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Abstract—As datasets grow increasingly large in content-based
image and video retrieval, computational efficiency of concept clas-
sification is important. This paper reviews techniques to accelerate
concept classification, where we show the trade-off between com-
putational efficiency and accuracy. As a basis, we use the Bag-of-
Words algorithm that in the 2008 benchmarks of TRECVID and
PASCAL lead to the best performance scores. We divide the eval-
uation in three steps: 1) Descriptor Extraction, where we evaluate
SIFT, SURF, DAISY, and Semantic Textons. 2) Visual Word As-
signment, where we compare a k-means visual vocabulary with
a Random Forest and evaluate subsampling, dimension reduction
with PCA, and division strategies of the Spatial Pyramid. 3) Clas-
sification, where we evaluate the �, RBF, and Fast Histogram In-
tersection kernel for the SVM. Apart from the evaluation, we ac-
celerate the calculation of densely sampled SIFT and SURF, accel-
erate nearest neighbor assignment, and improve accuracy of the
Histogram Intersection kernel. We conclude by discussing whether
further acceleration of the Bag-of-Words pipeline is possible.

Our results lead to a 7-fold speed increase without accuracy loss,
and a 70-fold speed increase with 3% accuracy loss. The latter
system does classification in real-time, which opens up new ap-
plications for automatic concept classification. For example, this
system permits five standard desktop PCs to automatically tag for
20 classes all images that are currently uploaded to Flickr.

Index Terms—Bag-of-words, computational efficiency, evalua-
tion, image/video retrieval, real-time.

I. INTRODUCTION

O VER the last decade, there has been an explosive growth
of available multimedia on the internet. Good examples

are the photo sharing website Flickr, hosting billions of images
with thousands of uploads each minute, and the video sharing
website YouTube, hosting millions of videos with hours of
video uploaded each minute. The advent of such collections
has sparked research on image and video retrieval within these
collections; see Snoek and Worring for a recent overview [1].
One active line of research is on using only the visual contents
for concept-based search tasks.

Within this domain, the Bag-of-Words method [2], [3] has
proven to be the most efficient strategy as a generic classification
scheme for individual concepts. This is proven by their top per-
formance in various major benchmarks over the past few years
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such as the TRECVID high-level feature extraction task (which
uses video) [4] and the Pascal VOC Challenge (which uses im-
ages) [5]. In these benchmarks, concept detectors are able to
detect classes such as chair, cat, car, boat, building, meeting,
and sports with varying degrees of success [4], [5].

But while Bag-of-Words systems give superior classification
results, they are computationally very expensive. For example, a
complete classification run for the TRECVID high-level feature
extraction task requires processing over 40 000 video frames (1
frame per shot of 180 h of video). The state-of-the-art system
used in [6] will take days to complete on a computer cluster.
Hence, for large scale image retrieval with Bag-of-Words, there
is the need to speed up this method.

This paper presents a comprehensive evaluation of various
fast Bag-of-Words components in terms of both computa-
tional efficiency and retrieval performance, which is our main
contribution. The evaluation shows an increase of accuracy
for Random Forests [7] by combining them with principal
component analysis (PCA), and an increase in computational
efficiency by determining relevant image divisions for the
Spatial Pyramid [8]. Additionally, we present several improve-
ments upon the components under consideration: We provide a
modified way to speed up the calculation of densely sampled
SIFT [9] descriptors. Similarly, we turn SURF [10] into a faster,
densely sampled descriptor. We accelerate nearest neighbor as-
signment. Furthermore, we increase accuracy of the histogram
intersection-based support vector machine by balancing visual
word frequencies. Finally, next to the experimental evaluation,
we provide a theoretical discussion on computational efficiency
of the Bag-of-Words method.

This paper is an extension of [11]. This document is struc-
tured as follows: First we give a short overview of the Bag-of-
Words framework in Section II. Section III discusses related
work. In Section IV, we discuss various strategies for acceler-
ating the Bag-of-Words pipeline. Section V gives an overview
of our experimental setup. Section VI presents and discusses our
results. A discussion about the theoretical computational com-
plexity of the Bag-of-Words pipeline is given in Section VII.
Finally, our conclusions are given in Section VIII.

II. BAG-OF-WORDS

The Bag-of-Words method is derived from text retrieval
where documents are represented as the frequencies of their
words. This word frequency count is used for retrieving or
classifying documents. Similarly, in the Bag-of-Words method,
one first samples local regions from an image which are then
converted to visual words. The visual word frequencies of an
image are then used in subsequent classification. Fig. 1 shows
a schematic overview of this process, with the creation of a
vocabulary of visual words on the left side, and conversion of
an image to a visual word frequency histogram on the right.
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Fig. 1. Schematic overview of creating visual word frequency histograms in
the Bag-of-Words method. For more details, see Section V.

The visual vocabulary within a Bag-of-Words framework is
learned from a training set. First, small image regions are sam-
pled from all images in the training set. From each region, a
descriptor is extracted, usually SIFT [9] which is a histogram of
oriented gradients. Typically, the visual vocabulary is learned
by using an unsupervised clustering algorithm such as k-means.
The resulting cluster centers define the visual vocabulary in
a nearest neighbor sense by partitioning the descriptor space.
Each resulting partition represents a visual word. A fast alterna-
tive method evaluated in this paper is to partition the descriptor
space using binary decision trees. The size of the visual vocab-
ulary is user defined but typically ranges in the thousands. The
visual vocabulary is learned once and remains fixed afterwards.

To create a visual word frequency histogram, small regions
are selected from an image from which descriptors are calcu-
lated. Each descriptor is then mapped to a visual word of the
vocabulary according to the partitioning of the descriptor space.
This results in a visual word frequency histogram which is used
in subsequent classification.

This paper presents an evaluation of the online parts of a
Bag-of-Words image classification system. This excludes the
creation of the visual vocabulary and learning the classifier. A
typical Bag-of-Words image classification pipeline which forms
the basis of several state-of-the-art image/video retrieval sys-
tems [6], [12], [13] is given in Fig. 2. The pipeline can be de-
composed into three different components: Descriptor Extrac-
tion, Word Assignment, and Classification. In this pipeline, the
Descriptor Extraction phase extracts SIFT descriptors [9]. The
visual vocabulary is created using k-means and Word Assign-
ment is done using nearest neighbor assignment. A weak form

Fig. 2. Example scheme for classification using the Bag-of-Words method used
by good image/video retrieval systems [6], [12], [13]. This particular pipeline
takes 2063 ms per image and has an accuracy of 0.476 MAP. State-of-the-art
results can be obtained by using dense sampling on multiple scales and by com-
bining a variety of (color) descriptors in the classification phase.

of spatial information is incorporated using the spatial pyramid
[8]. Classification is done using a support vector machine with
a -kernel.

III. RELATED WORK

We divide the related work into the three components of the
Bag-of-Words pipeline: Descriptor Extraction, Word Assign-
ment, and Classification.

A. Descriptor Extraction

Descriptor extraction begins with selecting small regions
from the image. Lowe [9] introduced a region or interest point
detector based on the difference of Gaussian (DOG). Bay et
al. [10] improved computational efficiency with a factor six by
proposing a Fast-Hessian interest point detector. Šochman and
Matas [14] accelerated interest point detection by emulating
them using their WaldBoost algorithm. However, in the context
of object recognition, Jurie and Triggs [15] showed that sam-
pling many patches on a regular dense grid outperforms the use
of interest points. This paper therefore uses the dense sampling
method which eliminates the computational costs of detecting
interest points altogether.

From the small, selected regions in the image, one extracts
descriptors. Mikolajczyk and Schmid [16] compared various
descriptors and found SIFT [9] or SIFT-like descriptors to be
the best in the context of image matching under various image
transformations. Mikolajzcyk et al. [17] and Zhang et al. [18]
showed that SIFT-like descriptors are also superior for object
detection. In this paper, we introduce a computationally efficient
SIFT-variant which gives similar accuracy to the original SIFT.

The SIFT descriptor consists of oriented gradient responses
that are summed over subregions. The summation becomes
computationally expensive when lots of descriptors are ex-
tracted. Grabner et al. [19] proposed to obtain the summation
efficiently by using integral images enabling them to calculate
the summation of any subregion using only its four corners.
The resulting descriptor deviates from SIFT [9] in omitting two
weighting schemes: First of all, SIFT uses a linear interpola-
tion between subregions which makes it robust against small
changes in position. Second, SIFT has a Gaussian weighting
scheme around the origin emphasizing the importance of the
detected interest point. Reference [19] reports a factor eight
speed increase while matching performance decreases slightly.
Unlike [19], we do not use interest points and we exploit the
regularity of the dense sampling to create fast summations over
subregions.
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Tola et al. [20] propose a different method to speed up the
summations over subregions. They use a Gaussian convolution
on the pixel responses after which each pixel represents a
weighted sum of responses over its neighborhood. They then
create their DAISY descriptor by taking circularly arranged
responses. As [20] can be seen as a form of dense sampling, we
include DAISY in our evaluation.

SIFT is based on relatively expensive oriented gradient re-
sponses. This is addressed by Bay et al. [10] with SURF, a spa-
tial descriptor similar to SIFT based on Haar wavelet responses.
Haar wavelets are cheaper to compute than the Gaussian deriva-
tives of SIFT. We include the SURF descriptor in our experi-
ments and examine if their results on object recognition extend
to larger and more difficult datasets. Additionally, as with SIFT,
we exploit the spatial nature of SURF in combination with the
dense sampling strategy to speed up calculation.

Shotton et al. [21] propose to omit the extraction of descrip-
tors altogether in the context of pixel-wise classification and
segmentation. Instead, they use raw-pixel values of a small re-
gion directly. For the subsequent step of Word Assignment, they
use a Random Forest, a set of supervised decision trees. We in-
clude their Semantic Textons in our evaluation.

B. Visual Word Assignment

Descriptors are assigned to a visual vocabulary by what we
call Word Assignment. Commonly, large visual vocabularies are
created with unsupervised k-means clustering which gives good
performance (e.g., [12], [18], [22]). Typically each descriptor is
assigned to a single word of this visual vocabulary using nearest
neighbor, e.g., [18], [22], [23]. However, it has been shown that
assigning each descriptor to multiple visual words by using a
so-called soft-assignment is beneficial to performance [24], [25]
at the expense of extra calculation time: In soft assignment, one
needs to obtain the closest visual words and calculate a pos-
terior probability over these. As this paper aims for acceleration
of visual concept classification, we exclude the use of soft-as-
signment in our evaluation.

Computation time for the Word Assignment is dependent on
three factors: the number of descriptors extracted per image, the
dimensionality of the descriptors, and the size of the visual vo-
cabulary. Nowak et al. [26] showed that using more descriptors
is better. We evaluate the speed-performance trade-off for using
fewer descriptors. Mikolajczyk and Schmid [16] apply PCA on
their SIFT-variant called GLOH to ensure it has the same dimen-
sionality as SIFT. We apply PCA to our descriptors to reduce
their dimensionality in order to increase computation speed.

Jiang et al. [27] and Moosmann et al. [7] experimented with
the size of the visual vocabulary and concluded that large vo-
cabularies are generally beneficial for large datasets. We will
fix the size of the visual vocabulary to 4096 visual words as
this gives good results on both the TRECVID and Pascal VOC
dataset [6], [12], [13]. Jurie and Triggs [15] and Wang et al. [28]
propose methods to create compact yet discriminative vocabu-
laries. These methods are orthogonal to the methods described
in this paper.

In order to make word assignment more efficient, several tree-
based assignment algorithms were proposed [29]–[31]. Tree-
based word assignment algorithms allow for a logarithmic rather
than a linear assignment time in terms of the number of vi-

sual words. The most interesting one is the work on supervised
random forests by Moosmann et al. [30]; apart from a compu-
tational advantage, the paper also reports improvements over
regular k-means in terms of performance on their four-class
datasets. As the creation of the trees is supervised, the relatively
small number of classes they use might have positively influ-
enced their results. This paper considers how their method ex-
tends to more classes.

As mentioned earlier, Shotton et al. [21] use Random Forests
directly on the pixel values of image regions and show its effec-
tiveness in image segmentation. Their Random Forests differ
from [30] in that each decision node in the tree works on mul-
tiple values of the descriptor instead of one. In most of our ex-
periments we will use the Random Forests which work on a
single dimension as these are faster and preliminary experiments
showed no significant benefits for decisions on multiple dimen-
sions. Only when evaluating their Semantic Textons we use de-
cision trees as defined in [21].

Lazebnik et al. [8] proposed the spatial pyramid, introducing
a weak form of spatial information by increasingly subdividing
the image and obtain a visual word frequency histogram for each
region separately. This results in a 5%–10% performance in-
crease at a very limited computational word assignment cost. He
et al. [32] expanded on this work by learning weights for each
of the resulting subregions. However, classification time is de-
pendent on the size of the word frequency histogram and hence
on the number of subregions. In this paper, we consider various
image division strategies to minimize the number of subregions
and speed up classification time.

C. Classification

Support vector machines (SVMs) are a very popular classi-
fier due to its robustness against large feature vectors and sparse
data. They are successfully used in Bag-of-Words methods.
The choice of SVM-kernel has a large impact on performance.
Both Zhang et al. [18] and Jiang et al. [27] determined that
the -kernel gives the best accuracy. We will follow their
experiments but next to retrieval performance we also focus on
computational efficiency.

Maji et al. [33] proposed an efficient classification scheme for
SVMs when using histogram intersection kernels. In this paper,
we will use their implementation for the histogram intersection
kernel.

D. Graphics Processing Unit

Orthogonal to methodological improvements, researchers
are looking to graphics processing units (GPUs) to speed up
Bag-of-Words. While hardware optimizations fall outside the
scope of this paper, the methods we evaluate in this paper can all
be implemented on a GPU: To calculate SIFT and SURF, one
needs matrix multiplications and (recursive) Gaussian filters,
which can be found in the standard GPU software development
kit CUDA [34]. Sharp [35] proposes an algorithm for Random
Forests on the GPU. Finally, Catanzaro et al. [36] show how to
implement an SVM on the GPU.

IV. ACCELERATED BAG-OF-WORDS

In this section, we describe the simple way of calculating
densely sampled descriptors. Furthermore, we discuss a fast way
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to calculate nearest neighbor assignment. Then we will discuss
the Random Forests of Moosmann et al. [7] and the fast His-
togram Intersection SVM classifier of Maji et al. [33].

A. Descriptor Extraction

1) Accelerated Dense Descriptor Extraction: Both SIFT and
SURF are spatial descriptors: each is constructed of 4 4 sub-
regions which in turn are described by the summation of pixel-
wise responses over an area. In the case of SIFT, the responses
are oriented gradients calculated using image convolutions; for
SURF, these are Haar wavelet responses calculated using simple
summations and subtractions.

First we observe that if the dense sampling rate is the same
as the size of a subregion, we can reuse these subregions for
the other descriptors. For the original 4 4 SURF and SIFT
descriptors, this means a factor 16 speed improvement for the
summations over the pixel responses.

The original SIFT uses a Gaussian weighting over the com-
plete image patch, attributing greater importance to the values in
the middle of the descriptor. This step obstructs the reuse of sub-
regions. But the original SIFT was made for use in conjunction
with interest points where the middle of the descriptor is more
important by design. However, the dense sampling strategy cre-
ates arbitrary image patches; hence, all parts of an image patch
seem equally important. As we use dense sampling, we omit the
Gaussian weighting.

To sum the responses within each subregion, we use two ma-
trix multiplications: one to sum in the row direction and the other
to sum over the column direction. Consider the pixel-wise re-
sponses from an image. If we want to sum the responses over
subregions of 3 3 pixels, we employ a matrix multiplication

, where sums over elements in the row direction and has
the form of

...
...

...
...

...
...

. . .
...

...
...

Matrix sums over the column direction and is similar to
but has a size adapted to .

For robustness against small shifts in position of the de-
scriptor, SIFT uses a linear weighting to divide responses over
neighboring subregions. We do a linear weighting by modifying

(and likewise ) to

...
...

...
...

...
...

...
...

...
. . .

where the top left entry is 1 rather than 1/3 due to normalization
at the boundary. The resulting descriptor only differs from the
original SIFT in omitting the Gaussian weighting over the whole
descriptor. It differs from [19] in that they omit also the linear
interpolation between subregions while we keep this.

Performing the summation over the regions with matrix
multiplications allows the use of specialized matrix multi-
plication libraries in combination with sparse matrices. The

resulting speed-up is up to a factor 2 compared to a naive C++
implementation.

Once all values of subregions have been extracted, we can
construct any spatial form of these subregions. Traditionally the
SIFT (and SURF) descriptor is composed of 4 4 subregions.
In this paper, we also evaluate 2 2 descriptors which have less
dimensions.

B. Visual Word Assignment

1) Nearest Neighbor Assignment: Each descriptor from an
image is projected onto a predefined visual vocabulary (obtained
by k-means) using nearest neighbor assignment. It is common
practice to normalize both SIFT and SURF to unit vectors to
make them robust against illumination changes. As all descrip-
tors are unit length, nearest neighbor assignment using the Eu-
clidean distances is equal to using angles between vectors. By
using the inner product to calculate these angles, we obtain a
speed-up of 43% over using Euclidean distances in the word as-
signment phase.

2) Random Forest: A random forest is a collection of binary
decision trees whose combination leads to fast yet accurate clas-
sification performance. This paper evaluates the decision trees in
the word assignment step. Unlike k-means visual vocabularies,
the decision trees are created in a supervised way. Following
Moosmann et al. [7], we use [37] for the construction of the
trees. For each tree we start with 250 000 labelled descriptors
from our training set, where the labels are taken from the global
image annotations (i.e., annotations at image level). Learning
is done recursively. At each node random splits are pro-
posed by choosing a random dimension of the descriptors and a
random threshold . This splits the set of descriptors at node

in and . Each split is evaluated using the information
gain , defined as [21]

(1)

where is the Shannon Entropy of the class labels of
. The split with the highest information gain is then adopted.

Training continues with and and stops if a specific depth
is reached. The end result is a binary decision tree.

Word assignment using a random forest is done by obtaining
the visual word frequency histograms for all trees and simply
concatenating these histograms into one vector.

Random forests are interesting from a computational point of
view in two ways: First of all, the binary nature of the decision
trees result in a word assignment time which is logarithmic in
the number of visual words, whereas this is linear for nearest
neighbor assignment. Furthermore, as at each decision node in
the tree only a single dimension of the descriptor is compared to
a threshold, the visual word assignment time for random forests
is independent of the dimensionality of the descriptors while for
nearest neighbor assignment this dependency is linear.

C. Classification

1) The Precomputed Kernel: The classification function for
a SVM can be written as [38]

(2)
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where is the vector to be classified,
is the th support vector, is its positive support

vector weight, is the label of the support vector,
is the number of support vectors, and is a kernel func-

tion. The time complexity of this function is dependent on its
kernel function. For the common distance-based kernel func-
tions that we use, the time complexity is . Suppose that
the average number of support vectors for a single class is ,
then classification for all classes is of complexity .

Alternatively, as support vectors are selected from the training
set, one can choose to calculate the kernel function between the
whole training set and a test sample and select later for each
class which kernel entries to use. If we define as the size of the
training set, classification complexity for all classes becomes

. This strategy is computationally advantageous if
. For our datasets, this is indeed the case: all datasets have 15

or more classes and each class takes 10%–25% of the training
vectors as support vectors.

In our experiments, we calculate the kernel function between
the whole training set and the whole test set at once, which is
called using a precomputed kernel. Compared to calculating the
distance separately for each test sample, the precomputed kernel
reduces overhead and may allow a speed-up when using efficient
matrix multiplications but its memory requirements are much
higher.

2) Efficient Support Vector Machine Classification for His-
togram Intersection Kernels: The classification function for an
SVM in (2) has time complexity . Recently, Maji et al.
[33] showed that the classification function for the histogram in-
tersection kernel

(3)

can be rewritten to give a time complexity of

(4)

(5)

Now for a fixed value of , let denote the sorted values of
in ascending order with corresponding weights and labels

. Let be the largest integer for which . This allows
rewriting (5) as

(6)

For each , we can precompute for all

(7)

and

(8)

as they have become independent of . By exploiting the piece-
wise linear form of the resulting decision function, the memory

requirement becomes twice that of the normal SVM implemen-
tation [33]. Calculating the classifier output now amounts to
finding for each dimension the correct which can be done log-
arithmically in the number of support vectors . The total run-
time complexity thus becomes instead of ,
which is a significant speed increase.

Maji et al. [33] also found that the piece-wise linear func-
tion between the brackets of (6) can reasonably well be approx-
imated by a piece-wise linear function with uniform spacing be-
tween its segments (rather than a spacing which is determined
by the sorted values of the support vectors). The uniform
spacing allows for a direct mapping of to a corresponding ,
removing the dependence on the number of support vectors
altogether. This leads to an even faster classification complexity
of order with negligible loss of accuracy. We evaluate both
the exact and approximate Histogram Intersection SVM of [33].

V. EXPERIMENTAL SETUP

We compare various alternative Bag-of-Words components
with respect to a basic Bag-of-Words pipeline. In our compar-
ison, we consider both retrieval performance and computational
efficiency. We divide our experiments into the three stages of the
Bag-of-Words pipeline:

1) Descriptors. The features which describe the extracted
local image patches;

2) Word Assignment. The assignment of these descriptors to
a word in the visual vocabulary, resulting in a visual word
frequency histogram. The Spatial Pyramid is applied in the
word assignment phase;

3) Classification. The classification of these visual word fre-
quency histograms.

For measuring retrieval performance, we report the standard
measure for that dataset. This is either the percentage of cor-
rectly classified examples or the mean average precision (MAP)
over all classes. The average precision for a single class is de-
fined as

(9)

where is the number of images. is the number of images of
class . is the th image in the ranked list .
Finally, is a function which returns the number of images of
class in the first images if is of class , and 0 otherwise.

Computational efficiency is measured in milliseconds per
image, where the measurement is an average over all images
in the test set. Classification time for an image is reported for
the classification of all classes in the dataset. The efficiency
measurements are done on a mainstream processor (a single
core of a 3.16-Ghz Intel Core Duo E8500 processor).

A. Datasets

We perform our experiments on three different datasets. The
Pascal VOC 2007 dataset consists of 9963 images divided
into a predefined training and test set of, respectively, 5011
and 4952 images. The general image size is 300 500 pixels.
The dataset consists of 20 object classes: aeroplane, bicycle,
bird, boat, bottle, bus, car, cat, chair, cow, dining-table, dog,
horse, motorbike, person, potted-plant, sheep, sofa, train,
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and TV/monitor. Some images contain multiple objects of
potentially different classes. Retrieval performance is measured
using the MAP over all object classes.

The MediaMill Challenge dataset [39] consists of 85 h
of video from the TRECVID 2005 development set which
is segmented into shots with corresponding keyframes. As is
common, we only use these keyframes, discarding temporal
information (unlike, e.g., [40]). The set is divided into a prede-
fined training and test set which, respectively, contain 30 993
and 12 914 keyframes. All keyframes are 240 352 pixels
and contain compression artefacts. There are 101 concept
categories ranging from object categories (e.g., bird, bus), to
natural scenes (e.g., mountain, sky), semantic concepts (e.g.,
entertainment, meeting), and actions (e.g., fire weapon, people
marching). Keyframes may contain zero, one, or multiple
concepts.

The Fifteen Scene Categories dataset [8] expands upon ear-
lier scene category databases [41], [42]. For each scene category,
there are 200–400 images with an average size of 300 250
pixels. We randomly divide the set into a training and test set
of, respectively, 2245 and 2240 images. The scene categories
for this dataset are mutually exclusive and contain categories
like bedroom, industrial, and forest.

In our experiments, we measured very similar speed improve-
ments for all three datasets and also similar trends in accuracy.
Therefore, we will discuss only the results for the Pascal VOC
2007 dataset in detail. We will return to the other datasets in the
conclusions.

B. Baseline

Our baseline Bag-of-Words system is modeled after the best
systems of the Pascal VOC challenge 2007 and 2008 [12], [13],
where we exclude the spatial pyramid for its computational de-
mands during training. However, as the spatial pyramid seems
intuitively equally powerful for all descriptors and word assign-
ment methods, we do not have to include it for most of our ex-
periments.

We use the intensity-based SIFT descriptor extracted by our
fast Dense Sampling strategy, termed DIFT from now on. We
sample subregions of 6 6 pixels each 6th pixel and use the
original spatial configuration of 4 4 subregions.

Our visual vocabulary consists of 4096 words created using
k-means clustering. This vocabulary size is kept constant
throughout our experiments. New descriptors are projected
to the visual vocabulary using nearest neighbor assignment
through inner products. Classification of the resulting word
frequency histograms is done using an SVM with a -kernel,
where we make use of the precomputed kernel which takes up
most of the classification time.

The resulting Bag-of-Words pipeline for the baseline experi-
ment is presented in Fig. 3. Note that the pre-assignment step is
currently empty but will be used by two of our experiments.

Subsequent experiments will always affect a single element
of this baseline pipeline.

C. Descriptors

In this experiment, we compare various fast alternatives to
the SIFT descriptor, all extracted using dense sampling on a

Fig. 3. Baseline Bag-of-Words pipeline as used in our experiments. The total
computation time is 786 milliseconds per image to classify all 20 classes of the
Pascal VOC dataset. Its MAP is 0.447.

regular grid. We focus on computational efficiency for both the
extraction of the descriptors and the visual word assignment be-
cause the dimensionality of the descriptors influences assign-
ment time.

We compare four SIFT variants and three SURF variants.
We compare our implementation of the original SIFT 4 4 de-
scriptor which includes the Gaussian weighting with our \sift de-
scriptor which omits this weighting. Both descriptors have 128
dimensions. To decrease the dimensionality and hence word as-
signment time, we construct two DIFT versions out of four sub-
regions resulting in 32 dimensions. DIFT 2 2 uses the same
subregions as DIFT 4 4. DIFT 2 2 uses the exact same
pixel values as DIFT 4 4. This arguably results in a more fair
comparison but is less compatible with our descriptor extraction
method: we need to extract the features four times to achieve the
same dense sampling rate (we need four different sets of sub-
regions). Notice that besides a dimensionality reduction, fewer
subregions also result in less redundancy: neighboring subre-
gions are likely to describe similar statistics, so more subre-
gions in a descriptor means a higher probability of redundancy.
A schematic overview of the various SIFT variants is given in
Fig. 4.

We also use three variants of DURF which can be seen as the
counterparts of DIFT; the responses within the same subregions
are used for summation but DURF uses Haar wavelet responses
rather then oriented gradients. As the Haar wavelets are calcu-
lated in only the horizontal and vertical directions and not in the
diagonal directions, the resulting dimensionality of the descrip-
tors is half that of DIFT. The DURF variants are termed DURF
4 4, DURF 2 2, and DURF 2 2 , and consist of, respec-
tively, 64, 16, and 16 dimensions.

The DAISY descriptor can be seen as a variant of SIFT,
where its subregions are circular and summed using a Gaussian
weighting rather than square and summed using a linear
weighting. This is visualized in Fig. 5. In total, there are 25
subregions of eight oriented gradients, resulting in a 200-di-
mensional vector. We use the implementation provided by [20].

Finally, we evaluate Semantic Textons [21]. Semantic Tex-
tons are defined to work with a Random Forest and are not suited
for nearest neighbor assignment. For fair comparison, we use
Semantic Textons on the intensity values only, just like the other
descriptors. A concise overview of the dimensionality and re-
gion sizes of the descriptors is given in Table I.

D. Word Assignment

The word assignment time when using nearest neighbor as-
signment depends on three factors: the size of the visual vocab-
ulary, the number of descriptors generated per image, and the
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Fig. 4. Schematic overview of the various SIFT variants used in this paper. The circle in (a) represents a Gaussian weighting centred around the origin of the
descriptor. In this picture, most subregions are 2� 2 pixels while in our actual experiments these subregions are 6� 6 pixels.

TABLE I
REGION SIZE AND DIMENSIONALITY OF THE VARIOUS DESCRIPTORS USED

Fig. 5. Visualization of pixel-wise summation as done by the DAISY de-
scriptor. Each circle describes a Gaussian summation over the pixel-wise
oriented gradient responses.

dimensionality of the descriptors. In this paper, we discuss ex-
periments on the number and dimensionality of the descriptors.
We refrain from experimenting with the size of the visual vo-
cabulary, as this has been exhaustively studied in [7] and [27].
Instead we fix the vocabulary size to 4096, which gives good
results on the Pascal VOC dataset [12], [13]. Using a larger vo-
cabulary implies an increased classification time for the SVM.

We decrease the number of descriptors per image by a random
subsampling strategy.

The size of the descriptors is reduced by PCA. We only use
the rotation component of PCA. The translation component
is expensive to calculate and does not influence distances

and hence does not influence the resulting word frequency
histograms.

We also consider the Random Forest [7] described in
Section IV-B2 as a fast alternative to k-means and nearest
neighbor assignment. As a Random Forest of four trees gives
good results for [7], our forests are made of four trees of depth
10, resulting in the appropriate vocabulary size of 4096 visual
words.

Finally we consider various image divisions for the spatial
pyramid of Lazebnik et al. [8]. The original spatial pyramid uses
the same number of horizontal and vertical divisions. We con-
sider combinations of 1–4 horizontal and 1–4 vertical divisions.
The aim is to find the minimum number of resulting subregions
with high retrieval efficiency, as classification time is linear in
the number of these subregions.

E. Classification

The choice for SVM kernels influences both retrieval perfor-
mance and classification speed. For a word frequency histogram

and a support vector , the
SVM kernel is defined as . In our experiments we com-
pare three different kernels:

1) Histogram intersection kernel, defined as

(10)
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2) Radial basis function, defined as

(11)

where

(12)

and is a normalization factor which in our experiments
we set to as in [12].

3) -kernel, defined as

(13)

where

(14)

and is a normalization factor which in our experiments
we set to as in [12].

Our implementation for precomputing these kernels exploits
the sparseness of the word frequency histograms for computa-
tional efficiency. Besides the precomputed Histogram Intersec-
tion kernel, we use the fast implementation of [33].

Finally, we revisit the spatial pyramid using the classification
method which proves to be the fastest.

F. Implementation Details

For the DIFT and DURF descriptors, we sum responses
over subregions of 6 6 pixels. The horizontal and vertical
responses for SIFT are calculated using a Gaussian derivative
filter while the diagonal responses are calculated using a fast
anisotropic Gaussian derivative filter [43], all using a sigma
of 1. For DURF, we calculate each 2nd pixel a Haar Wavelet
response of 4 4 pixels. Notice that calculating responses each
2nd pixel means that the subregions of 6 6 pixels contains
only 9 Haar responses instead of the 36 gradient responses of
DIFT. For DAISY we set the radius of the descriptor to 12
pixels resulting in comparable image-regions from which the
descriptor is calculated. We use the default settings for the other
parameters [20]. For the Semantic Textons, we take regions of
24 24 pixels where we normalize each region to unit length
to be invariant against intensity changes. All descriptors in this
paper are sampled at each 6th pixel. For each descriptor type,
we generate about 4500 descriptors per image for the Pascal
VOC dataset.

One visual vocabulary for nearest neighbor assignment is cre-
ated using k-means on 250 000 descriptors with . The
word assignment itself is done by using the maximum inproduct
as explained in Section IV-B1.

We learn the Random Forest using 250 000 descriptors. The
number of proposed random splits had little influence in
preliminary experiments. In this paper, we set it to half of the
number of dimensions of the descriptor. We create four trees of
depth 10 resulting in 4096 visual words.

For classification, we optimize the slack parameter using
3-fold cross validation. We use the prior probabilities to set
the weights for the training samples such that the positive and

negative training sets are weighted equally: Positive examples
get weight , negative examples get weight .

Most of our implementation is done using optimized Matlab
code. We created C++ implementations (MEX-files) for the
random forest assignment, calculating the maximum of a ma-
trix, the distance, and the histogram intersection kernel. We
used the C++ implementations (MEX-files) of the anisotropic
Gaussian filtering [43], the LIBSVM implementation [44]
which allows the use of precomputed kernels, and the adjusted
LIBSVM implementation of [33] for the fast histogram inter-
section.

VI. RESULTS

This section presents all results. For clarity, throughout this
section, we use percentages to denote computational efficiency
and MAP scores to denote retrieval performance.

A. Baseline

The baseline is given in Fig. 3, using DIFT 4 4, nearest
neighbor assignment and an SVM classifier using the -kernel.

The retrieval effectiveness of this pipeline is 0.447 MAP,
comparable with [12] and [13] for similar settings. In practice,
this means that for this dataset, for each class, on average 80%
of the top ten images and 60% of the top 100 images is correct.

The processing of the total pipeline takes 786 ms, where 10%
of the time is used for descriptor extraction, 81% is used for
word assignment, and 9% is used for classification. Word As-
signment time mainly consists of calculating the inner product
between the visual vocabulary and the descriptors. Classifica-
tion time can be split into 74 ms per image for precalculating
the -kernel and 1 ms per image for calculating the classifica-
tion function for all 20 classes. Notice that the 1 ms of calcu-
lating the classification function stays the same throughout all
experiments on the Pascal VOC dataset as it is dependent only
on the number of training and test samples and on the number
of classes.

By sampling at different scales, combining different (color)
variants of SIFT during classification and by using the spatial
pyramid we obtain a MAP of 0.57, comparable to the best results
reported on this dataset [12], [13].

B. Descriptors

We compare the SIFT, DIFT, and DURF descriptors with var-
ious spatial configurations as described in Section V-C, as well
as the DAISY descriptor. Results are given in Fig. 6.

The retrieval performance among the SIFT 4 4, DIFT 4 4,
DURF 4 4, and DAISY descriptors is comparable. Compared
to SIFT 4 4, descriptor extraction is 17% faster for Daisy,
500% faster for DIFT 4 4, and 3200% faster for DURF 4 4.
Furthermore, compared to both SIFT 4 4 and DIFT 4 4, vi-
sual word assignment is 37% faster for DURF 4 4 and 46%
slower for DAISY, due to the, respectively, smaller and larger
dimensionality of these descriptors.

The retrieval performance for the 2 2 spatial configurations
for DIFT and DURF is, respectively, 0.01 and 0.02 MAP lower
than their 4 4 counterparts. While descriptor extraction speed
is only slightly faster, word assignment speed is increased sig-
nificantly due to the lower dimensionality: For DIFT, the speed
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Fig. 6. (a) Retrieval performance, (b) descriptor extraction time, and (c) visual
word assignment time for various descriptors. The visual word assignment time
(c) is for nearest neighbor assignment using a k-means visual vocabulary.

increase of the 2 2 configuration is 100%; for DURF, this is
40%.

The DAISY descriptor is not much faster than SIFT 4 4,
contrary to [20]. This is because DAISY is created for sam-
pling at each pixel rather than each 6th pixel. When sampling
each pixel, we measured that DAISY is 2000% faster than SIFT
4 4. However, in such a scenario, its speed increase relies on
doing summations over subregions using convolutions. This can
also be done for both SIFT and SURF; hence, DAISY is never
faster.

Fig. 7. Random Forests versus k-means nearest neighbor assignment: (a) Re-
trieval performance and (b) visual word assignment time for various descriptors.
Textons have no comparison with k-means as they are designed for use with
Random Forests only.

To conclude, DIFT 4 4 and DURF 4 4 have optimal accu-
racy at a good computation time. DIFT 2 2 and DURF 2 2
are good alternatives when speed is more important than ob-
taining the highest accuracy. DAISY gives also a good accuracy
but is slow relative to DIFT and DURF. Therefore, we will not
include this descriptor in subsequent experiments.

C. Word Assignment

1) Random Forest: In this experiment, we compare the
nearest neighbor assignment with Random Forests. We do this
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Fig. 8. Subsampling: (a) Classification accuracy and (b) visual word assign-
ment time when using fewer descriptors of the image. Dashed lines denote the
baseline scores.

on the SIFT, DIFT, and DURF descriptors of our previous
experiment. Additionally, we will include the Semantic Textons
[21] which are designed to work with Random Forests. Results
are shown in Fig. 7.

Considering the retrieval performance in Fig. 7(a), we ob-
serve that the MAP values for the 4 4 configuration of DIFT
stays approximately the same with a MAP decrease of 0.004.
DURF 4 4 decreases with 0.026. However, in contrast to
nearest neighbor assignment, DIFT 2 2 and DURF 2 2

Fig. 9. PCA: (a) Classification accuracy and (b) visual word assignment time
when using PCA to reduce the number of dimensions. Dashed lines denote the
baseline scores.

outperform their 4 4 counterparts. DIFT 2 2 even has a
performance comparable to the baseline. Because the 2 2
versions have lower dimensionality and less redundancy, it
suggests that Random Forests are sensitive to these aspects.
This will be further examined in our PCA experiment in
Section VI-C3.

The accuracy of the Semantic Textons is comparatively low,
with a MAP of 0.364. This result is obtained using a Random
Forest which uses only a single dimension in its decision nodes.
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Fig. 10. Accuracy in MAP for image division strategies for the Spatial Pyramid. (a) uses DIFT 4� 4 with nearest neighbor assignment using a k-means visual
vocabulary. (b) uses DIFT 4� 4 with a Random Forest.

We also experimented with including decisions on multiple di-
mensions exactly as in [21]. But both execution time and ac-
curacy were very similar (data not shown). We conclude that
Semantic Textons are less powerful than histograms of oriented
gradients for image retrieval using Bag-of-Words. We exclude
them in subsequent experiments.

In terms of word assignment speed, Fig. 7(b) shows that the
Random Forest does what it is designed for and results in a speed
improvement of 3500%–4500%. As it also gives good retrieval
performance, we include the Random Forest in subsequent ex-
periments.

As discussed in Section IV-B2, the number of computational
operations performed while doing Random Forest assignment
is independent of the dimensionality of the region descriptors.
But as can be seen in Fig. 7(b), higher dimensional descriptors
have a larger word assignment time. We attribute this to longer
memory access in larger blocks of memory.

2) Subsampling: This experiment explores speeding up vi-
sual word assignment by sampling only part of the extracted
descriptors from an image. Results are shown in Fig. 8.

We see that word assignment speed is linear in the number of
descriptors. Retrieval performance is bounded: more descriptors
are better but it stabilizes at a certain point. An accuracy of 0.314
MAP when using 10% of the descriptors (about 450 descriptors
per image) may seem low compared to other published work.
Additional tests verified that this is because we use dense sam-
pling rather than interest points (data not shown). As interest
points focus on the most important parts of an image and hence
generate the most important visual words, fewer descriptors are
necessary to get reasonable results.

Using fewer descriptors per image is only viable when speed
is more important than accuracy in which case a Random Forest
assignment is preferred. Comparing the descriptor extraction
time and the Random Forest assignment time, we see that
the Random Forest is 500% faster; therefore, no significant
speed-ups can be achieved by subsampling. For DURF 4 4,
descriptor extraction time and word assignment time is about
equal, so here, one can gain some extra speed improvement at
a considerable loss in accuracy.

For this dataset, we recommend not to use subsampling.
3) PCA: We now use PCA to reduce the dimensionality of

the descriptors. Fig. 9 shows the results.
For retrieval effectiveness, we observe that the use of PCA

increases performance for the Random Forest assignment. For
DIFT 4 4, this performance is maximally 0.462, which is
0.015 MAP higher than the baseline and 0.02 MAP higher than
the Random Forest without PCA.

Reduction of the number of dimensions has little influence
on accuracy until a certain percentage of dimensions have been
reached: for nearest neighbor assignment, accuracy stays the
same until using half of the total dimensions; for Random
Forests, accuracy stays the same until using one third of the
dimensions. After this point, the retrieval performance drops
significantly.

At the point where retrieval performance is the same, com-
putation time improves for nearest neighbor assignment with
34% for DIFT 4 4 and 24% for DURF 4 4. At this point,
computation time for Random Forests with PCA is about 10%
slower than Random Forests without PCA step, which is a speed
decrease of only 2% with respect to the whole Bag-of-Words
pipeline.

The removal of redundancy in the dimensions by using PCA
increases performance for the Random Forest. It implies that
the decorrelation of the dimensions has a positive influence on
the decision boundaries of the trees of the Random Forest. This
can be understood by the fact that each decision node works
on a single dimension. After decorrelation, these dimensions
contain different rather than overlapping information, making
each decision and hence the overall decision better.

Because PCA gives a speed improvement for nearest
neighbor assignment and an accuracy improvement for a
Random Forest, its use is always beneficial.

4) Spatial Pyramid: This experiment compares a combina-
tion of 1–4 horizontal image regions and 1–4 vertical image re-
gions for the spatial pyramid [8]. The retrieval performance and
computational efficiency for DIFT 4 4 for different pyramid
divisions is shown in Figs. 10 and 11, respectively. Results for
DURF 4 4 show the same trends.
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Fig. 11. Speed measurements in milliseconds per image for various image division strategies for the spatial pyramid. (a) shows the visual word assignment time
for DIFT 4� 4 with a Random Forest. (b) shows the classification time for DIFT 4� 4 with a Random Forest using a � kernel.

Fig. 12. Comparison of � and an Euclidean distance matrix for (a) classification accuracy and (b) classification time. Classification time is measured for a single
image for all 20 classes. Classification time is dependent only on the size of the visual vocabulary, which is the same for all methods.

In terms of retrieval performance, division into three hori-
zontal regions is optimal and increases accuracy for all pipelines
by 0.02–0.04 MAP. Two or four horizontal regions also give
good improvements of around 0.02 MAP. We attribute the in-
crease in accuracy to the crude floor/object/sky distinction it
makes.

Our results show that vertical divisions only decrease accu-
racy in this varied dataset. Even distinguishing the middle part
of the image does not lead to extra performance, except margin-
ally for the “horse” and “motorbike” classes, which are typical
objects of affection.

The word assignment speed is negligibly slower for relevant
image divisions, as can be seen in Fig. 11(a). In contrast, classifi-
cation time increases considerably as the visual word frequency
histograms increase linear in the number of subregions. A di-
vision into two or three image regions increases computation
time with, respectively, 61% and 116%. Recall that the differ-
ence in classification time is only in precomputing the kernel:
afterwards the evaluation of the classification function takes 1
ms for all experiments on this dataset.

To make sure that the increase in retrieval performance is due
to the spatial pyramid rather than more statistics, we performed
a control experiment in which we increased the visual vocab-
ulary size to 16 384 visual words. For the Random Forest, we
did this by increasing the depth of the trees to 12. The resulting
frequency histogram is as large as a 1 4 or 2 2 subdivision
of the image. However, retrieval performance did not increase
significantly: For DIFT 4 4, retrieval performance using the
large vocabulary is 0.443 MAP for k-means and 0.449 MAP for
random forests.

Summarized, the spatial pyramid can be used for good
classification improvements at a high computational cost which
cannot be obtained by simply increasing the visual vocabulary.
For this varied dataset, only horizontal image divisions should
be used.

D. Classification

In this experiment, we compare the -kernel, RBF kernel,
and the Histogram Intersection kernel. Results are presented in
Fig. 12.
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As expected, in terms of retrieval performance, the -kernel
is best: its accuracy is about 0.03 MAP higher than the His-
togram Intersection kernel and about 0.04 MAP higher than the
RBF kernel. The fast, linear approximation of the Histogram In-
tersection kernel is as accurate as the exact version.

The classification speed of the linear approximation of the
Histogram Intersection kernel is best. It is 1800% faster than the

-kernel. The RBF kernel is 1400% faster than the -kernel.
The huge difference between calculating the RBF-kernel and the

-kernel can be attributed to the use of efficient matrix multi-
plications in calculating the RBF-kernel which is not possible
for the -kernel.

In our experiments, the linear approximation of [33] is 300%
faster than the precomputed Histogram Intersection kernel,
much less than the 5000%–200 000% speed improvement
reported in [33]. This is because the precomputed kernel, which
takes up the majority of the classification time, is reused for all
20 classes. Furthermore, the visual word frequency histograms
in our pipeline are sparse, which we exploit in our computa-
tionally efficient Histogram Intersection implementation.

Looking at Fig. 12, one notices that using the Histogram
Intersection kernel instead of the -kernel works better when
using a k-means visual vocabulary than a Random Forest.
Looking at the distribution of visual word frequencies, we
observed that the visual word frequencies are more unbalanced
for Random Forests than for k-means. Theoretically, the
distance somewhat normalizes this. The Histogram Intersection
kernel does not. Therefore, we made the visual word counts
more balanced by simply taking the square root of these counts.
Computational costs are negligible compared to the rest of the
pipeline, and for DIFT 4 4 and DURF 4 4, this improves
the MAP score with 0.01.

To conclude, the fast linear approximation of the Histogram
Intersection kernel is the preferred method for computational
efficiency as it gives higher accuracy and is faster than the RBF
kernel. If the Histogram Intersection kernel is used in combi-
nation with the Random Forest, it is advised to balance visual
word frequency histograms by taking the square root. For op-
timal classification accuracy, the -kernel is preferred.

E. Spatial Pyramid Revisited

We now apply the linear approximation of the Histogram
Intersection kernel to the horizontal spatial pyramid divisions.
Classification results are given in Fig. 13. Classification time is
6 ms for a division into four subregions, and 4 ms for all other
divisions.

The retrieval performance of the approximated histogram in-
tersection kernel using three horizontal divisions gives the same
or better retrieval scores than the -kernel baseline without
the spatial pyramid. Classification speed at this point is 1800%
faster than the baseline.

Theoretically, classification time goes up linearly in the
size of the word frequency histograms. As we did not observe
this trend, we did some extra experiments which showed the
caching problems for small word histograms. Hence, for small
histograms, our measurements overestimate the classification
times.

Summarized, the approximate Histogram Intersection kernel
allows for the inclusion of the Spatial Pyramid at the expense of

Fig. 13. Retrieval performance for the � -kernel without the spatial pyramid
and the fast approximate histogram intersection kernel while using only hori-
zontal divisions of the spatial pyramid.

Fig. 14. Influence of supervision of Random Forests on accuracy: A compar-
ison of full supervision with supervision on only 25% of the classes.

a small increase of total computation time. It is therefore recom-
mended to include the (horizontal) Spatial Pyramid while using
the approximate Histogram Intersection kernel.

F. Supervision in Random Forests

The experiments in this paper provide a very fast Bag-of-
Words pipeline which is applicable to large-scale datasets in the
order of hundreds of thousands of images and beyond. However,
large-scale datasets tend to come with a large number of classes
which are typically not defined from the start. As the Random
Forest in our pipeline is created in a supervised manner using
the class labels of the images, this begs the question: If we train
a Random Forest on classes other than it is applied, will it still
give good results?

Using the same experimental setup as before, we learn the
Random Forest on five classes and compare this with the fully
supervised Random Forest. Retrieval performance is averaged
over four trials where we used different classes for learning in
each iteration. The results are presented in Fig. 14.

For DIFT 4 4, using all classes for learning the Random
Forest is only 0.007 MAP better than using five classes. For
DURF 4 4, there is no difference. We furthermore examined
the possibility that classification scores were different for the
classes on which the tree was learned and on which the tree
was not learned. Perhaps surprisingly, this was not the case; the
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Average Precision scores for the classes on which the tree was
not learned was equal to the completely supervised trees.

We conclude that by using only a few classes for learning, one
obtains a visual vocabulary which generalizes well to other ob-
ject classes. This makes Random Forests applicable for datasets
where the labels are not defined in advance.

VII. DISCUSSION ON SPEED

In this paper, we have presented various fast alternatives for
each of the components of the Bag-of-Words pipeline. In this
section, we analyze their computational efficiency. We will limit
ourselves to methodological improvement. Hardware optimiza-
tion falls outside the scope of this paper.

A. Descriptor Extraction

For the descriptors used in this paper, descriptor extraction
consists of three phases: 1) Apply a gradient filter on a certain
scale. 2) Differentiate between positive and negative responses
using the absolute value function. 3) Sum responses over a small
region.

1) Apply Gradient Filter: For SIFT, we use a fast (approx-
imate) recursive Gaussian derivative filter [43] for the diago-
nals and an exact derivative filter for the horizontal and vertical
directions.

The Haar-wavelets used in SURF are a crude but very fast
approximation of the Gaussian derivative filter, using only ad-
ditions and subtractions of the pixel values itself. By design, the
number of computations is easily optimized for a certain scale
and resolution.

2) Absolute Value: Taking the absolute value requires a
single test per pixel response and is therefore optimal.

3) Sum Responses Over Region: We sum responses by using
a linear interpolation over subregions by using two matrix multi-
plications. As we use sparse matrices, the summed responses of
a region are calculated using additions and the same
order of multiplications, where is the size of a region. This
is close to the optimal of additions and multiplications,
where our use of existing matrix multiplication libraries gives
us an edge over a trivial optimal implementation.

Summing the responses over subregions can be done without
any interpolation, in which case only additions are needed over
a smaller area, resulting in a small overall speed gain. However,
experimenting shows a slight drop in retrieval performance if
interpolation is omitted.

B. Word Assignment

We interpret the result of the descriptor extraction phase as
follows. Each descriptor which is extracted from an image can
be represented as a point in descriptor space. A whole image
is represented as a cloud of points in descriptor space, where
the clouds of different images can be made up from a varying
number of points. In most Bag-of-Words pipelines, the cloud is
converted to a -dimensional vector by dividing the descriptor
space into subvolumes and making a histogram of the number
of points per subvolume. Typically, these subvolumes are de-
fined by a visual vocabulary created using k-means clustering.
These histograms are then compared using a distance measure,
which in effect measures the overlap of the cloud. From this

perspective, one can understand the work on creating visual vo-
cabularies (e.g., [7], [15], [28]) as carving the descriptor space
into sensible subregions. The work on distance measures or ker-
nels (e.g., [18], [27]) can be understood as finding the relative
importance of low- and high-density regions.

Alternatively, one could measure the distances between
image clouds of descriptors points directly. These distances
are then used in a distance-based classifier such as an SVM. A
known, efficient technique of comparing two clouds directly is
the Earth Mover Distance which has an empirical complexity
of around [45]. This technique is successfully
applied to Bag-of-Words by [18], but to make this computa-
tionally feasible, they first compress each descriptor cloud to
50 points using k-means clustering. However, [18] reports that
calculating distances using nearest neighbor assignment and
the kernel is faster and gives comparable accuracy.

In this paper, we use the Random Forest as a fast algorithm to
project a cloud in descriptor space onto a -dimensional vector.
The Random Forest is a binary decision tree using
operations for word assignment, where is the number of de-
scriptors. In contrast, word assignment using a visual vocabu-
lary with nearest neighbor assignment has a considerable larger
complexity of , where is the dimensionality of the
descriptor.

An alternative fast word assignment algorithm is a hash func-
tion [46] which is of complexity . But as in our experi-
ments , the Random Forest uses less operations and is
therefore faster.

C. Classification

The fastest classifier we use is the linear approximation of the
Histogram Intersection kernel which has a computational com-
plexity of order . The -kernel results in a classification
complexity of order , where is the number of support
vectors.

A fast alternative would be tree-based classifiers which have
a complexity linear with respect to the depth of the tree and the
number of trees used. Such a classifier would be faster only if
the total number of decisions is less than . It is an interesting
research question whether tree-based classifiers are able to per-
form as well as the Histogram Intersection-based SVM, where
we observe that a tree-based classifier works well only if there
are a few highly informative visual words. In contrast, the SVM
works also well if there are large numbers of visual words with
low information.

VIII. CONCLUSION

This paper presented an evaluation of fast Bag-of-Words
components to accelerate visual concept classification. We
presented results on the Pascal dataset and validated them on
the MediaMill Challenge and 15 Natural Scenes databases.
Results are similar for all datasets and therefore dataset inde-
pendent. The presented evaluation leads us to recommend two
Bag-of-Words pipelines, one which emphasizes accuracy and
one which emphasizes computational efficiency.

For high accuracy at a minimal computational effort, we
recommend the Bag-of-Words pipeline shown in Fig. 15, which
consists of DIFT 4 4 descriptors, Random Forest assignment
in combination with PCA, a two-level Spatial Pyramid using
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Fig. 15. Recommended Bag-of-Words pipeline when the focus is on accuracy. The accuracy is 0.501 MAP. The classification time is 297 ms, 600% faster, and
0.025 MAP more accurate than a traditional Bag-of-Words pipeline (see Fig. 2).

Fig. 16. Recommended Bag-of-Words pipeline when the focus is on speed. Total classification time is 30 ms per image, or 33 frames per second. The accuracy
is 0.464 MAP. This is 0.01 MAP less accurate yet 6800% faster than a traditional Bag-of-Words pipeline (see Fig. 2).

TABLE II
COMPARISON OF THE ACCURATE AND FAST PIPELINE FOR THE PASCAL VOC DATASET, THE NATURAL SCENE DATABASE, AND THE MEDIAMILL CHALLENGE IN

TERMS OF MILLISECONDS AND MAP. NOTICE THAT FOR THE FAST PIPELINE, THE CLASSIFICATION TIME CAN BE DIVIDED BY THE NUMBER OF CLASSES. FOR

THE ACCURATE PIPELINE, THE CLASSIFICATION TIME MOSTLY REFLECTS THE CALCULATION OF THE KERNEL MATRIX

only horizontal subregions, and the -based SVM. On the
Pascal dataset, this pipeline computes classification scores in
297 ms per image with a MAP of 0.501, which is 5% more
accurate and seven times faster than the traditional scheme in
Fig. 2.

If speed is essential, we recommend the Bag-of-Words
pipeline shown in Fig. 16, which consists of DURF 4 4
descriptors, Random Forest assignment in combination with
PCA, a two-level Spatial Pyramid using only horizontal subre-
gions, balancing visual word counts using the square root, and
the fast approximate Histogram Intersection-based SVM. On
the Pascal dataset, this pipeline computes classification scores
in 30 ms per image with a MAP of 0.464, which is 3% less
accurate than the traditional scheme but 69 times faster. The
discussion of Section VII shows that this pipeline is close to
optimal in terms of computational efficiency.

Results for the MediaMill Challenge and Natural Scenes
database for these two pipelines are presented in Table II. De-
scriptor extraction and word assignment is faster due to smaller
image sizes. For the accurate pipeline, the classification times
are largely dependent on the size of the training set which in
the MediaMill challenge becomes a serious bottleneck. After
calculating the kernel matrix, the classification function itself
takes less than 1 ms for the 15 Natural Scenes database. For
the MediaMill Challenge, this classification function takes 117

ms, which takes so long because of the increased number of
support vectors, larger memory access, and five times as many
classes. In contrast, for the fast pipeline, classification times are
approximately the same if taken per image per class and scale
linearly in the number of classes. The difference in classifica-
tion accuracy between these two pipelines is comparable for all
datasets.

The increased computational efficiency of the Bag-of-Words
pipeline in Fig. 16 opens up new applications for automatic vi-
sual concept classification: One application is in the domain
of television. The system operates in real-time at a rate of 33
frames per second on a single desktop PC. This enables the tag-
ging of all television of a single channel as it is broadcasted.
Another application is in the domain of large image databases.
Using five computers, this pipeline is able to tag 10 000 images
per minute for 20 classes, where each additional computer al-
lows the tagging of 20 extra classes. This throughput is sufficient
to automatically tag all pictures that are uploaded to Flickr.
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