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ABSTRACT

Performance measures for

(operational approach), and identification of scefaacross
illuminants [2]. What these techniques have in camris

quantifying human colothat each measurement (i.e. each observer respaiats

constancy and computational color constancy arey verto the appearance of a single object or patchdrstiene.

different. The former relate to measurements ofividdal
object colors whereas the latter relate to the moyuof the
estimated illuminant. To bridge this gap, we prapas
psychophysical method in which observers judgegthbal
color fidelity of the visual scene rendered und#feckent
illuminants. In each experimental trial, the sceneendered
under three illuminants, two chromatic test illuanits and
one neutral reference illuminant. Observers indicahich
of the two test illuminants leads to better colmtefity in
comparison to the reference illuminant. Here wedtu
multicolor scenes with chromatic distributions thate
differently oriented in color space, while havirtgetsame
average chromaticity. We show that when
distributions are rendered under colored illumio@tithey
lead to different perceptual estimates of the cfittality.

Index Terms— Color constancy, color fidelity, triad
comparison, chromatic distributions

1. INTRODUCTION
Color constancy is the ability of a visual systemmaintain

stable object color appearance despite substah@ages in
the spectral power distribution of the illuminaRor quite

In computer vision, the main approach to solving th
color constancy problem is by estimating the unkmow
illuminant from the visual scene, after which refence
may be recovered (e.g. [3], [4], [5]) or the cob@lance of
images may be corrected for display or to suppbjeat
recognition [6]. The performance of such color ¢ansy
algorithms is usually quantified by the angularedi7], a
measure for the chromatic mismatch between thenattd
illuminant and the true illuminant which is assuntedbe
known. So, the performance of computational color
constancy is quantified by a number relating tol@bag
illuminant.

these This poses a problem for our comparison of color

constancy performance measures: the psychophysical
measurement relates to a single (local) object edwthe
computational measure relates to a single (global)
illuminant. To solve this, we here propose a nawethod
for assessing the degree of human color constéeatyring
two new methodological elements. First, the obgsraze
asked to judge the color fidelity of the whole seeimstead
of a single color or object. Second, in each expenial
trial the observers deal with a scene rendered rutinlee
illuminants (one reference and two test illuminamstead
of the usual two (one reference and one test ithamt). We

some time, it has been recognized as one of thgaten denote this by the term *“triad illuminant compariso

themes in color research. Still,

the methodologicalUsing this method, in this study we measure theorcol

approaches in perception (human vision) studies anfielity of chromatic distributions having the sameerage

computational (computer vision) studies are veiffedént.

The background of this paper lies in our desirering the
research areas on human color constancy and cotiopata
color constancy closer together.

chromaticity, but different orientations in colgraxe. Color
constancy algorithms that are based on the scezraged
chromaticity would result in identical illuminanstémations
for these distributions. We here show, howevert thase

The degree of constancy exhibited by human observedistributions lead to different perceptual estimatéd the

is often quantified by a color constancy index [H.

color fidelity. This effect appears to be dependentthe

common finding in the many psychophysical studies oalignment of the orientation of the chromatic disition

color constancy is that human color constancy ipedect.
It depends on the experimental method employedthad
observer's state of adaptation, among other thifdgse
main techniques are color matching, color namingling
to maintain neutral appearance, discriminating betwa
change in illumination and a change in surfacesotfince

and the direction of the illuminant change. Such a
perceptual effect might be incorporated into calonstancy
algorithms to improve the correspondence betweanahu
and computational color constancy.



Figure 1: Multicolor test scenes (top row) with their
chromatic distributions under D65 reference illumination.
The angle 6 denotes the angle between the positive a* axis
and the major axis of the distribution in the CIELAB a*b*
plane (bottom row).

2.METHODS

2.1. Multicolor test scenes

The test scenes used in this paper are multicohageés
composed of 900 square color patches, arranged3@sxa
30 matrix (see Figure 1). The distribution of celan
CIELAB color space was controlled. In our firsttdisution
(labeled 1 in Figure 1), the 900 patches follow au&sian
distribution, with standard deviations along the- Laxis
twice the standard deviations along the chroméatianal b*
axes. This was done to match the distribution ofBRG
derivatives of the Corel image database, which ansat
40,000 images representative of the ‘real worldl' §&, our
first distribution approximates the statistics o&tural
images. In addition we studied four chromatic disttions
having a 5 to 1 ratio in the standard deviatiorenglthe
major and minor axes of the distribution in theb&*plane.
These four distributions (labeled 2 through 5 igufe 1)
differ in the elongation of the major axis, denoteyl 6.
This is the angle between the distributions’ mawes and
the positive a*-axis in Figure 1. Although the Stdbutions
have different orientations in chromaticity spadbe
average color remains centered on the neutral point

2.2. Triad illuminant comparison

The triad illuminant comparison method involves estt
scene rendered under three illuminants (FigureORe of

these illuminants is the reference (R) while theeotwo are
the test illuminants (T1 and T2). An observer ltamticate
his/her preference for one of the test illuminafisey do
this by visually comparing the colors of the teserse
rendered under the test illuminants with the coterdered
under the reference illuminant. In essence the rabes

task is to judge the differences between two inzajes, the
first pair of images (T1,R) being the scene rendleneder
test illuminant T1 and under the reference illuming, the
second pair (T2,R) being the scene under testiilant T2

and R.

Scene rendered
under reference
illuminant (R)

A A

Scene rendered
under first test
illuminant (T1)

Scene rendered
under second
illuminant (T2)

Figure 2:Triad illuminant comparison. The relative color
fidelity of the test scene under test illuminants T1 and T2 is
measured by observers indicating which of the two
differences (4, or 4,) appears smaller.



2.3. Selection of illuminants
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Figure 3:CIE 1931 x,y chromaticity diagram showing the
daylight locus and the positions of the illuminants (four
chromatic and one neutral) used in this study. Note that the
Blue and Yellow illuminants are located along the locus of
natural daylight while Red and Green are perpendicular to
it.

In line with previous studies ([9], [10]) we selextheutral
reference illuminant (D65) and four chromatic illmants
all composed with the CIE basis functions for spct
variations in natural daylight. In Figure 3 the pioss of
the illuminants are plotted in the CIE 1931 x,yarhaticity
diagram. Delahunt & Brainard [9] investigated whesth
color constancy would be better for illuminant ches
along the daylight locus than for illuminant chamge
perpendicular to it, but did not find experimen¢zidence
that unambiguously supports this hypothesis. Hezeuge
the same paradigm with the Yellow and Blue illunmitsa
along the daylight locus, and another two (Red @neen)
perpendicular to it, but without the constraintttttieey are
perceptually equidistant from the neutral referepoént.
Perceptual equidistance of object colors renderedemu
these illuminants would only be guaranteed for spég
non-selective (achromatic) samples seen in isolatioit it
does not necessarily imply perceptual equidistafare
individual chromatic samples or a distribution df@matic
samples.

This signal is purely physical because it doesmadtide the
sensitivity of the visual system. When changing the
illuminant from g (neutral) to E(chromatic), the associated
change in the reflected light signal is given by

AL=L,~L, =[[E,()) ~E (D) p(A)dA

We modify the purity of the chromatic illuminantse( the
distance from the neutral point) such that moreless
identical cumulative distributions @2 are obtained. So, a
spectrally non-selective sensor receiving the imafy¢he
test scene would not notice the transition from rleatral
illuminant to one of the chromatic illuminants. Mfication
of the purity of the chromatic illuminants is doloy mixing
the spectral power distribution of the chromatiarilinant
with that of neutral illuminant D65. This process i
described by

E'(A) =

@

E(A) + xD6Y1)
1+x

©)

in which E’Q\) represents the spectrum of the adjusted
illuminant at wavelength., D65¢\) is the spectral power
distribution of illuminant D65 and x is the mixirfgctor
that regulates the mixing of B( and D65}). We derived
mixing factors of 3.55, 2.54, 2.0 and 2.71 for tRed,
Green, Yellow and Blue illuminants, respectively.

2.4. Simulation of colorsunder different illuminants

The usual way to simulate object colors under chifie
illuminants is to calculate XYZ tristimulus valuascording
to:

X =k [E(1) p(A) X(1)dA

Y =k[E() p(4) y(4)dA @)

Z =k[E() p(}) (1) dA

in which EQ) represents the spectral power distribution of
the illuminant,p(A) is the spectral reflectance function of the
object and X.¥,z represent the 1931 color matching
functions for the 2° standard observer. The faktegrves to
normalize Y at 100 for a perfect white reflectance.

Therefore, we adopt a different criterion for o, patches are defined in terms of CIELAB valugther

illuminant selection. We define a purely physicatasure
for the induced global difference in the reflecligéht signal
when the illuminant is changed from neutral to @fd¢he
chromatic illuminants.Let the reflected light signal L be
described as the wavelength-by-wavelength prodiithe
illuminant spectral power distribution B(and a sample’s
reflectance functiop(}):

L= j E(1) p(A)dA O

than spectral reflectance functions. This posegabl@m
since an infinite number of reflectance functiorsymesult
in identical XYZ tristimulus values (and hence iteal
CIELAB values) under one illuminant. Therefore, a
selection criterion for picking one reflectance dtion is
needed. We applied van Trigt's method [11] to eatarthe
smoothest reflectance function (SRF) from a set of
tristimulus values, where the smoothness measutefised
as the square of the derivative of the reflectaiuecetion
with respect to wavelength, integrated over thealisange.



We thus assume that the CIELAB values of our colc
patches in the reference condition result fromniiluation
of the estimated reflectance functions by D65, reference
illuminant. Conversion of the resulting XYZ valuesRGB
drive values for displaying the colors on the catanitor is
done using the sRGB profile, to which our monitoasw
calibrated.

2.5. Procedure

Eight subjects (including the authors) participatedour
experiment. They all have normal color vision adaag to
the HRR color vision test and normal or correcied-t
normal visual acuity. The test scenes were rendenstbr
the different (simulated) illuminants and shown an
calibrated color monitor (EIZO CG211). Using théadr
illuminant comparison method as explained in secfd,
in each trial the observers indicated which of tive test
illuminants had better color fidelity. Since we agng four
chromatic illuminants, six unique illuminant paim@re
constructed. Each subject judged 5 chromatic disions x
6 illuminant pairs = 30 trials. All trials were Hegated,
leading to 60 responses per subject.

3. RESULTS

In each experimental trial observers indicated efgpence

for one of the two competing test illuminants. The

illuminant indicated as having better color fidglieceived
1 point, the other received no points in that trial cases
where the observer could not choose one or the,dblo¢h

Average
visualscore 4

HWRed
(higher = better 3 B Green
color fidelity) 2 Ovellow

@Blue

1 2 3 4 5

Chromatic distribution

Figure 4:Average visual scores per chromatic illuminant
(Red, Green, Yellow, Blue) obtained for the five different
chromatic distributions shown in Figure 1. A higher score
means a better color fidelity. Error bars denote standard
errors (n=8).
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Figure 5:Same data as in Figure 4, now plotted relative to
the scores obtained for the first chromatic distribution (the

illuminants received 0.5 point. Given that eacht tes3D Gaussiandistribution in CIELAB space).

illuminant appeared three times in competition agathe
other illuminants, the maximum score for an illuarh to
obtain is 3. And since trials were replicated, thaximum
final score was 6. In Figure 4 we show the visaaks thus
obtained, averaged over the 8 observers. Error demste
the standard error. On average, in 73% of thestriak
repetition resulted in the same response.

The data for the first chromatic distribution in
Figure 4 clearly shows a large difference betweka t
average visual score for the red illuminant and okteer
illuminants. Apparently, our multicolor test scemeder the
red illuminant results in higher color fidelity thahe other
illuminants. Second best is the Blue illuminantd &reen

We here analyze the results by first discussing th@nd Yellow have the lowest visual scores. Why do Red

data for the first chromatic contribution (havindentical
standard deviations in a*,b* color space). Then,dhta for
the other four chromatic distributions are discdsssing
Figure 5. This graph shows the same data as F§jubeit
the visual scores are shown relative to the visaales of
the first chromatic distribution.

and the Blue illuminant lead to higher color fidglthan
Yellow and Green? We remind that the purity of the
illuminants was adjusted to yield identical distions of
physical changes in the reflected light signal. Tiging
factors for Red and Blue mentioned at the end cie® 2.3
are larger than for Yellow and Green, resultinglawer
purity of the first two illuminants. When compariagscene
rendered under a lower purity illuminant and a kighurity
illuminant, the scene under the lower purity illumant will
have higher color fidelity. So, this (partially) @ains the
different visual scores for the first chromatictdisution.

The results for the other four chromatic
distributions are best explained using Figure 5ictvlis a
re-plot of the data of Figure 4 relative to theualkscores



obtained for the first distribution. This allows aasy change. When the directions of these two are gdyratblor
comparison of the changes that are measured due fidelity is best. In other words, when the direntiof the
changing the chromatic distribution. For the secondlluminant change is in the direction of the magous of the
chromatic distribution, having its major axis alotig a*- chromatic distribution, the color changes are least
axis of CIELAB color space (roughly the red-greedisp  noticeable.
the color fidelity for the Red and Green illuminant How may computational color constancy
increases, and decreases for Yellow and Blue. Lisewor algorithms incorporate this perceptual ‘advantagsifice
chromatic distribution number 4, having its majgisaalong many different algorithms are available, the lomasi of
the b* axis of CIELAB color space (roughly the ysi#-blue  their estimated illuminants in relation to the miagxis of
axis), the color fidelity for the Yellow and Blubuiminants  the chromatic distribution (if present in the sgem&y be
increases while it decreases for Red and Greenr Fased to select one or more algorithms. Our resukslict
chromatic distributions 3 and 5, having their majges at a that a mismatch in the estimated illuminant pakabtethe
45° angle with the a* and b* axes, color fidelitrfrellow  chromatic distribution would be preferred over ammatch
and Green illumination is mainly affected. Thesedfings perpendicular to it.
are summarized as follows: The current paper presents the work on synthetic
1) Chromatic distributions that differ in their éation in  images for which the chromatic distribution was end
color space, lead to different color fidelity judgnts under control. Future work will focus on image data seiish
changing illumination. natural images and the prediction of data with edéht
2) When the direction of the illuminant change iffro models relating to processing of visual informatidris
neutral to chromatic) is parallel to the major agisthe  will allow us to test whether the preferences givgnthe
chromatic distribution, color fidelity of the reneel scene is observers are also given when presented with mangral
better than when the direction of the illuminantuehe is scenes.
orthogonal to the major axis.
5. CONCLUSIONS
4. DISCUSSION

The triad illuminant comparison method results seful
We have introduced a psychophysical method (triadlata on color fidelity of chromatic distributionsnder
illuminant comparison) that quantifies the colatefity of a  changing illumination (the classical color constanc
visual scene under illuminant changes. More prégiséhat  setting). For the synthetic test scenes studiede, her
is being measured is relative, since observersasked to illuminant changes parallel to the major axis ofe th
indicate which of the two test illuminants leadsthe best chromatic distribution lead to higher color fidglithan
color fidelity. The measurement does not specifg thilluminant changes perpendicular to it.
absolute difference between the rendered imagestland
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