques have recently been
proposed, better encoding the original descriptor d using the
vocabulary basis W, thus yielding significant performance
improvements, often at the expense of a high memory and compu-
tational cost [23] After obtaining the histogram of responses, all
spatial information is lost. Following [14,24], we enrich the bag-
of-words model with spatial information using homography map-
pings that geometrically connect pairs of images.

The most popular choice for feature extraction in the bag-of-
words model is the SIFT descriptor [1]. Given a frame, usually split
into a 4 � 4 grid, the SIFT descriptor calculates the edge gradient in
eight orientations for each of the tiles in the grid. Thus resulting in
a 128-D vector. Although originally proposed for matching pur-
poses, the SIFT descriptor also dominates in image classification
and retrieval. Close to SIFT follows the SURF descriptor [2]. SURF
is designed to maintain the most important properties of SIFT, that
is extracting edge gradients in a grid, while being significantly fas-
ter to compute due to the internal use of haar features and integral
images.

An efficient and inexpensive extension to the bag-of-words
model is visual augmentation [24,25]. According to visual aug-
mentation, the retrieval of similar images is performed in three
steps. In the first step the closest images are retrieved, using
the bag-of-words model. In the second step, the top ranked
images are verified. In the third step, the geometrically verified
images lend their features to update the bag-of-words histogram
of the query image and the new histogram is again used to re-
trieve the closest images. In the simplest case, the update in
the second step averages over all verified images closest to the
query [25,24]. In a more complicated scenario, the histogram up-
date is based on a multi-resolution analysis of feature occurrences
across various scenes [24]. For visual augmentation to be effec-
tive, the query’s closest neighbor images have to be similar to
the query image. Therefore geometric verification is applied. As
expected, the top ranked images are usually very similar to the
query image. However similar, these images exhibit slight differ-
ences due to their respective unique imaging conditions. These
slight differences supplement the representation of the original
query with the additional information that stems from the possi-
ble variations of visual reality as depicted in the image. Finally,
the augmented query representation leads to a boost in perfor-
mance. In this paper we draw inspiration from Chum et al. [24]
and Turcot and Lowe [25], however we do not use any graph
structure to connect images together.

Apart from image appearance, landmark scenes are also charac-
terized by their unchanged geometry. Given that in a pair of
images geometry changes because of translation, rotation and
scale, there is a matrix that connects these two images together.
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This matrix can be either the homography matrix or the
fundamental matrix, according to the assumed geometry between
the pictures, and can be computed using a robust iterative estima-
tor, like RANSAC [26]. Faster RANSAC-based algorithms take
advantage of the shape of local features to significantly speed up
homography estimation [14]. Besides RANSAC-based geometry
estimation, there are also other, less strict, techniques for taking
geometry into account. Jegou et al. [27] check the consistency of
the angle and scale value distribution of the features of two
images. The rationale is that features extracted from the same
physical location should have comparable scale and angle ranges.
Pairs of images that exhibit dissimilar scale and angle distributions
are considered as geometrically inconsistent. In [19] Wu et al. com-
pare the spatial distribution of matched features between a pair of
images. The motivation is that the feature distribution over one
image should be as similar as possible with the one of another im-
age. In the current work we follow the approach proposed in [14]
to efficiently estimate pair-wise homography mappings.

In image retrieval and classification, current vocabulary sizes
range from small, typically 4K [15] to large 1M words [14,19]. Be-
cause of the computational and storage requirements, large vocab-
ularies are difficult to manage in real world scenarios that involve
very large datasets. Therefore, methods for vocabulary reduction
have been proposed. These methods try to keep retrieval or classi-
fication performance constant, whilst reducing the vocabulary sig-
nificantly. Schindler et al. [28] and Zhang et al. [16] propose to
retain words that appear to be frequent given the concepts in a
classification task. In contrast, Turcot and Lowe [25] use geometri-
cally verified visual words, which are appropriate for constructing
a reduced vocabulary. First, they compare pairs of images geomet-
rically with the use of RANSAC. Visual words returned as inliers
from RANSAC are considered to be particularly insensitive to com-
mon image deformations. The vocabulary obtained is noticeably
smaller without a significant loss in performance. However, for this
technique the reduced vocabulary size is a dependent variable
rather than an independent one. The size of the new vocabulary
is not user-defined and depends on the geometric properties of
the dataset pictures. In order to loosen this harsh geometric
constraint, we propose a controllable selection of words from a
pool of visual words, which are robust against common image
deformations. Furthermore, in [25] visual words are found, which
repeatedly appear in pictures of the same scene and are also geo-
metrically consistent. Thus, variations of the visual elements in
the very same scenes might be omitted, variations that are possibly
important for recognizing the scene. We therefore investigate, as
part of our approach, whether these variations should be taken into
account in the vocabulary reduction process.
Fig. 2. Four different types of relation among words pairs. The same shape of the
indicator ( , ) refers to same location, whereas same color refers to the same
word. We are interested in pairs of words that have different visual appearance but
refer to the same location in the world, that is pairs of words represented by the
same shape but with different color (Type 3).
3. Visual synonyms

We define visual synonym words as visual word pairs, which re-
fer to image patches with similar visual appearance. Similar visual
appearance is common in images that depict the same, identical
object of interest, like a famous building or monument. Examples
of such images, which we refer to as landmark images, are ‘‘Eiffel
tower, Paris’’ or the ‘‘All souls College, Oxford’’ pictures. Conse-
quently, non-landmark images depict arbitrary objects, such as
random people, and a random car. For landmark images visual syn-
onym words cover descriptors that correspond to image patches
originating from nearly identical physical elements.

To obtain visual synonyms we must find different visual words
that are likely to correspond to visually similar patches. We need
an independent information source to supply us with additional
knowledge on the image’s visual reality. Geometry is an indepen-
dent information source, since it supplies information about the
spatial properties of the image content. However, we lack the tools
to confidently extract valid geometric information in object or ab-
stract scene images. For this reason we opt for landmark images
containing pictures of the same physical locations, whose largely
unchanged geometry is ideal for geometry exploitation. Although
other information sources may as well be used to analyze an
image’s visual reality, the proposed algorithm makes use of strict
geometry, in effect optimizing for landmark image retrieval.

3.1. Preliminaries

We first introduce some notation. Following the query-by-
example paradigm, we refer to a query image of dataset I as IQ gen-
erating a ranked list Ij

Q , where j denotes the rank. We define image
feature n as the local descriptor extracted on an interest keypoint
with scale and location X , mapped to a visual word wr of the
vocabulary. Consequently, the ith feature of image I1 is denoted
as n1;i ¼ fwr

1;i;X1;ig. Finally, the homography matrix that relates
the geometries of a pair of images IQ and Ij

Q is denoted by HðIQ ; I
j
Q Þ.

3.2. Connecting visual words with geometry

Matching the geometry between two images is extensively
studied in the literature [24,14,25,29]. The most prominent ap-
proach starts with a specific geometry assumption, like projective
or epipolar geometry [26]. For projective geometry, the homogra-
phy matrix H maps every point from the first image to one and
only one point in the other image. Given only a few feature corre-
spondences between a pair of images, we can calculate a candidate
homography matrix that relates the images in a geometric fashion.
Normally an iterative algorithm for generating hypotheses is used
and the homography matrix that scores best is kept. Alternatively,
the homography matrix can be calculated by following a determin-
istic approach without the use of any iterative scheme. It was
shown in [14] that this approach leads to a significant computa-
tional speed-up. Homography matrix estimation, and image geom-
etry in general, has mostly been used to reject images that have
similar bag-of-words appearance but poor geometric consistency.
Apart from this post-processing usage, geometry has not been
exploited much for the visual representation of landmark images.
In the current work we calculate the homography matrix for geom-
etry estimation, in order to recognize the geometrical properties of
the scene. We exploit geometrical scene properties to derive more
effective representations for landmark appearance.
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When two images I1 and I2 are connected with a matrix H,
which is estimated using RANSAC, four possible feature pair rela-
tions exist between point pairs in the two images, see also Fig. 2.

Type 1: features n in nearly identical physical locations mapped
to the same visual word w. That is
n1;i; n2;j : w1;i ¼ w2;j;X1;i � HðI1; I2Þ � X2;j:
We call these pairs visual metonyms.
Type 2: features n in different physical locations mapped to the
same visual word w. That is
n1;i; n2;j : w1;i ¼ w2;j;X1;i – HðI1; I2Þ � X2;j:
We call these pairs visual homonyms.
Type 3: features n in nearly identical physical locations mapped
to different visual words w. That is
n1;i; n2;j : w1;i – w2;j;X1;i � HðI1; I2Þ � X2;j:
We call these pairs visual synonyms.
Type 4: features n in different physical locations mapped to dif-
ferent visual words w. That is
n1;i; n2;j : w1;i – w2;j;X1;i – HðI1; I2Þ � X2;j:
These are random visual word pairs.
We consider a location in the world as nearly identical, when

jX1;i � HðI1; I2Þ � X2;jj < �.
Feature pairs of Type 1 and Type 2 are widely used in the liter-

ature as input to RANSAC [14,24,25]. Naturally, feature pairs of
Type 4 make less sense to use in matching, whilst feature pairs of
Type 3 have been ignored in the literature. However, feature pairs
of Type 3 allow us to associate independent visual words of the
vocabulary, which emerge from the same physical structure. This
association provides us with the opportunity to find clusters in
the descriptor space that have truly similar visual reality. This is
a novelty with respect to state-of-the-art image retrieval and clas-
sification techniques [14,24,15]. Visual metonyms refer to visually
similar patches that generate feature values being clustered to the
same visual word, whereas visual synonyms refer to visually sim-
ilar patches clustered to different visual words. Ideally, we would
like to transform visual synonyms into metonyms. Since met-
onyms already exhibit a desirable and consistent performance,
we focus on investigating the nature of visual synonyms.

3.3. Visual synonyms extraction

Our visual synonym extraction algorithm is a four-step proce-
dure. During this algorithm, we are looking for potential visual
synonym pairs, that is pairs of Type 3, see Fig. 2. For the extraction
of visual synonyms a visual appearance similarity measure d(�) and
a geometric similarity measure g(�) are used. We also use a thresh-
old c for assessing the geometric similarity of a pair of images,
where c refers to the minimum required number of inliers re-
turned from RANSAC.

Step 1: Visual ranking. We rank all images in a data set according
to their similarity with respect to a query image IQ, using the stan-
dard bag-of-words model for modeling visual appearance. After
this step, we obtain an ordered list fIQ ; I

j
Qg, such that:

d IQ ; I
j
Q

� �
< d IQ ; I

jþ1
Q

� �
; j ¼ 1; . . . ; jIj � 1; ð1Þ

where jIj is the number of the images in the dataset.
Step 2: Geometric verification. Although the top ranked retrieved

images from step one have similar visual appearance in terms of
their bag-of-words representation, they do not necessarily share
the same geometric similarity as well:
when d IQ ; I
j
Q

� �
is small ; g IQ ; I

j
Q

� �
> c: ð2Þ

Images that are ranked highly according to bag-of-words but
they exhibit a poor geometric similarity are considered geometri-
cally inconsistent. We simply filter out these geometrically incon-
sistent retrieved images. In order to minimize the possibility of
false geometric transformations, we impose harsh geometric con-
straints, that is we set the threshold c high. For computational rea-
sons, we limit the number of geometric checks to the top M
retrieved images. At the end of this step, we have per-query the as-
sumed positive j images where 1 6 j 6M and their geometric

transformations H IQ ; I
j
Q

� �
with respect to the query image.

Step 3: Visual synonym candidates. Based on the estimated geo-
metric transformations from step 2, we seek for word pairs of Type
3. We do so by back-projecting the geometry transformation

H IQ ; I
j
Q

� �
onto IQ and Ij

Q . Then, we search for word pairs pr,t = {wr,wt}

that belong to pair of features under the condition of Type 3, that is

pr;t ¼ ðwr
k;IQ
;wt

l;Ii
Q
Þ : jX k;IQ

� HðIQ ; I
j
Q Þ � X l;Ij

Q
j < � ð3Þ

where k and l iterate over all features in images IQ and Ij
Q respec-

tively and � is a user defined variable. At the end of this step, we
have a list of pairs of visual synonym candidates P ¼ fpr;tg.

Step 4: Removal of rare pairs. Although we employ harsh geo-
metric constraints, false positive geometry estimation is still possi-
ble to happen. In that case the word pairs harvested are incorrect
and they should be filtered out.

Assuming that false positive geometry estimation is not repeti-
tive over specific images, the visual word pairs that subsequently
arise from these pairs of images do not appear frequently. Hence
by applying a frequency threshold we are able to exclude these
presumably false visual word pairs. Moreover this frequency
threshold conveniently reduces the number of visual synonym
word pairs to a manageable size. The occurrence frequency of all
pairs of visual synonym candidates is thresholded at f to drop word
pairs that occur too rarely. The final list of synonyms is composed
of the pairs

S � P : fpr;t
> f ð4Þ

We summarize the algorithm in Fig. 3.

3.4. Landmark image retrieval using visual synonyms

Visual synonyms are pairs of words, ideally originating from the
near identical physical parts of reality. It is therefore expected that
visual synonym words will appear in images of the same land-
marks. For example two visual synonym words that depict the
tip of Eiffel tower will appear in Eiffel tower images with high fre-
quency. If we retain those visual synonym words then, we expect
that they will supplement each other in these landmark scenes
in which they frequently appear.

Having harvested the visual synonyms, we are equipped with a
pool of words S that could potentially participate in the construc-
tion of a new reduced vocabulary. In the current work the new re-
duced vocabulary of size jRj is constructed by selecting the words
participating in the most frequent visual synonym pairs. Because
visual synonyms are pairs of words, we use the top jRj/2 visual syn-
onyms, that is

R ¼ pr;t : fpr;t
> f jRj=2

pr;t
; ð5Þ

where f jRj=2
pr;t

is the frequency of the jRj/2 most frequent visual syno-
nym pair. Practically, words appear in more than one visual syno-
nym pair, therefore the final vocabulary size is typically smaller
than jRj/2.



Fig. 3. The 4-step algorithm for finding visual synonyms. First, we rank images
according to their bag-of-words similarity with the query image. Second, we select
from the ranked images the most likely positives by using the number of geometric
inliers (features with same color and shape, e.g. – ). Then, by using the
homography matrix H we back-project those words, that are assigned to different
clusters but reside in the same physical image location (features with the same
shape but different color, e.g. – ). These are the visual synonyms candidates.
Finally, after repeating the procedure for all the query images, we use a threshold to
maintain only frequent visual synonym candidates.
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3.5. Landmark image retrieval with synonym augmentation

We employ the visual augmentation model for updating the im-
age histogram representation according to the reduced vocabulary
of the visual synonyms words. We closely follow the approach pro-
posed in [25,24]. However, we simplify the model and make no use
of the geometric verification step. We consider only the first re-
trieved image as a positive. We then average the histograms of
the query image and the top retrieved image. The averaged histo-
gram is our new query. For the bag-of-words retrieval, that is given
a query image, we search for the closest image based on a prede-
fined distance measure. Naturally, the top retrieved image will
again be retrieved in the top rank.
3.6. Implementation

3.6.1. Bag-of-words representation
We experiment with two different types of descriptors. First, we

describe Hessian-Affine detected keypoints with SIFT [1,5]. Second,
we use the SURF descriptor [2] and the detector with which it was
proposed. For both cases we use 200K vocabularies, trained on an
independent 30K dataset downloaded from Flickr. Because of the
large size of the vocabulary, we use approximate nearest neighbor
techniques for the word assignment stage. For this purpose, we
rely on the FLANN library [30]. Finally, we use histogram intersec-
tion as visual similarity measure to rank the images in Step 1.

3.6.2. Geometry
We perform the geometric verification on the top M = 40

images. Although in the literature a value of c = 25 inliers is consid-
ered to be an acceptable threshold for accepting a pair of images as
geometrically consistent [31], we require particulary high preci-
sion to avoid false positives. The higher we set threshold c the
smaller the amount of geometrically verified images is. If we set
the threshold too high, for example to c = 100 inliers, only pairs
of near duplicate images would be considered as geometrically
consistent. We set the minimum required number of inliers to
c = 50, a value which was empirically found to result in high preci-
sion (data not shown). We estimate the homography matrix using
the fast spatial matching algorithm introduced in [14]. For homog-
raphy matrix estimation the symmetric transfer error function is
used as cost function [26]. The maximum distance error then is ta-
ken d = 0.001 and the approximation error � = d/10.
4. Experimental setup

4.1. Data set

We report our experiments on the Oxford5k data set [14], which
contains 5062 large Flickr images from 11 landmark scenes in Ox-
ford. The images are labeled either as ‘‘good’’, ‘‘ok’’ or ‘‘junk’’,
depending on how clear is the view of the scene. When a picture
depicts clearly the scene, it is labeled as ‘‘good’’, whereas when
more than 25% of the scene is visible inside the picture, then the
image is labeled as ‘‘ok’’. Images in which less than 25% of the ob-
ject is visible are labeled as ‘‘junk’’. The number of pictures labeled
as ‘‘good’’ or ‘‘ok’’ differs from scene to scene, ranging from as few
as 6 images for ‘‘Pitt Rivers’’ to�200 images for ‘‘Radcliffe Camera’’.
To simulate a real word scenario, Oxford5k contains more than
4000 additional images that depict none of the landmarks. The
landmark images in Oxford5k are known to contain many occlu-
sions as well as large changes in scale, viewpoint, and lighting con-
ditions. For all these reasons, Oxford5k is a challenging dataset. The
algorithm is fully unsupervised, therefore the data are not split into
training and test set.

4.2. Visual synonyms extraction

Visual synonym extraction is an unsupervised technique, since
there is no need for prior knowledge of the true similarity between
landmark images. Instead, geometry and harsh geometrical con-
straints provide us with this type of information. Despite the harsh
geometric constraints, there are still pairs of non-landmark images,
which are successfully matched.

4.3. Experiments

4.3.1. Visual synonym validity
A direct quantitative evaluation of visual synonyms is hard,

since no ground truth of individual patch semantics, such as
‘‘window’’ or ‘‘doric column’’, is available. Instead, we use the
landmark ground truth label for the entire image in which a vi-
sual synonym word is found. Given a visual synonym word pair,
we count how many times these visual synonym words appear in
the same landmark images. We repeat using the same visual syn-
onym words and random words. We then compare against the
landmark cooccurrence of the visual synonyms words. This is
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an indirect measurement, since the fact that two visual words ap-
pear to the same landmark does not necessarily imply that they
also depict the same visual reality. However, we ignore this pos-
sibility and hypothesize that a pair of visual synonym words
should appear more frequently in common landmarks, than ran-
dom pairs of words.
4.3.2. How close are visual synonyms in descriptor space?
An important property that would reveal the potential of vi-

sual synonym words is the distribution of their distances in the
feature space. Given an L2-normalized feature space forming a
sphere with unit length radius, all features lie on the surface of
the sphere and visual words form Voronoi cells. The distance be-
tween every pair of words is proportional to the angle of the cor-
responding visual word vectors. When visual synonym words are
close, compared to random words, their vectors angle is smaller
than the angle between the random word vectors. We test
whether visual synonyms are most often pairs of neighboring
cells or distant cells. To examine we calculate the distribution
of distances in experiment 1.

This experiment operates in feature space, which in our case is
the 128-D SIFT, or 64-D SURF space. To answer this question, we
calculate the distances dr,t = d(wr,wt), dr,j = d(wr,wj) and dt,j =
d(wt,wj) for wj,j – r,t. We use cosine similarity distance, that is

cðwr;wtÞ ¼
P

i
xr

i
�xt

i
jxr j�jxt j , where xr

i is the ith coordinate of the feature vec-

tor of wr. Next, given a word we rank the distances from the rest of
the words and mark the distance from its visual synonym word.
Closer visual synonym words would imply lower ranks.
4.3.3. Vocabulary reduction using visual synonyms
Next, we want to study whether visual synonyms can success-

fully be used for vocabulary reduction, despite the instability of the
feature space. If visual synonyms are repeatable enough, so that
they retain the vocabulary’s performance levels, this would also
imply that transforming them to visual metonyms is a reasonable
option. We select a subset of the visual synonyms extracted and
use them as a new visual vocabulary. In this experiment, the re-
duced vocabularies range from 30 K words to 1 K words. We com-
pare against reduced vocabularies based on visual metonyms,
similar to the reduction method proposed by Turcot and Lowe
[25], and the full 200 K vocabulary baseline. We also compare
against a reduced vocabulary derived from the combination of vi-
sual synonyms and metonyms.
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Fig. 4. Results from experiment 1. Cooccurrence of landmarks between vi
4.3.4. Landmark image retrieval using visual synonyms and visual
augmentation

Finally, we study whether the visual synonym reduced vocabu-
laries are orthogonal to other, state-of-the-art retrieval techniques.
To this end we make use of visual augmentation [24]. In the cur-
rent setup, we simplify visual augmentation by considering the
first retrieved image I1

Q to belong to the same landmark as the
query image. We then use I1

Q to update the query image histogram.
4.4. Evaluation protocol

For the evaluation of our retrieval experiments, we follow the
protocol suggested in [14]. Five images from each landmark are
used as query images and the average precision scores are aver-
aged over each landmark scene for the final result.

Our evaluation criterion for this retrieval experiment is the
average precision score:

AP ¼
PN

j¼1PðjÞ � RðjÞ
PN

j¼1RðjÞ

where j is the rank, N is the total number of documents, P(j) is the
precision at the jth rank and R(j) is a binary function, which is true if
the jth retrieved document is a true positive result.
5. Results

5.1. Experiment 1: Visual synonym validity

We plot the results for experiment 1 in Fig. 4a. In the majority of
the cases visual synonyms words cooccur in similar landmarks
images more often than random words for both (a) SIFT and (b)
SURF. More specifically, visual synonyms words not only cooccur
in the same landmarks, but also have similar visual appearance.
In contrast, random words at the tail of both Fig. 4a and b cooccur
in the same landmarks with visual synonym words but depict dif-
ferent visual details. Nonetheless, the tail of the distribution high-
lights the pairs of visual synonym words, were the number of
potential matches between individual patches of the respective
words is smaller. This number of potential matches corresponds
to the confidence of the visual synonym pair, i.e. the more potential
matches, the higher the confidence.
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5.2. Experiment 2: How close?

We show the results of experiment 2 in Fig. 5. Each dot corre-
sponds to the distance between two visual synonym words,
ws1 ;ws2 . The y-value relates to the comparison of the distance
hws1 ;ws2 i and hws1 ;wji for all j except for s2. The smaller the dis-
tance between the synonym words compared to random words,
the lower the dot is and therefore the closer the synonym words
are, as compared to all other words. Hence, the figure provides
us with the distribution of distance rankings between visual syno-
nym words and all other words. Naturally, there are many visual
synonym pairs that lie close in feature space (visual synonyms in
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vocabulary, that is 89% compression rate, we perform the same as the 200 K baseline. Al
the word assignment process, visual synonym reduced vocabularies perform on par with
and metonyms leads to a small performance increase.
the top 100 closest words). However, the spectrum of distance
rankings is broad. While some synonyms are relatively close neigh-
bors indeed, lying for example in the range 0–100 in Fig. 5, the
majority of word pairs tends to be distant from one another. This
shows that visual synonym words are scattered throughout
descriptor space, regardless their common origins from the same
physical elements in the 3D scenes. If we added in the current plot
also visual metonyms, the plot would acquire a sigmoid shape,
since the metonyms would by definition be the closest words in
feature space.

For visual synonyms extracted with the SURF descriptor we ob-
serve a much steeper curve, see Fig. 5b. We attribute this steeper
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curve to two reasons. First, fewer visual synonym statistics are
available. Contrary to SIFT, where we obtain 5409 features per im-
age on average, using SURF we have 1900 features on average. As a
result, there are fewer visual word matches between retrieved
images. Hence, the estimated homographies are not as precise.
Since the proposed algorithm largely depends on having accurate
homography mappings from one image to the other, visual syno-
nym statistics from SURF features are not adequate. Thus visual
synonym extraction is not as reliable. For the same reason the
number of visual synonyms extracted using SURF is much smaller:
7263 visual synonym word pairs when using SURF whereas 72,337
visual synonym word pairs when using SIFT. Second, the SURF
detector does not find elliptical shaped features, like the Hessian-
Affine feature detector that we use for SIFT. Therefore patches
are not affine normalized before extracting the SURF features,
which is a disadvantage for landmarks.
0 2K 4K 6K 8K 10K 15K 20K 25K
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
A

P 
pe

rf
or

m
an

ce

Vocabulary size

How small synonym vocabularies can be

Reduced synonym vocabularies

Fig. 7. How small synonym vocabularies can be? Compact vocabularies using visual
synonyms can be reduced to 2–4 K words, a 99% compression rate, with no severe
degradation on MAP (5% decrease).

0 0.1 0.2 0.3 0.4

all souls

ashmolean

balliol

bodleian

christ church

cornmarket

hertford

keble

magdalen

pitt rivers

radcliffe camera

MAP

Avera

La
nd

m
ar

k

Landmark image retrieval using vis

Fig. 8. Results from experiment 4. Using visual augmentation of the visual synonym red
with visual augmentation [25], the performance is the same. Using the 4 K vocabulary
compared to the baseline.
5.3. Experiment 3: Vocabulary reduction using visual synonyms

We show the results of experiment 3 in Fig. 6. The size of the
reduced vocabularies ranges from 1 K, a 99.5% reduction ratio to
22 K, a 89% reduction. The 22 K visual synonym vocabulary per-
forms the same as the full vocabulary of 200 K words. Hence, using
a 89% smaller vocabulary, we are able to achieve similar perfor-
mance. When constructing a 22 K vocabulary based on visual met-
onyns, essentially following the approach introduced by Turcot
and Lowe [25], the performance remains on similar levels. The
same performance is obtained when visual synonyms and met-
onyms are both used for the construction of the reduced vocabu-
lary. The number of the words found to participate both in the
visual synonyms and visual metonyms vocabulary is 11 K. Natu-
rally, visual metonyms are more consistent and therefore more ro-
bust. Although visual synonyms are associated with the instability
of the feature space and the word assignment process, the fact that
the respective vocabularies perform on par indicates that visual
synonyms carry useful information.

In Fig. 7 we plot the performance of many reduced vocabularies,
ranging from 1 K to 22 K words. The performance of the vocabular-
ies remains close to baseline levels for as much as 98–99% smaller
vocabularies (3–4 K), after which there is a noticeable performance
degradation (more than 5% in MAP). Consistent performance with
98% smaller vocabularies shows that the redundancy initially
introduced by large vocabularies is minimized.

In the above analysis, there are several parameters that are
manually set, such as M and �. Varying M or � does not lead to
any significant changes in performance (data not shown). We
therefore conclude that visual synonym extraction is robust to
small parameter deviations.

5.4. Experiment 4: Landmark image retrieval using visual synonyms
and visual augmentation

We show the results of experiment 4 in Fig. 8. We used two vi-
sual synonym vocabularies, the 4 K and the 22 K. We consider as
the baseline the standard bag-of-words model using a visual
vocabulary of size 200 K. Using the 4 K reduced vocabulary
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uced vocabulary increases performance to 0.406 in MAP. Using the 22 K vocabulary
with visual augmentation [25], results in a performance of 0.347, a loss of only 3%
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Fig. 9. Example of visual synonym words. The green and blue polygons enclose patches from two different visual words found to be visual synonyms. The two red rectangles
focus on patches of each visual word separately. The resemblance between the patches inside the red rectangles proves why the two words were labeled as synonyms. At the
bottom of the figure we show a picture of the ‘‘Radcliffe Camera’’ scene, indicating the location where the most visual word patches are extracted. Patch sizes scaled to fit the
page. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

246 E. Gavves et al. / Computer Vision and Image Understanding 116 (2012) 238–249
together with visual augmentation we perform almost the same as
the baseline of the 200 K words (0.347 MAP for 4 K vocabulary
with visual augmentation vs 0.377 for full 200 K vocabulary).
When using the top performer 22 K vocabulary, the performance
increases by 4%, going to 0.406 in MAP.

In Fig. 11 we highlight retrieval results using the reduced vi-
sual synonym vocabularies. The query image is a picture of the
‘‘All souls’’ college. When we follow the standard baseline ap-
proach, first row, we score a poor 0.154 in average precision.
We attribute this low score to the noticeable visual deformations
that the query image undergoes, that is extreme illumination
variation within the same picture. Hence, it is no surprise that
the baseline retrieves two wrong pictures in the top ranked
results. In the second row we highlight the landmark image



Word 1

Word 2

Fig. 10. Another example of visual synonym words. Again, The green and blue polygons enclose patches from two different visual words found to be visual synonyms. The
two red rectangles focus on patches of each visual word separately. The resemblance between the patches inside the red rectangles proves why the two words were labeled as
synonyms. At the bottom of the figure we have a picture of the ‘‘Christ church’’ scene, indicating the location where the most visual word patches are extracted. In this
example becomes clear why these words are found to be visual synonyms, since they both share a characteristic castle loophole pattern. Patch sizes scaled to fit the page. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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retrieval results using visual synonyms with a 22 K vocabulary.
As can be observed, the false positive ranked at position one
when using the baseline, is maintained, however the false posi-
tive in rank 3 is substituted from a true positive. It is the reason
why the average precision jumps from 0.154 to 0.224. For retrie-
val using the 4 K visual synonym vocabulary the results further
improve to an average precision of 0.236. It is worthwhile men-
tioning that for the reduced vocabularies using visual synonyms,
the detected visual words (blue and magenta dots respectively)
are located on the visual elements, that are characteristic of
the landmark, that is the towers and the gothic style textured
windows. The last row shows the retrieved results when using
the 4 K vocabulary together with visual augmentation. Using vi-
sual augmentation further pushes the performance to 0.399. This
is reflected to the retrieval, where the four top ranked images are
all true positives.



Fig. 11. Retrieval results for an ‘‘All souls’’ query image, using three different vocabularies. The full 200 K vocabulary, our baseline, corresponds to the first row. In the second
row we have the 22 K visual synonym vocabulary. In the third row we have the 4 K visual synonym vocabulary. Finally, in the last row we again have the 4 K visual synonym
vocabulary combined with visual augmentation. The visual words extracted are depicted as colored dots. For the reduced vocabularies, the visual words are mainly spotted in
geometrically reasonable positions.
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5.5. Qualitative results

Examples of visual synonym words are illustrated in Figs. 9
and 10. In both figures the red rectangles reveal why those two
visual words have been selected as visual synonyms. These
patches come from the ‘‘Radcliffe Camera’’ and ‘‘Christ Church’’
landmark respectively. Under the bag-of-words model each visual
word wj covers a sensitive subspace Fwj

in descriptor space F .
Although parts of Fwj

include coherent patches, there are clearly
many more patches that reside in the same part of the feature
space and are visually different. As a result, we have visual syn-
onyms, that is features arising from the same 3D elements of
the physical world, yet assigned to different and probably distant
visual words.
6. Conclusions

In this paper we have introduced the notion of visual synonyms,
which are independent visual words that nonetheless cover similar
appearance. To find synonyms we use conspicuous elements of
geometry on landmarks. Different views of the same conspicuous
element are usually covered by different parts of the feature space;
they are the synonyms to be. We detect pairs of synonyms by
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mapping the conspicuous elements onto one another. We evaluate
the validity of visual synonyms. They appear in consistent land-
mark locations. Using SIFT descriptors seems to yield visual syn-
onyms of better quality than using SURF, because the latter
generates a smaller number of features on average. We tested vi-
sual synonyms with respect to their closeness in descriptor space.
They appear to be not just simply close neighbors, even when they
have a similar appearance. In fact they can be very far in feature
space.

Visual synonyms can be used for vocabulary reduction, obtain-
ing 98–99% smaller vocabularies with only 5% performance degra-
dation in MAP. Furthermore, combination of visual augmentation
together with 98–99% smaller visual synonym vocabularies boosts
performance to baseline levels. The reduction achieved demon-
strates that visual synonyms carry useful information. Although
arising from the inconsistency of the feature space and the word
assignment process, visual synonyms capture the essence of the
landmark scenes of interest.

All in all, visual synonyms provide a look into the multidimen-
sional feature space, allow us to study the nature of the visual
words and their intrinsic incoherence, maintain landmark image
retrieval performance, and in the end reduce the visual vocabulary
size.
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