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ABSTRACT 

 
Performance measures for quantifying human color 
constancy and computational color constancy are very 
different. The former relate to measurements on individual 
object colors whereas the latter relate to the accuracy of the 
estimated illuminant. To bridge this gap, we propose a 
psychophysical method in which observers judge the global 
color fidelity of the visual scene rendered under different 
illuminants. In each experimental trial, the scene is rendered 
under three illuminants, two chromatic test illuminants and 
one neutral reference illuminant. Observers indicate which 
of the two test illuminants leads to better color fidelity in 
comparison to the reference illuminant. Here we study 
multicolor scenes with chromatic distributions that are 
differently oriented in color space, while having the same 
average chromaticity. We show that when these 
distributions are rendered under colored illumination they 
lead to different perceptual estimates of the color fidelity. 
 

Index Terms— Color constancy, color fidelity, triad 
comparison, chromatic distributions 
 

1. INTRODUCTION 
 
Color constancy is the ability of a visual system to maintain 
stable object color appearance despite substantial changes in 
the spectral power distribution of the illuminant. For quite 
some time, it has been recognized as one of the central 
themes in color research. Still, the methodological 
approaches in perception (human vision) studies and 
computational (computer vision) studies are very different. 
The background of this paper lies in our desire to bring the 
research areas on human color constancy and computational 
color constancy closer together. 

The degree of constancy exhibited by human observers 
is often quantified by a color constancy index [1]. A 
common finding in the many psychophysical studies on 
color constancy is that human color constancy is not perfect. 
It depends on the experimental method employed and the 
observer’s state of adaptation, among other things. The 
main techniques are color matching, color naming, nulling 
to maintain neutral appearance, discriminating between a 
change in illumination and a change in surface reflectance 

(operational approach), and identification of surfaces across 
illuminants [2]. What these techniques have in common is 
that each measurement (i.e. each observer response) relates 
to the appearance of a single object or patch in the scene.  

In computer vision, the main approach to solving the 
color constancy problem is by estimating the unknown 
illuminant from the visual scene, after which reflectance 
may be recovered (e.g. [3], [4], [5]) or the color balance of 
images may be corrected for display or to support object 
recognition [6]. The performance of such color constancy 
algorithms is usually quantified by the angular error [7], a 
measure for the chromatic mismatch between the estimated 
illuminant and the true illuminant which is assumed to be 
known. So, the performance of computational color 
constancy is quantified by a number relating to a global 
illuminant.  

This poses a problem for our comparison of color 
constancy performance measures: the psychophysical 
measurement relates to a single (local) object whereas the 
computational measure relates to a single (global) 
illuminant. To solve this, we here propose a novel method 
for assessing the degree of human color constancy, featuring 
two new methodological elements. First, the observers are 
asked to judge the color fidelity of the whole scene, instead 
of a single color or object. Second, in each experimental 
trial the observers deal with a scene rendered under three 
illuminants (one reference and two test illuminants) instead 
of the usual two (one reference and one test illuminant). We 
denote this by the term “triad illuminant comparison”. 
Using this method, in this study we measure the color 
fidelity of chromatic distributions having the same average 
chromaticity, but different orientations in color space. Color 
constancy algorithms that are based on the scene averaged 
chromaticity would result in identical illuminant estimations  
for these distributions. We here show, however, that these 
distributions lead to different perceptual estimates of the 
color fidelity. This effect appears to be dependent on the 
alignment of the orientation of the chromatic distribution 
and the direction of the illuminant change. Such a 
perceptual effect might be incorporated into color constancy 
algorithms to improve the correspondence between human 
and computational color constancy. 



Figure 1: Multicolor test scenes (top row) with their 
chromatic distributions under D65 reference illumination.  
The angle θ denotes the angle between the positive a* axis 
and the major axis of the distribution in the CIELAB a*b* 
plane (bottom row). 
 

2. METHODS 
 
2.1. Multicolor test scenes 
The test scenes used in this paper are multicolor images 
composed of 900 square color patches, arranged as a 30 x 
30 matrix (see Figure 1). The distribution of colors in 
CIELAB color space was controlled. In our first distribution 
(labeled 1 in Figure 1), the 900 patches follow a Gaussian 
distribution, with standard deviations along the L*- axis 
twice the standard deviations along the chromatic a* and b* 
axes. This was done to match the distribution of RGB-
derivatives of the Corel image database, which contains 
40,000 images representative of the ‘real world’ [8]. So, our 
first distribution approximates the statistics of natural 
images. In addition we studied four chromatic distributions 
having a 5 to 1 ratio in the standard deviations along the 
major and minor axes of the distribution in the a*,b* plane. 
These four distributions (labeled 2 through 5 in Figure 1) 
differ in the elongation of the major axis, denoted by θ.  
This is the angle between the distributions’ major axes and 
the positive a*-axis in Figure 1. Although the 5 distributions 
have different orientations in chromaticity space, the 
average color remains centered on the neutral point. 
 
 
 

2.2. Triad illuminant comparison  
The triad illuminant comparison method involves a test 
scene rendered under three illuminants (Figure 2). One of 
these illuminants is the reference (R) while the other two are  
the test illuminants (T1 and T2). An observer has to indicate 
his/her preference for one of the test illuminants. They do 
this by visually comparing the colors of the test scene 
rendered under the test illuminants with the colors rendered 
under the reference illuminant. In essence the observer’s 
task is to judge the differences between two image pairs, the 
first pair of images (T1,R) being the scene rendered under 
test illuminant T1 and under the reference illuminant R, the 
second pair (T2,R) being the scene under test illuminant T2 
and R. 

 
Figure 2: Triad illuminant comparison. The relative color 
fidelity of the test scene under test illuminants T1 and T2 is 
measured by observers indicating which of the two 
differences (∆1 or ∆2) appears smaller. 
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 2.3. Selection of illuminants 

 
Figure 3: CIE 1931 x,y chromaticity diagram showing the 
daylight locus and the positions of the illuminants (four 
chromatic and one neutral) used in this study. Note that the 
Blue and Yellow illuminants are located along the locus of 
natural daylight while Red and Green are perpendicular to 
it. 
 
In line with previous studies ([9], [10]) we select a neutral 
reference illuminant (D65) and four chromatic illuminants 
all composed with the CIE basis functions for spectral 
variations in natural daylight. In Figure 3 the positions of 
the illuminants are plotted in the CIE 1931 x,y chromaticity 
diagram. Delahunt & Brainard [9] investigated whether 
color constancy would be better for illuminant changes 
along the daylight locus than for illuminant changes 
perpendicular to it, but did not find experimental evidence 
that unambiguously supports this hypothesis. Here we use 
the same paradigm with the Yellow and Blue illuminants 
along the daylight locus, and another two (Red and Green) 
perpendicular to it, but without the constraint that they are 
perceptually equidistant from the neutral reference point. 
Perceptual equidistance of object colors rendered under 
these illuminants would only be guaranteed for spectrally 
non-selective (achromatic) samples seen in isolation, but it 
does not necessarily imply perceptual equidistance for 
individual chromatic samples or a distribution of chromatic 
samples.  

Therefore, we adopt a different criterion for 
illuminant selection. We define a purely physical measure 
for the induced global difference in the reflected light signal 
when the illuminant is changed from neutral to one of the 
chromatic illuminants. Let the reflected light signal L be 
described as the wavelength-by-wavelength product of the 
illuminant spectral power distribution E(λ) and a sample’s 
reflectance function ρ(λ): 
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This signal is purely physical because it does not include the 
sensitivity of the visual system. When changing the 
illuminant from E1 (neutral) to E2 (chromatic), the associated 
change in the reflected light signal is given by 
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We modify the purity of the chromatic illuminants (i.e. the 
distance from the neutral point) such that more or less 
identical cumulative distributions of ∆L2 are obtained. So, a 
spectrally non-selective sensor receiving the image of the 
test scene would not notice the transition from the neutral 
illuminant to one of the chromatic illuminants. Modification 
of the purity of the chromatic illuminants is done by mixing 
the spectral power distribution of the chromatic illuminant 
with that of neutral illuminant D65. This process is 
described by  

x

DxE
E

+
+=
1

)(65)(
)('

λλλ  (3)

in which E’(λ) represents the spectrum of the adjusted 
illuminant at wavelength λ, D65(λ) is the spectral power 
distribution of illuminant D65 and x is the mixing factor 
that regulates the mixing of E(λ)  and D65(λ). We derived 
mixing factors of 3.55, 2.54, 2.0 and 2.71 for the Red, 
Green, Yellow and Blue illuminants, respectively. 
 
2.4. Simulation of colors under different illuminants 
 
The usual way to simulate object colors under different 
illuminants is to calculate XYZ tristimulus values according 
to: 
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in which E(λ) represents the spectral power distribution of 
the illuminant, ρ(λ) is the spectral reflectance function of the 
object and zyx ,,  represent the 1931 color matching 
functions for the 2° standard observer. The factor k serves to 
normalize Y at 100 for a perfect white reflectance.  
Our patches are defined in terms of CIELAB values rather 
than spectral reflectance functions. This poses a problem 
since an infinite number of reflectance functions may result 
in identical XYZ tristimulus values (and hence identical 
CIELAB values) under one illuminant. Therefore, a 
selection criterion for picking one reflectance function is 
needed. We applied van Trigt’s method [11] to estimate the 
smoothest reflectance function (SRF) from a set of 
tristimulus values, where the smoothness measure is defined 
as the square of the derivative of the reflectance function 
with respect to wavelength, integrated over the visual range. 



We thus assume that the CIELAB values of our color 
patches in the reference condition result from illumination 
of the estimated reflectance functions by D65, our reference 
illuminant. Conversion of the resulting XYZ values to RGB 
drive values for displaying the colors on the color monitor is 
done using the sRGB profile, to which our monitor was 
calibrated. 
 
 
2.5. Procedure 
Eight subjects (including the authors) participated in our 
experiment. They all have normal color vision according to 
the HRR color vision test and normal or corrected-to-
normal visual acuity. The test scenes were rendered under 
the different (simulated) illuminants and shown on a 
calibrated color monitor (EIZO CG211). Using the triad 
illuminant comparison method as explained in section 2.2, 
in each trial the observers indicated which of the two test 
illuminants had better color fidelity. Since we are using four 
chromatic illuminants, six unique illuminant pairs are 
constructed. Each subject judged 5 chromatic distributions x 
6 illuminant pairs = 30 trials. All trials were replicated, 
leading to 60 responses per subject.  
 

 
3. RESULTS 

 
In each experimental trial observers indicated a preference 
for one of the two competing test illuminants. The 
illuminant indicated as having better color fidelity received 
1 point, the other received no points in that trial. In cases 
where the observer could not choose one or the other, both 
illuminants received 0.5 point. Given that each test 
illuminant appeared three times in competition against the 
other illuminants, the maximum score for an illuminant to 
obtain is 3. And since trials were replicated, the maximum 
final score was 6. In Figure 4 we show the visual score thus 
obtained, averaged over the 8 observers. Error bars denote 
the standard error. On average, in 73% of the trials the 
repetition resulted in the same response.  

We here analyze the results by first discussing the 
data for the first chromatic contribution (having identical 
standard deviations in a*,b* color space). Then, the data for 
the other four chromatic distributions are discussed using 
Figure 5. This graph shows the same data as Figure 4, but 
the visual scores are shown relative to the visual scores of 
the first chromatic distribution.  

 
 

 
 
 
 
 
 

Figure 4: Average visual scores per chromatic illuminant 
(Red, Green, Yellow, Blue) obtained for the five different 
chromatic distributions shown in Figure 1. A higher score 
means a better color fidelity. Error bars denote standard 
errors (n=8).   
 

 

Figure 5: Same data as in Figure 4, now plotted relative to 
the scores obtained for the first chromatic distribution (the 
3D Gaussian distribution in CIELAB space). 

 
The data for the first chromatic distribution in 

Figure 4 clearly shows a large difference between the 
average visual score for the red illuminant and the other 
illuminants. Apparently, our multicolor test scene under the 
red illuminant results in higher color fidelity than the other 
illuminants. Second best is the Blue illuminant, and Green 
and Yellow have the lowest visual scores. Why do the Red 
and the Blue illuminant lead to higher color fidelity than 
Yellow and Green? We remind that the purity of the 
illuminants was adjusted to yield identical distributions of 
physical changes in the reflected light signal. The mixing 
factors for Red and Blue mentioned at the end of section 2.3 
are larger than for Yellow and Green, resulting in lower 
purity of the first two illuminants. When comparing a scene 
rendered under a lower purity illuminant and a higher purity 
illuminant, the scene under the lower purity illuminant will 
have higher color fidelity. So, this (partially) explains the 
different visual scores for the first chromatic distribution.  

The results for the other four chromatic 
distributions are best explained using Figure 5, which is a 
re-plot of the data of Figure 4 relative to the visual scores 



obtained for the first distribution. This allows an easy 
comparison of the changes that are measured due to 
changing the chromatic distribution. For the second 
chromatic distribution, having its major axis along the a*-
axis of CIELAB color space (roughly the red-green axis), 
the color fidelity for the Red and Green illuminant 
increases, and decreases for Yellow and Blue. Likewise, for 
chromatic distribution number 4, having its major axis along 
the b* axis of CIELAB color space (roughly the yellow-blue 
axis), the color fidelity for the Yellow and Blue illuminants 
increases while it decreases for Red and Green.  For 
chromatic distributions 3 and 5, having their major axes at a 
45° angle with the a* and b* axes, color fidelity for Yellow 
and Green illumination is mainly affected. These findings 
are summarized as follows: 
1) Chromatic distributions that differ in their direction in 
color space, lead to different color fidelity judgments under 
changing illumination.  
2) When the direction of the illuminant change (from 
neutral to chromatic) is parallel to the major axis of the 
chromatic distribution, color fidelity of the rendered scene is 
better than when the direction of the illuminant change is 
orthogonal to the major axis.  
 

4. DISCUSSION 
 
We have introduced a psychophysical method (triad 
illuminant comparison) that quantifies the color fidelity of a 
visual scene under illuminant changes. More precisely, what 
is being measured is relative, since observers are asked to 
indicate which of the two test illuminants leads to the best 
color fidelity. The measurement does not specify the 
absolute difference between the rendered images and the 
reference. Still, by measuring all illuminant combinations, a 
relative ranking of these illuminants is possible. The 
advantage of the method is that it tells us something about 
the quality of the color image as a whole. Compared to the 
usual local measures for color constancy (on a single 
object), this global assessment is more in line with the 
performance measure of computational color constancy, 
being the angular error (e.g. [7]). This measure indicates the 
chromatic mismatch between the true illuminant and the 
estimated illuminant which is assumed to be spatially 
uniform. After illuminant estimation, usually a color 
correction is applied to an image. Any mismatch in the 
estimated illuminant results in a different global color 
correction, which would be measureable using our color 
fidelity paradigm. 

If human color constancy would be perfect, the 
effects of changing illumination would not be perceived at 
all and the visual scores in Figures 4 and 5 should not 
change with chromatic distribution. However, we showed 
that the color fidelity of chromatic distributions under 
changing illumination depends on the alignment of the 
directions of the chromatic distributions and the illuminant 

change. When the directions of these two are parallel, color 
fidelity is best. In other words, when the direction of the 
illuminant change is in the direction of the major axis of the 
chromatic distribution, the color changes are least 
noticeable.   
 How may computational color constancy 
algorithms incorporate this perceptual ‘advantage’? Since 
many different algorithms are available, the locations of 
their estimated illuminants in relation to the major axis of 
the chromatic distribution (if present in the scene) may be 
used to select one or more algorithms. Our results predict 
that a mismatch in the estimated illuminant parallel to the 
chromatic distribution would be preferred over a mismatch 
perpendicular to it.   

The current paper presents the work on synthetic 
images for which the chromatic distribution was under 
control. Future work will focus on image data sets with 
natural images and the prediction of data with different 
models relating to processing of visual information. This 
will allow us to test whether the preferences given by the 
observers are also given when presented with more natural 
scenes. 
 

5. CONCLUSIONS 
 
The triad illuminant comparison method results in useful 
data on color fidelity of chromatic distributions under 
changing illumination (the classical color constancy 
setting). For the synthetic test scenes studied here, 
illuminant changes parallel to the major axis of the 
chromatic distribution lead to higher color fidelity than 
illuminant changes perpendicular to it.  
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