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Browsing Video Along Multiple Threads
Ork de Rooij and Marcel Worring, Member, IEEE

Abstract—This paper describes a novel method for browsing a
large video collection. It links various forms of related video frag-
ments together as threads. These threads are based on query re-
sults, the timeline as well as visual and semantic similarity. We de-
sign two interfaces which use threads as the basis for browsing. One
interface shows a minimal set of threads, and the other as many as
fit on the screen. To evaluate both interfaces we perform a regular
user study, a study based on user simulation, and we participated
in the interactive video retrieval task of the TRECVID benchmark.
The results indicate that the use of threads in interactive video
retrieval is beneficial. Furthermore, we found that in general the
query result and the timeline are the most important threads, but
having several additional threads improves the performance as it
encourages people to explore new dimensions.

Index Terms—Conceptual similarity, information visualization,
interactive search, multidimensional browsing, semantic threads.

I. INTRODUCTION

F INDING videos in a large collection can be done quickly
if each video has a descriptive title or an extensive tex-

tual description. In that case standard text retrieval approaches
suffice to find the video. In other cases the user probably has
an idea what he is looking for, such as who was present, what
was happening or who was talking. Such descriptions are intu-
itive for a user, but for a computer they are difficult to extract
from video automatically, a problem known as the semantic gap
[1]. This problem leads to low quality retrieval results, which
requires the user to extensively browse through these results.
For a content-based video retrieval system (CVBR) this browse
process needs to be leveraged.

In order to understand the video retrieval process better we
split the task of finding something in a video collection into three
phases. The first phase is the query-phase where the user ex-
presses her information need in any of the query modes provided
by the system. She then examines the retrieved video results on
the two-dimensional screen in the view-phase. If required, she
is able to interact with this visualization in the browse-phase
going through these and related results. The overall process is
illustrated in Fig. 1. Note that the differentiation into phases here
is on a functional level. In practice the interfaces for two or more
phases can be combined.
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Fig. 1. Overview of the three functional phases in video retrieval. A search
starts in the query phase. The user then examines the results in the view phase,
followed by the browse phase in which the user looks up related results. In both
the view and the browse phase, the user can choose to go back to the query
phase.

Let us first look at typical web-based video search engines,
which use only the textual modality for retrieval. Here the
phases are instantiated as follows. In the query-phase, the user
enters a set of keywords with optional filtering options, such as
the language to search in, domain of search, or type of retrieval
method to be used. The computer then provides a ranked list
of results based on these parameters. The user now enters the
view-phase where she looks at the resulting documents, repre-
sented in the form of a list. When no valid results are present
in the view, she can go back to the query-phase, for example,
to enter new keywords. This loop between query—view often
leads to sufficient valid results, and the browse-phase is often
ignored in web-based engines.

In order to do CBVR we need features as a basis, where
systems typically use more than one modality. Each modality
comes with a different set of features for which state of the
art extraction methods exist. For example, visual features such
as color or texture patterns present in the image frame, or tex-
tual features from on-screen text, or as the result of speech
recognition. The video timeline defines the temporal features.
Also metadata features, such as air time and date, channel, pro-
gram and language, are extracted from the context of the shot.
Each type of feature has a varying level of quality. On top of
this, all of these low level features are used in building concep-
tual features, which are proven to be beneficial for CBVR [2].
Methods such as [3]–[6] allow automatic labeling of people, ob-
jects, settings or events. Conceptual features are typically based
on fusion of various features in combination with supervised
machine learning using large collections of labeled examples.
A collection of such conceptual features, or concept detectors
forms a lexicon. Examples from a representative lexicon such as
LSCOM [7] may range from people like Hu Jintao, objects like
a truck, settings like indoor and events like people marching.
Together with the low level features this defines a wide gamut
of features which can be used in CVBR systems.

Moving on to search, we observe that for a CBVR system the
problem of defining a query is much harder. First, the various
modalities increase the possible means of entry into the collec-
tion. Furthermore, in video retrieval instead of returning whole
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documents often only fragments of videos are needed. In par-
ticular in CVBR the shot is often used as the unit of retrieval.
A long video can easily contain hundreds if not thousands of
shots. This increases the number of possible results enormously.
Lastly, due to the semantic gap, the quality of results is much
lower, so more results need to be inspected before a user is sat-
isfied with the results. Therefore, we need new retrieval methods
optimized for the specifics of CBVR.

Methods in the literature, e.g., [8]–[12], optimize the search
process in different ways. In Section II we discuss those in more
detail. In Section III we present our new method optimizing the
browse phase, which is evaluated thoroughly in Section IV.

II. OPTIMIZING VIDEO SEARCH

We have defined three phases in video retrieval, the query-
phase, the view-phase and the browse-phase. In this section we
discuss possible optimizations for each phase which currently
exist in literature.

A. Optimizing the Query-Phase

All extracted features yield different points of entry into the
collection. In the query-phase a combination of query by text,
query by example, query by concept or query by metadata is
used by various systems as the entry point into the collection.
A consequence of having this many options is the increased
difficulty a user experiences in setting options before results
are shown. Also, since the quality of individual feature extrac-
tion methods vary, retrieval sometimes leads to low quality re-
sults. These two problems increase the number of times a user
has to go back and forth between the query- and view-phases.
In order to optimize this, systems combine queries [13]–[15],
and re-rank results [16], [17]. All of these approaches yield
optimized ranked lists of results. We postulate that not only
query-phase optimization is required in order for a computer to
aid in video retrieval, but view- and browse-phase optimization
are equally important.

B. Optimizing the View-Phase

One way to avoid switching between phases is to combine the
visualizations of the query-, view and browse phase into one.
For this approach the high dimensional feature spaces need to
be mapped to a 2-D visualization space, so that feature querying
is possible on the 2-D space itself. This can be done both in a
structured and an unstructured manner. An unstructured method
allows visualization of shots with their individual distances vis-
ible. This is done in [12] where a collection is visualized as a
cloud of distance-related images. Navigation in this cloud gives
users a high degree of interaction freedom. More structured
approaches use graphs to visualize results and their relations
to each other [18], or use hyperbolic tree visualizations [19].
This allows for a structured but constrained navigation. All of
these methods are limited by the available screen real estate,
which limits the number of pictures that can be shown. Simi-
larity-based visualizations have utility, but by limiting the user
to view results which are already similar to each other there is a
possibility that other parts of the dataset, which are relevant but
not similar, are never visited.

View-phase optimization is possible by reducing the time re-
quired for the user to decide that results are not relevant. From
the query phase we obtain a single ranked list of results. In its
simplest form this list is visualized as a linear list. In practice
most systems extend this to a grid-based representation, such as
in [20], and use implicit reading order to display the ranked list.
This allows for constrained and fast navigation through the list.

More advanced approaches use either clustering of results
into semantic units, or enhance the speed at which the user is
able to analyze the results. In this first category falls the FXPAL
MediaMagic interface [21] which segments the resulting video
into stories. These stories allow the user to evaluate the rele-
vance of whole sections of results. The system in [22] clus-
ters pages of result into visual islands, and displays these in a
grid. This removes implicit reading order, adding meaning to
the distance between shots in the grid. Informedia [8] falls in
the second category. They use rapid serial visual presentation in
the view phase to effectively explore the results at high speed.
The system in [9] also uses RSVP, and combines this with a rele-
vance feedback method on selected results to create new lists of
results. However, no matter how a single list is displayed, it still
constrains the quality of the results to the quality of the ranked
list obtained in the query phase. Only the decision to either be
done with finding results, or to go back to the query screen to
retune parameters can be made faster.

C. Optimizing the Browse-Phase

The browse phase allows the user to navigate away from
the initial set of results, and delve into the dataset based on
the features themselves. An efficient browse-phase therefore re-
duces the number of times a user has to switch between phases,
which improves search task efficiency. However, designing a
good browse-phase in such a way that it helps and not hinders
the user is not trivial. There are a number of ways to improve
upon the browse phase, which we will now describe.

One method is using multiple linked interface windows, e.g.,
[10], [21], and [23]. Each window depicts one view on the re-
sults. When a user selects a result in one window, the other win-
dows are updated with the chosen result as a starting point. For
example [10] combines the results with a timeline and a graph
of semantically related shots. The system in [23] clusters re-
lated results together using a self-organizing map. This is then
displayed in a hexagonal grid together with a time bar control in
separate windows, which allows the user to browse though both
time and similar results. A downside of using separate windows
is that there is no direct visual correlation between the contents
of each window, a user has to switch from one window to an-
other, which makes user response slower.

An even more structured approach is to display two lists in
two dimensions as a rigid grid like representation. The system in
[11], for example, provides a grid like representation with tem-
poral ordering on the horizontal axis and shot similarity on the
vertical axis. The system used in [24] combines this approach to-
gether with temporal zooming and additional windows showing
up to ten live lists of related results.

To summarize, there are three ways to speed up video search.
Optimizing the search phase increases the quality of the set of
results. Optimizing the view phase decreases the time required



DE ROOIJ AND WORRING: BROWSING VIDEO ALONG MULTIPLE THREADS 123

to determine if the set of results is adequate. Finally optimizing
the browse phase reduces the number of times a user has to
switch between the query and view phases. We propose a video
retrieval system which primarily focuses on browse phase opti-
mization.

III. THREAD-BASED VIDEO SEARCH

In this section we give an overview of our proposed method
for searching through video using threads. First we will define
thread-based video search more precisely. We then explain how
threads are computed from several types of features. Finally, we
describe a generic framework which uses threads to aid users in
navigating video retrieval results.

Definitions

A content-based video retrieval system operates on a set of
shots from a collection of videos . We define these as follows.

Definition 1: A video collection is the set
of all shots.

As indicated, ranked results from the query phase form only
one type of relevant information. These shots are linked because
they are answers to the same query. Other forms can also be
defined: the timeline of a video, or shots containing the same
visual or semantic characteristics. These are all threads, based
on the dissimilarity spaces induced by the features. We define
such a dissimilarity space with associated threads as follows.

Definition 2: A dissimilarity space defines the distance
between any two shots for a specific feature .

Definition 3: A thread is a linked sequence of camera
shots from in an order determined by the dissimilarity space

.
To aid the user in navigation there must both be a static struc-

ture to help the user browse the collection, and a means of dy-
namic querying into the collection when the user sees something
interesting which he wants to explore further. For this we intro-
duce two types of threads.

Static threads are data collection driven. They allow a struc-
ture to be placed on top of the collection beforehand.

Definition 4: A static thread is a thread where the order
is determined by a structure induced by dissimilarity space
only.

In addition to static threads we have dynamic threads, which
are instantiated at the moment the user explicitly searches for
something. This instantiation is possible at several points during
retrieval. Within the query-phase, the user instantiates a dy-
namic thread when he configures a dissimilarity function for a
certain feature. Within the browse-phase, the user instantiates
a dynamic thread by doing a “find related” type of query. This
query takes the selected shot(s) as the basis for the dissimilarity
function.

Definition 5: A dynamic thread is a thread where the
order is determined by similarity based on to user selected

.
The timeline of a video is a special case of static threads,

since no processing is required to obtain them. We define this
as follows.

Fig. 2. Example of how shots in a dissimilarity space can be configured into
either (a) multiple static threads or (b) a single dynamic thread based on a user
selected shot � . Images (c) and (d) depict the resulting threads.

Definition 6: A time thread is a thread where the order
is determined by the timeline of the video the user selected

is part of.

A. Creating Threads

We now present a generic framework for creating threads
from features. Each type of feature, such as visual features, tex-
tual features, temporal features, auditory features or metadata
features yields a multidimensional feature space. Each shot in

is a point in such a space. The dissimilarity function for each
type of feature determines distances between shots within each
feature space. From the dissimilarity space we create both static
and dynamic threads. An example is given in Fig. 2.

Dynamic threads are created by calculating the distance in
for all shots to the given . See algorithm 1. All shots are

ordered lowest to highest distance in a new . Since the dis-
tance from to itself is 0 this shot is placed first.

Algorithm 1: Dynamic Thread Generation Given a
Dissimilarity Space and a Query Shot

: dissimilarity space for all pairs of shots ,

: user selected query shot

: resulting thread

Static threads dissect the entire dissimilarity space into
individually meaningfull threads, where the shots within each
thread still form a semantic group of data. On top of this the
individual shots within each thread are placed in a linear order
so that the shots next to each other are similar. This yields a
two level hierarchical grouping. The static threads for a given

are calculated as shown in algorithm 2. First, we consider
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the entire dissimilarity space to find shots sharing similar fea-
tures, i.e., having small distances in the dissimilarity space. To
find such groups we perform k-means clustering. The elements
of each cluster define the elements of each static thread. The
cluster already forms a group of similar shots based on its dis-
similarity metric. The next step is to add a linear ordering of
the shots in the cluster. We obtain an ordering by connecting
the shots inside each cluster so that each shot links to its closest
unconnected neighbor. We use the cheapest link algorithm on
each cluster to achieve this. This algorithm connects shots with
the shortest distance to each other to form a single static thread.
For more details see algorithm 2. All threads together yield the
set of static threads for the given dissimilarity space, with every
shot in the collection linked in one such thread.

Algorithm 2: Static Thread Generation Given a Specified
Dissimilarity Space. All Shots are Clustered into Clusters
With Small Internal Distance. A Variant of the Cheapest Link
Algorithm is Used to Project Each Cluster to a Static Thread

: dissimilarity space for all pairs of shots ,

: number of connections for shot

: resulting static thread for each cluster in

: K-means clustering on entire

for each cluster

for all shots :

sort ascending

for each pair of shots , in :

if and

increment and by 1

append to

until all shots in cluster are connected

until all clusters are processed

Summarizing the above, both static and dynamic threads are
based on a dissimilarity space for a specific feature. As a con-
sequence many different threads types are computable. We de-
fine the following threads from the following modalities: a tex-
tual thread containing shots with similar textual annotation,
a visual thread with visually similar shots constructed from
low-level visual features, a semantic thread containing se-
mantically equivalent shots constructed from high-level textual
and visual features and a query thread which is formed from
the list of results provided by the initial user query.

B. Visualizing Threads

In this section we describe a method for visualizing threads
in a CBVR system on a regular screen. Navigation starts with
the top most shot from the initial query thread . This shot is
the initial focal shot , defined as follows.

Fig. 3. Multi-thread dimensions for each browser. (Left) The CrossBrowser
visualizes a fixed number of two threads. (Right) The RotorBrowser is able to
visualize up to eight threads.

Definition 7: The focal shot identifies the current position
in the video collection.

Since the focal shot always identifies the current position in
the video collection it stands to reason to let this shot have the
most user attention in the visualization. We choose a visualiza-
tion where is always the largest and most central shot on the
screen. From this shot we form navigation paths through related
threads. Therefore, threads which contain are added as navi-
gation possibilities, where is used as for dynamic threads.
Threads are displayed in a star formation around .

For any there are multiple relevant threads from various
dissimilarity-spaces. An interface showing all these threads to
the user might be too overwhelming. On the opposite side: an in-
terface that only displays the bare minimum of relevant threads
might miss the optimal thread. So we need to know which thread
is more relevant, and how many threads we want to visualize si-
multaneously.

In order to ascertain the optimal number of visualized threads
we have designed two browser variants. One variant—the
CrossBrowser [25]—deliberately limits the number of threads
shown. It shows the user the result from their initial query thread
and only allows the user to also browse through the time thread
which is shown to be important [11]. The other variant—the
RotorBrowser—shows up to eight relevant threads, including
time, for the focal shot . The ordering of threads in the
RotorBrowser is important because higher ordered threads
require less user-effort to access. Furthermore, in order to
prevent display clutter there is a fixed maximum number of
threads that can be shown. To make it comparable with the
CrossBrowser we choose query results and time as the most
important threads. Semantic, visual and textual threads are all
based on their dissimilarity to the focal shot. Since semantic
dissimilarity conveys the context of a shot, we decide that
semantic dissimilarity here is more important than visual dis-
similarity. Moreover, since the RotorBrowser was designed for
video collections where text is not always available, the textual
dissimilarity thread has an even lower priority. Finally there
are top-rank threads, indicating the focal shot is present in the
top- best shots for a single specific semantic concept. These
top-rank threads, which can occur multiple times, are used as
“filler” threads when there is still room in the visualization. We
have listed these possible threads and their priorities in Table I.
The difference between the browsers is visualized in Fig. 3.

C. Search Using Threads

A search session starts with the user entering a set of param-
eters in the query phase. These parameters yield a list of initial
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TABLE I
TYPES OF THREADS DEFINED IN THIS PAPER, AND THEIR PRIORITIES. A

HIGHER PRIORITY MEANS THAT THE THREAD IS MORE IMPORTANT TO BE

INCLUDED IN A VISUALIZATION. THE TYPE COLUMN DEPICTS WHETHER A

CERTAIN THREAD CAN BE STATIC (S) OR DYNAMIC (D)

Fig. 4. Finite state machine for thread-based browsing. A search starts when the
user defines the query in the query phase. He then views the results in the view
phase. If initial results are satisfactory he navigates through the initial query
thread. When one thread is insufficient he switches threads and browses the new
thread.

results, which become the dynamic thread . The first item of
this thread becomes the first . The current then determines
which other threads with relevant shots are to be shown. One of
these threads is then selected as the active thread through which
the user navigates. To keep navigation deliberately simple, the
user is limited to three options. He can accept the focal shot as
relevant to his query, he can navigate through the active thread
to select more results, or he can select another thread.

A more formal description of this search process is illustrated
in Fig. 4. Note that in this section when we refer to the user we
imply an ideal user who performs optimal search based on what
she sees and knows about the dataset, but without additional
world knowledge which might impact her decisions. Realisti-
cally, a user will also act on any possible own knowledge about
the dataset and act on own hunches, which will alter the chosen
search strategy.

Now, when a user views threads using, e.g., the CrossBrowser
or RotorBrowser, he sees a number of shots spreading outward
from the focal shot. We use to describe this number. So, for
example, means that six shots are visible from the focal
shot in either direction for all threads shown. The value here
influences the user’s browse behavior. A very small value of
will lead to the user seeing almost no shots per thread, which
means that possible relevant results in other threads will not
be retrieved. A too large value of shows a lot of shots per
thread, increasing the time required for the user to view them all
and comprehend the visualization, which therefore slows down
search.

During browsing the user retrieves relevant shots by 1)
making them the focal shot, and 2) selecting them. The act of
making any visible shot the focal shot will update the currently

Fig. 5. This figure shows how a thread locality is defined step by step for� � �

shots shown on either side of a selected shot.

visible set of shots. As a consequence, all shots within steps
distance from the focal shots along all visible threads are now
shown in the browser. Among these can be new relevant shots.
These are now also candidate for selection by the user, and
when these are selected again new shots can appear which are
also relevant. This process repeats itself. As such, individual
threads can have whole localities of relevant shots, defined as
follows.

Definition 8: A thread locality for an information need is
a set of consecutive shots within a thread where the number of
irrelevant shots between relevant shots for that information need
is lower than .

The user therefore browses through individual threads by
browsing individual thread localities within these threads. We
give an example of how such a locality is created in Fig. 5.
Again, since we assume an ideal user, we assume here that the
user does not want to browse through a thread in which he sees
no relevant shots.

The search session ends when the user is satisfied with the
results he found so far, or when he cannot find any new relevant
results by browsing in any thread direction.

IV. EXPERIMENTAL SETUP

In order to evaluate thread-based browsing we performed
three video retrieval experiments. In the first experiment we
compare linear browsing to browsing using static threads based
on simulated users. In the second experiment we evaluate the
practical use of threads by a user study. The goal of this user
study is twofold: we want to discover the benefit of having
multiple threads visible, and if so: which type of query benefits
most. And, secondly, which threads are best in providing results
for the user? In the third experiment we compare thread-based
visualization with other state of the art video retrieval systems.
For this we participated in the TRECVID Interactive Search
task [26], the de facto standard for video retrieval evaluation.
A general overview of successful approaches for TRECVID is
given in [27].
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TABLE II
TOPICS FOR TRECVID 2006 BENCHMARK. MARKED TOPICS (*) ARE USED IN EXPERIMENT 2. THE REMAINING COLUMNS INDICATE

RESULTS FROM EXPERIMENT 1, WITH THE OPTIMAL CONCEPT DETECTOR WITH THE HIGHEST RECALL AFTER 100 AND 1000 VISITS, AND

WHETHER THE OPTIMAL SEARCH STRATEGY FOR THIS TOPIC IS TO SEARCH BY CONCEPT, OR TO ALSO USE TIME LOCALITIES OR SEMANTIC

LOCALITIES. FOR TOPICS WHERE THERE WAS NO CLEAR OPTIMAL CHOICE, WE MERGED THE BEST TWO OPTIONS

A. Data Set and Task

The video collection used in all experiments is the TRECVID
2006 dataset [26], which consists of 320 h of broadcast news
video from Arabic, Chinese, and American news channels. This
collection is split into a training set of 160 h, used to develop the
system and a test set of 160 h, which is used for evaluation and
not revealed to users until the search experiment starts. The test
set contains 259 video files, totalling 79 484 individual shots.
TRECVID also defines a list of 24 search topics relevant to this
set. See Table II for an overview of these topics.

The interactive evaluations are set up as follows. Each partic-
ipant is given a list of topics for which they need to find relevant
shots within a 15 min time limit per topic.

B. Threads

Textual threads are obtained by taking the text linked to
a shot. This text is based on the output of automated speech
recognition systems. We obtain the textual dissimilarity space
by performing textual document dissimilarity analysis on each
shot [25].

For visual threads we need a notion of visual dissimilarity
between shots. In our system we use Wiccest features which are
based on natural image statistics with related dissimilarity func-
tion from [28], and Gabor features. These two visual dissimi-
larity spaces form the basis for visual exploration of the dataset.

To determine the semantic threads we first extract a de-
scription of the semantic content of a video. We use the semantic
pathfinder [6] which provides us with a measure of presence
for a given concept in each shot. As lexicon we combine the
LSCOM [7] and MediaMill [25] lexicons, resulting in 491 con-
cept detectors. This results in a concept vector, generic enough
to describe the semantic content of a shot. This method is sim-
ilar to the method of [29] which uses semantic threads to cluster
semantic concepts into semantic dimensions, though they use a

manually annotated dataset with binary yes/no states for con-
cepts, instead of automatically generated confidence scores.

Typically only a few concepts will be available in a shot, so
should be chosen such that it explicitly values shots sharing

the same concepts while ignoring concepts present in one of
the shots only. We therefore compare shots on a semantic level
by comparing semantic concept vectors of the individual shots
with the dissimilarity function given in 1 . This metric yields
high similarity when concepts are available in both shots. This
yields the semantic dissimilarity space, which forms the basis
for semantic exploration of the dataset:

the feature vectors (1)

C. Evaluation Measures

TRECVID provides an incomplete ground truth on the test set
for all topics. This ground Truth describes each shot as relevant
for a topic, irrelevant for a topic or “not judged” for a topic based
on the answers given by official TRECVID participants. This set
therefore does not include the results found by the user study
participants. Therefore, we extended the ground truth manually
to also cover all results from the user evaluation, so that there
were no unjudged shots in the results found.

For the overall performance we use average precision [26],
which is a single valued measure related to precision and recall,
favoring good results at the beginning at the list. The perfect
score of 1.0 is achieved by returning all correct results within the
dataset as the first results. Finally, the mean average precision is
obtained by averaging the average precision scores for all topics.

The average precision allows us to evaluate overall perfor-
mance. However, looking at the final result only does not show
how a user achieves this. Therefore, in addition we measure the
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Fig. 6. Screenshots of the (left) CrossBrowser and (right) RotorBrowser both
searching for the same topic. The CrossBrowser displays � in the vertical di-
rection, with � in the horizontal direction, while the RotorBrowser visualizes
more relevant threads.

recall as a function of the number of keyframes viewed by the
user.

D. Implementation and Parameter Settings

We implemented both browsers within the MediaMill se-
mantic video search engine [25]. See Fig. 6 for screenshots of
both browsers.

Both browsers are designed to allow for keyboard-only in-
teraction. The CrossBrowser has keyboard controls to move the
focal shot up, down, left or right. The RotorBrowser only allows
to move the focal shot left or right, and has a special rotate oper-
ation to rotate the browser clockwise to the next-active thread.
By repeating this action the user is able to cycle through the
visualized threads. Futhermore, both browsers are able to play-
back up to 16 individual frames of the focal shot by holding a
key.

The CrossBrowser was configured to show only and .
The RotorBrowser was configured to show up to eight threads.
We determined this number by gradually increasing the number
of visible threads, until there was too much thread overlap on
screen to make the threads useful. Thread relevancy is deter-
mined by 1) the focal shot being present in the thread and 2) the
thread importance hierarchy listed in Table I.

1) Experiment 1: Evaluate the Benefit of Static Threads:
In this experiment we evaluate the benefit of browsing static
threads over browsing one linear list of results. We do this by
evaluating a list of shots on a specific topic, and we measure
the number of shots viewed, i.e., the position in the list, against
the number of relevant shots found so far. To measure the
benefit of static threads we simulate user search with the finite
state machine depicted in Fig. 4 where we assume the user
recognizes a relevant shot when he sees it, and always chooses
to select it.

For each topic we determine the thread localities for the time-
line and for the set of static semantic threads for various sizes
of . This yields lists of shots which would be browsed through
if the user were to encounter them. We then use these localities
as follows. First we select the best concept detector available for
the topic. This is defined as the concept detector with the most
relevant results in the first 1000 shots. We assume that this is
the concept the user would have chosen to find results for this
topic, although in practice this might not be the intuitive choice.
Table II shows a list of the selected detectors for each topic.

From this detector and the generated localities the system de-
termines the list of shots the user would encounter during his
browsing session. This is done as follows:

• Method 1: browsing through a linear list
1) take the most optimal concept detector for the topic;
2) add all shots to the shots-viewed list.

• Method 2: browsing using static threads
1) start with most optimal concept detector for the topic;
2) Iterate over each shot. If the shot is embedded in a

locality for a specified , add the entire locality to the
shots-viewed list. Otherwise only add the shot to the
shots-viewed list.

This yields several one dimensional lists of shots, one list
based on linear browsing, one list based on browsing with ad-
ditional static semantic threads, and one based on static time
threads. Each list is truncated after 4000 results, and then vali-
dated using the ground truth as described in Section IV-D. This
yields recall vs shots visited statistics for both methods. We redo
this experiment for several values of —thereby simulating var-
ious browser sizes. Finally, in order to assess the benefit of local-
ities we also measure the oracle-based recall based on a simu-
lated user visiting all semantic localities in order from the largest
locality, i.e., with the most positive results, to the smallest lo-
cality which still has more than one result. This gives us the the-
oretical maximum achievable gain with locality-based browsing
and an indication of how well the semantic threads are organized
for this topic.

2) Experiment 2: Evaluate the Benefit of Extra Threads: In
this experiment we evaluate if there is a benefit of having mul-
tiple threads visible, and if so, which threads are optimal. We
evaluate this with a user study with 32 participants. The par-
ticipants ranged from 21 to 26 years of age. Only 29% indi-
cated they have experience going beyond browsing with Google
Video and Youtube. Each participant was given two hours of
training time with both browsers using a different dataset one
week beforehand.

The user evaluation was set up in a similar fashion to the
TRECVID Evaluation guidelines [26]. The users were given
questionnaires before and after the evaluation. Due to a time-
limit 16 topics were chosen from the selection, see Table II. We
divided the 16 topics across the 32 participants. The topics were
divided in such a way that each topic was completed 4 times,
twice using each browser. Also, each participant completed two
topics using the RotorBrowser and two topics using the Cross-
Browser.

3) Experiment 3: Evaluate the Efficiency of Threads: We
compared the system with the current state of the art in video
retrieval systems by participating in the TRECVID Interactive
Search task [26]. Note that in this experiment we rely exclu-
sively on the official TRECVID ground truth as provided by
NIST.

V. EXPERIMENTAL RESULTS

A. Experiment 1: Evaluate the Benefit of Static Threads

Results for experiment 1 are visible in Table II. For each topic
we have also given the optimal concept to be used. As can be
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Fig. 7. Detailed results for experiment 1: these graphs plot the number of viewed results against the achieved recall at that moment for three topics. The left graph
shows results for the topic “find shots of emergency vehicles”. The results indicate that using the “truck” concept detector results in better performance than using
either of the static threads. The right graph, “find shots of soccer goalposts”, shows that browsing using the timeline static threads yields a higher recall compared to
browsing with the “grass” concept alone. The middle graph, “find people reading a newspaper”, is an odd example where time localities significantly help retrieval
when compared to linear concept browsing only. After 500 visits a recall of 0.55 with 110 shots was achieved, where for linear browsing this was 0.29 with 60
shots.

seen, using concepts detection results alone without other di-
mensions often yields the best results with respect to the number
of shots viewed, though it must be said that the difference with
time localities is often marginal.

We highlight a more detailed selection of topics in Fig. 7.
Each graph shows the number of images found against the
achieved recall at that point for several locality widths. Also,
results with linear browsing using the optimal concept after
1000 views are shown. Lastly, the optimal performance using
only static semantic thread localities with is shown.
From these results we observe the following trends.

Not surprisingly, topics which have a clear best-concept ben-
efit most from single list concept browsing. For example using
concept grass for topic 23: find shots of soccer goalposts, shown
in Fig. 7(c), yields a recall of 0.8 after 1500 keyframes viewed.
The timeline boosts this to 0.85 recall at the same number of im-
ages viewed. Also, the results are significantly boosted to a re-
call of almost 1.00 after 2500 images viewed for a locality width
of 3. This boost indicates that the simulation found a yet-undis-
covered set of soccer videos with many positive results. This
pattern is repeated in several topics in Table II. For example, the
optimal concepts for topic 2: tall buildings are tower or building.

It was also expected that timeline locality-based browsing
yields worst performance for topics which have the subject in
view for only a fraction of a second, such as topic 1: find shots
of emergency vehicles, as shown in Fig. 7(a). Browsing with
semantic localities yields better but still limited results for all
values of . This can be explained by looking at the semantic
locality oracle. There are only 12 localities which would yield a
recall of 0.22 if they are all found. This did not happen however,
the graph indicates that a user browsing the optimal concept did
not find all of these localities.

Topics where no clear best-concept is available benefit most
from static semantic threads. For example, for topic 20: find
shots of a kiss on the cheek the best concept detector is old
people, but this only yields a recall of 0.14 after 1000 keyframes
viewed. Semantic threads do achieve the same result at that

point, but without forcing the user to find this not so obvious
optimal concept.

B. Experiment 2: Evaluate the Benefit of Extra Threads

The user questionnaires indicated that 60% of the users
preferred the CrossBrowser, citing that it was easier to use
(42%), faster (32%) and that the RotorBrowser was too com-
plex for them (16%), though the same users indicated that
this might change if they have more time to learn from the
system. About 35% of the users indicated their preference
for the RotorBrowser, citing that this browser was better for
more difficult topics (45%), and allowed for more interaction
possibilities (55%).

The results of the user study in terms of AP show that per-
formance is very dependent on the user. Per series of topics the
MAP per user varies between 0.03 and 0.28, with the scores of
the expert users far above that.

Looking at the number of unique shots found per topic, to-
gether with the originating threads gives us an insight into which
threads are used most for which kinds of topic. Fig. 8(b) shows
the number of retrieved shots per thread type for each topic. This
figure shows that, though a large portion of the results found can
be obtained by various threads, most of the shots were found
using only one specific type of thread, with and being the
threads used most. This indicates that each topic requires a dif-
ferent combination of threads to achieve the result; there is no
single-best thread. When we compare RotorBrowser vs Cross-
Browser performance in Fig. 9 we see that both browsers find
different results, and that the CrossBrowser is generally able to
find more results than the RotorBrowser. This is consistent with
the experiences of the users themselves, who indicated that they
found the RotorBrowser more difficult to work with. We found
that the reason for the difference between results has has to do
with the difference in browsing. The CrossBrowser allows a
user to browse through large portions of a single thread quickly,
without distractions from other visible threads. A RotorBrowser
user selects results from this thread, and also from all localities
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Fig. 8. These graphs give an overview of thread usage and relevance on a global and a detailed level. Each stacked bar shows the relative usage of each thread. The
inner, lighter colored bar in each part denotes the relative percentage of results of that thread which was judged relevant. (Left) Difference in thread usage between
expert and the group of novice users for both browsers. (Right) Results from experiment 2. Each stacked bar shows which threads have been used to gather the
results for that topic, gray denotes that multiple threads where able to find the same results. (a) Average thread usage per user type. (b) Detailed thread usage per
topic for the RotorBrowser.

Fig. 9. Unique user evaluation results per browser, aggregated over all users.
This graph shows that both browsers are able to both find a portion of the avail-
able relevant results, but that each individual browser also allows the user to find
a unique set of results.

of visible relevant threads. As a consequence both browsers dis-
play different subsets of the dataset. This, in itself is interesting:
browsing a single thread extensively will not result in the same
results as found by browsing multiple threads.

C. Experiment 3: Evaluate the Efficiency of Threads

Overall our browsers perform well in the TRECVID eval-
uation. The CrossBrowser placed 2nd and the RotorBrowser
placed 6th in the overall results. Due to the setup of the
TRECVID experiment a different expert user is used for each
browser, and this might explain the difference between results
of the RotorBrowser and the CrossBrowser. As a consequence,
we cannot compare the results directly. The experience and ca-
pabilities of each user influences the results. We can, however,
deduce some interesting facts.

Fig. 8(a) shows which thread was used to select the individual
results. The largest portion of results is generated from the ini-
tial query thread and the timeline. From the other threads the
semantic concept thread and the visual thread were used most.
The text thread was seldom used because these were only vis-
ible when the user explicitly performed a text search. This was
done only in rare instances, because this required the users to
switch back to the query phase, which in itself took too much
time. Moreover, the users found that results obtained by textual

retrieval in itself were of limited use. The top-rank threads are
also rarely used by the expert users, even though they take up the
most screen real estate. Hence, showing these threads is unwise
as the user has to process all visible top-rank threads mentally
even though they are probably less usable.

VI. CONCLUSION

This paper presented a method for browsing large collections
of video using threads. Two types of threads are identified: static
threads and dynamic threads. We have evaluated both the benefit
of having these threads available during search, and the benefit
of having static threads available in addition to dynamic threads.
We have implemented both thread types in two browsers for
video retrieval. We evaluate these browsers with a simulated
user analysis, a user study, and participation in the TRECVID
benchmark.

The overall evaluation results indicate that browsing through
multiple threads is beneficial for video search. The user eval-
uation indicated that users had difficulty understanding and
using the RotorBrowser when many threads were displayed.
When fewer threads were shown video retrieval performance
improved. The difference between expert users and novice
users is also clear. The relative number of user interaction steps
for both browsers remains stable for both the user study and
the TRECVID experiment, however the expert users achieved a
much higher average precision for all topics. This indicates that
trained users are able to find the same number of results using
less interaction with the search interface. Results also indicate
that the version of the RotorBrowser as used at TRECVID
showed many irrelevant threads. For example: top-rank threads
were shown, which were not useful for search.

The experiments with simulated users indicate that additional
static threads do improve search results for some topics, but that
this is dependent on the topic. The same holds for the type of
static thread used. This concurs with the results from the user
study, which also show that the type of threads used are depen-
dent on the topic, though the time and initial query threads are
always beneficial, followed by visual similarity.

If we look at individual users we however also see that every
user employs a different combination of threads to answer the
same topic. All our results indicate there is no best thread.



130 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 2, FEBRUARY 2010

Therefore, it is important to offer the user the opportunity to in-
teractively select the threads deemed useful for a certain search
task. By doing so, thread-based browsing provides intuitive and
flexible video retrieval.
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