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Stages as models of scene geometry
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Abstract—Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot
navigation, visual inspection and 3D television. We propose accounting for the inherent structure of the visual world when trying to
solve the scene reconstruction problem. Consequently, we identify scene categorization as the first step towards robust and efficient
depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile,
which roughly correspond to a large majority of all images. Stage information serves as the first approximation of global depth, narrowing
down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation,
and perform stage classification on two diverse datasets of television broadcasts. Classification results demonstrate that stages can be
efficiently learned from low-dimensional image representations.
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1 INTRODUCTION

V ISUAL perception is the process of inferring world struc-
ture from image structure. Although the projection of the

physical 3D scene onto the image plane carries ambiguities
as to which physical configuration gave rise to the depiction,
human observers can effortlessly derive an impression of scene
depth from a single image. This is because the world around
us behaves regularly, and because structural regularities are
directly reflected in the 2D image of some world scene [1].
The aim of this paper is to identify these regularities in 2D
images and exploit them for the purpose of scene geometry
reconstruction of generic image content.

Consider examples in Figure 1. In the regular world that
we live in, certain scene configurations tend to appear sig-
nificantly more often than others. There are rough classes
of scene geometries, which we call stages, that include a
straight background (like a curtain, a wall, the façade of a
building, a remote mountain range), or other ones which show
walls at three sides of the picture (a corridor, a tunnel, a
narrow street). If television broadcasts are considered, there
is also a specific stage for anchor-type images, corresponding
to news-reader sequences, interviews, talk-shows and press-
conferences. Figure 1 shows a few prototypes together with
their stage models.

We have arrived at the notion of a stage from the observation
that objects of the world act in relatively stable, recurring geo-
metrical environments. The objects come with almost infinite
variation in appearance, as well as geometry. Scenes, on the
other hand, show a much more regular pattern. One is quickly
led to conclude that a vast majority of images depicts the scene
with only a few different geometry types. This is not surprising
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• André Redert is with Philips Research Laboratories Eindhoven, High Tech
Campus 36, 5656 AE Eindhoven, The Netherlands.
E-mail: andre.redert@philips.com

(a) (b) (c)

(d) (e) (f)

Fig. 1: Example frames and the corresponding stage models, con-
taining at most five planes. Each image carries lots of information
about global scene depth. Note in (a) that colors and contrasts fade
towards the horizon. Image in (b) offers plenty of tilted perspective
lines from which depth directionality can be determined. Example
in (c) demonstrates that, although the objects might move around
considerably, scene geometry is not likely to change substantially.
In (d), lots of motion is not expected for the large foreground
object either, making it an integral part of the scene. In the image
shown in (e), the texture grain continuously decreases in size towards
the horizon, for both water and sky surfaces. For complex scene
configurations, such as shown in (f), a combination of texture and
perspective information is needed to estimate depth.
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if one considers only a subset of given constraints. Namely,
straight image lines always converge at vanishing points and
the horizon; walls are almost always perpendicular to the
ground surface; the camera is almost always at approximately
two meters height, etc. The important conclusion is that
whereas a precise geometry may be requested for the object,
for many applications it suffices to build a rough model for
the geometry of the scene. In this paper, we aim to discover
whether stages as models of scene geometry can be derived
from a single image.

There are many advantages of knowing just the stage type.
Apart from identification of the scene configuration, the stage
may reveal to the observer information about the semantic
context of the scene, the identities of scene elements, as well
as relative depth order. Recognition of the stage thus serves as
the entry point of a detailed depth analysis, object localization
and object recognition.

We do not aim for a precise reconstruction of scene geom-
etry. Accurate techniques have been designed for the recon-
struction of object geometry via shape from shading [2], shape
from motion (e.g. [3]) or shape from stereo (e.g. [4]), when
these options are available. The scene geometry, in contrast,
is the stage on which objects of the picture act, hence limited
accuracy frequently suffices. Here we consider stages as rough
models of the scene, with the objects ignored. Motivated by the
recent success of scene appearance classification into classes
like indoor, outdoor, desert, beach, and so on, we consider
classifying the stage type on the basis of regularities indicated
above. Given systematic changes in image perspective, texture
and colors over depth, we focus on a small set of features
carrying the depth information in general scenes.

1.1 Contribution of the paper
We draw inspiration from the work of Hoiem et al. [5],
[6], attempting to derive piecewise planar 3D geometry of
the scene and corresponding depth information. They assume
the presence of certain surfaces in the image, such as sky
and ground, which limits the applicability of their approach.
Instead, we attempt to develop a more general method for
scene reconstruction and follow a different computational path.
Whereas they learn the geometry of individual surfaces, we
take a holistic approach by modeling scene classes, relying on
constraints imposed by image structure, texture and colors.

Our work on depth estimation is also inspired by Torralba
and Oliva [7], who have utilized models of natural image
statistics to derive depth. But where they propose to use mean
absolute depth to facilitate scene categorization, we attempt to
do the opposite, and derive global depth profiles based on stage
types. Beside exploiting image statistics, we impose additional
constraints, which greatly reduce the number of categories that
we need to model.

In this paper we limit ourselves to the determination of the
stage type, extending the work from [8]. In the next phase,
more precise depth estimation can be performed, or stage
information can be used for object localization. We present
a variety of experiments for the domain of 2006 TRECVID
news videos [9], and extend this evaluation with a test on an
independent dataset of our own 2007 television recordings.

2 RELATED WORK

2.1 Depth estimation from a single image

Recent methods for estimating scene geometry [10], [7], [11],
[12] aim at inferring the geometry of objects as well. This
approach suffers from a chicken-and-egg problem: once the
coarse geometry of the scene is known, one is able to deduce
object sizes and use the information for object recognition, in
a similar vein as Hoiem et al. [13]. However, learning scene
geometry may profit from recognizing familiar objects with
known 3D shapes, as has been shown for office objects by
Sudderth et al. [12].

Attempts to estimate absolute scene depth from single
images use machine learning methods to directly map low-
level features to image distances. Torralba and Oliva use local
and global image structure to derive average scene depth [7];
Saxena et al. learn absolute depth from features at multiple
scales [11], [14]; and Delage et al. [15] reconstruct indoor
scenes by learning the wall-ground boundaries.

However, for many applications, derivation of exact dis-
tances to elements in the scene may not be necessary, as long
as relative order of those elements is established [16]. There
exists a vast body of literature on recovering relative depth
information. However, classical methods in this field provide
only local depth estimation and require high-quality images,
as is the case for texture gradients [17], shape from shading
(e.g. [18]), from edges and junctions [19], and from fractal
dimension [20] (see Palmer [21] for an overview). Recently,
Hoiem et al. [6] proposed a method for determining relative
depth order of prominent scene surfaces. However, they build
on previous work on scene reconstruction [5], which assumes
the presence of sky, ground and vertical surfaces, and is thus
constrained to only some of the typical scene configurations.

2.2 Scene categorization

Several researchers have constructed algorithms to classify
images into two semantic categories: indoor versus outdoor
[22], city/suburb versus landscape [23], etc. They usually rely
on particular discriminating features, for example that cities
have more vertical edge energy than flat landscapes. The key
ingredient here is the capturing of natural image statistics, as
realized in the influential work of Oliva and Torralba [24],
which represent the spatial structure of a scene using a set
of perceptual dimensions. A different approach, with a pre-
defined codebook vocabulary of visual words, was used in
[25], [26], [27] and [28] to label parts of an image by the best
representative. This was subsequently extended in [29] with a
spatial pyramid for multi-scale features.

Scene classification approaches mentioned above have two
drawbacks. The first is that they model semantic scene cate-
gories. The potential number of such categories can be very
large, and deriving high-level semantics from images remains
difficult and unreliable. The second drawback is that all these
approaches work in the 2D image plane, without attempting
to recover the 3D scene structure. To that regard, geometric
image context has recently been proposed instead of semantic
class modeling in [5]. They define classes of image surfaces
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Fig. 2: The structure of visual world leads to only 15 typical scene geometries - stages. We represent their depth profiles by simple,
piecewise-planar models that serve as the first approximation to background scene depth.
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Fig. 3: Stage transition graph in terms of elementary camera move-
ments, demonstrating the stage continuum concept. symbols next
to the connections denote clockwise (or, for connections inside the
circle, left-to-right) transitions. Real images included next to the stage
models represent typical examples.

and learn their orientations; the subsequent combination of
the surfaces leads to the reconstructed 3D scene model. In
contrast, we believe that learning the geometry from scene, as
opposed to surface classes, is a much simpler problem than
image segmentation and subsequent reconstruction.

Implicitly, current methods for depth estimation from single
images assume scene content to be already classified, as
they work for the specific domain of indoors [12], [15] or
outdoors [10], [11], or have been specifically trained for one
of these categories [5]. We make this dependence explicit: we
believe that the first step in providing depth information for
a particular scene should be to classify this scene into one of
the geometric types - stages.

3 DEPTH FROM STAGE TYPES

3.1 The structure of visual data

We rely on the structure of visual images in order to arrive at
a limited number of geometric scene types. The structure of
scenes is a consequence of three crucial phenomena. From
literature on natural image statistics it is well known that
2D images exhibit statistical regularities [30]. However, these
findings have so far been primarily put in the perspective of ef-
ficient image coding [31], and only recently similar ideas have
been considered in the context of depth estimation. Torralba
and Oliva have consequently shown that an estimate of average
scene depth can be derived from natural image statistics-based
features [7]. Furthermore, Yang and Purves have offered a
statistical explanation for depth perception, which accounts for
the properties of scene geometry relative to the observer [16].
In addition to image statistics, however, there are other factors
which give rise to image regularities. In [1], the authors note
certain scene configurations that occur much more frequently
than others. They call such configurations “modal”, pointing
that they are characterized by orthogonality between lines
and planes. Due to gravity, as well as features of man-made
structures, such scene configurations are the most prominent
in natural images. They are additionally emphasized by the
composition and filming rules, whose conventions ensure the
proper order of image surfaces (e.g. that sky is on top and
ground is at the bottom). Finally, viewpoint constraints limit
to a large degree the possibilities with respect to perspective.
Relatively small range of vertical camera tilt, together with
height typically at 1.5 − 2m, determine the location of the
horizon and the vanishing point(s), as well as the scales and
positions of most viewed objects.

3.2 The stages

In order to identify prominent scene configurations, we have
noted the frequency of specific surface combinations in several
thousand TRECVID keyframes [9]. Since the emphasis has
been solely on geometry, there emerged a significant over-
lap between indoor and outdoor configurations, avoiding the
distinction between these two high-level categories [8]. In
addition to the inherent structure of visual data, this limited the
number of possible surface combinations to only 15 geometric
categories, shown in Figure 2. The category set includes a
‘no depth’ class, corresponding mostly to graphics frames
(i.e. maps, charts, etc. ). We have retained configurations that
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Fig. 4: Example sequences with frames undergoing stage transitions as formulated by Figure 3.

corresponded to at least 5% of the examined video frames;
this accounted for a large majority of all the data.

An important remaining question is whether a small number
of identified stages is sufficient to represent actual configu-
rations appearing in images. To that regard, stages can be
considered as samples in a continuous space defined by camera
parameters. In such a space, stage transitions are also defined,
in terms of basic camera operations such as pan, zoom, and
tilt. If our models are indeed representative samples of the
continuum, then the outcome of any camera movement from
a given stage would not result in any scene configuration, but
again in a known stage model. More formally, for input stage
si, we have

f(si, ω) = sj , ω ∈ {tilt, pan, zoom} (1)

where it is possible to have i = j. For small values of the
parameters, the given stage remains of the same type, but when
a certain value is exceeded, it transitions into another category.
Conversely, every stage should be reachable from some other
stage by means of a single camera operation (that induces a
sufficient change in the parameters). Figure 3 illustrates that
these conditions are indeed fulfilled - it presents a transition
graph with possible outcomes for many stage-parameter pairs.
Although six transitions are in principle defined for every
given stage, for reasons of clarity only certain important links
are shown.

3.3 Visual Features

To derive depth information from images, we use four sets
of descriptive visual features. For the reference set, we use
the subset of the geometric context feature set, proposed in
the state-of-the-art system of Hoiem et al. [10]. The second
set includes texture gradient features - natural image statistics-
based Weibull parameters. Representative atmospheric scatter-
ing features comprise the third set, accounting for changes in
scene colors due to increased depth. Finally, the fourth set of
features encodes information related to tilted perspective lines,
via anisotropic Gaussian filtering.

Scene classification in general profits from local informa-
tion. To that end, we define a 4 × 4 grid of image regions,
each spanning w

4 × h
4 pixels, where w and h denote image

width and height, respectively. For each image, we extract and
concatenate the 16 local region measurements into a single
feature vector used for classification.

Feature Descriptions # ft. used

Color 16

Yes
C1. RGB values: mean 3
C2. HSV values: C1 in HSV space 3
C3. Hue: histogram (5 bins) and entropy 6
C4. Saturation: histogram (3 bins) and entropy 4
Texture 15

Yes
T1. DOOG filters: mean abs. response of 12 filters 12
T2. DOOG stats: mean of variables in T1 1
T3. DOOG stats: argmax of variables in T1 1
T4. DOOG stats: (max-median) of variables in T1 1
Location and Shape 12 No
3D Geometry 31
G1. Long Lines: total number in region 1 Yes
G2. Long Lines: % of nearly parallel pairs of lines 1 Yes
G3. Line Intscn: hist. over 8 orientations, entropy 9 Yes
G4. Line Intscn: % right of center 1 Yes
G5. Line Intscn: % above center 1 Yes
G6. Line Intscn: % far from center at 8 orient. 8 Yes
G7. Line Intscn: % very far from center at 8 orient. 8 Yes
G8. Texture gradient: x and y “edginess” center 2 No

TABLE 1: Geometric context feature set [10]. The second column
shows feature dimensionality per image region, whereas the last one
indicates whether or not some feature is used in our experiments.

3.3.1 Geometric context features
As a reference feature set, we have implemented the geometric
context features used in [10]. These are summarized in Table
1. Contrary to Hoiem et al., who compute the parameters from
segmented super-pixels, we derive them at the level of regions.
Therefore, ‘Location and Shape’ parameters are not used, since
all would result in fixed values. However, these parameters are
implicit in our feature extraction and classification setup, and
are thus superfluous.

Without the ‘Location and Shape’ subset, there are 60
features per image region, resulting in a 960-dimensional
vector for the whole image.

3.3.2 Texture gradient features
There exists a direct relation between image statistics, scene
structure and depth pattern [7]. When scene depth is small,
larger surfaces will be coarse, showing smaller details. In
that case, with a single dominant structure observed, gradient
histogram typically follows a decaying power-law distribution.
When scene depth increases and more objects are added
to the scene, the texture of the image will be fragmented
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Fig. 5: Natural image statistics-based texture gradient features.
Weibull parameter values (y-gradient) as a function of depth for
textures of grass (left column) and wall bricks (right column).

into various patches, each associated with a different power-
law. The integration over various power-laws results in a
Weibull distribution [32], whose parameters are indicative of
local depth order and the direction of depth. Spatial image
statistics will conform to Weibull distribution until the scene
depth increases to the point that the observed samples become
completely uncorrelated, resulting in a Gaussian histogram.

Thus we follow [32] by exploiting the fact that histograms
of gradient magnitude can be well modeled by an integrated
Weibull distribution,

f(r) =
γ

2γ
1
γ β Γ

(
1
γ

) e−
1
γ | (r−µ)

β |γ (2)

The parameters µ, β and γ represent the center, width and
peakness of the distribution, respectively, whereas r is an edge
response of a derivative filter (Γ denotes the Gamma function).

Using Gaussian derivative filters, we extract texture in-
formation that is subsequently summarized in histograms.
We use a maximum likelihood estimator (MLE) to derive
parameters µ, β and γ of the integral Weibull distribution. The
µ parameter represents the mode of the distribution, whose
position is influenced by uneven illumination; therefore, we
ignore µ to achieve illumination invariance.

Integral Weibull distribution is fitted to histograms of in-
tensity filter responses in x and y directions (σ set to 3
pixels), resulting in β and γ parameters for each direction.
Figure 5 demonstrates the change in Weibull parameters over
depth, for two example surfaces. Histograms of y-gradient

were computed from small squared regions, and individual
Weibull parameters averaged along the direction perpendicular
to change in depth. For both surfaces, γ increases with depth,
whereas β decreases from the point of fixation.

Thus we capture natural image statistics by parameterizing
gradient histograms. By using Weibull parameters, an accurate
and very compact representation of the histograms is obtained.
With only 4 features per region, there are 64 elements in the
feature vector for the whole image. We build on previous
successes of these features in scene categorization [28] and
generic concept detection [33] to classify scenes into stages.

Feature type # feat.

Texture gradients 4
- Integral Weibull in {x, y}-direction: β 2

- Integral Weibull in {x, y}-direction: γ 2

TABLE 2: Summary of our texture gradient features.

3.3.3 Atmospheric scattering features
The key properties of light, such as its intensity and color,
are affected as the light travels through the atmosphere [34].
As a consequence of this atmospheric scattering, there exists
a simple, non-linear relationship between intensity of light in
an image and the physical distances between objects and a
camera. More specifically, systematic changes occur in the
contrast and color of objects when they are viewed from
a distance [21]. When an open landscape is observed, for
example, scene elements appear progressively “fuzzier”, and
their colors lighter and more “washed out”, as the focus of
attention shifts from the foreground toward the horizon.

Therefore, properties of the light source and colors of scene
elements can be used as depth cues. This has already been
shown in [35], where absolute depth for a small set of outdoor
images is derived using a model of light scattering; and in [34],
where depth segmentation is obtained from multiple images
of the same scene, taken under different weather conditions.
Since Weibull parameter β already encodes image contrast to
some extent, we use other properties of light to represent the
degree of atmospheric scattering. To that end, color saturation
is utilized as an indicator of color purity, whereas an estimation
of illumination color encodes the properties of the light source.

Color saturation reflects the amount of energy at color’s
dominant wavelength, relative to the amount of white light. In
RGB color space, it corresponds to the distance outward from
the intensity axis to the position of the color at each point. In
our implementation, saturation is defined as

S =
max (R,G,B)−min (R,G,B)

max (R,G,B)
(3)

For estimation of the illumination color, we use a well-
known Grey-World algorithm, which assumes that the average
reflectance in the image is achromatic. From each region, we
extract distribution parameters mean (µ) and variance (σ2)
of the saturation component, as well as three coefficients
corresponding to illumination color.
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Fig. 6: Atmospheric scattering features as a function of depth, computed from mean class images. Color saturation mean (Satµ) and
standard deviation (Satσ) parameters, and color correction coefficients for red (WR), green (WG) and blue (WB) channels were extracted
from 100× 100 square regions of ensemble images, then averaged along the x-direction.

The effect of depth changes on these parameters is shown
in Figure 6. For the two stage categories whose depth profiles
show a continuous increase in depth from bottom to top
of the image (namely sky+ground and ground+background
types, containing 81 and 332 members, respectively), we have
computed the mean image of all the samples. After some pre-
processing of each image (described in detail in Section 3.4),
the ensemble was obtained as the point-by-point average over
all category members.

As shown in the figure, saturation clearly decreases with
depth, with the variation in values depending on pre-
processing. Color correction coefficients show interesting be-
havior. The coefficient for the blue channel increases with
depth in both cases. This is expectable in images containing
sky (such as those in the example in the top row), however
it is the case also for those which have a straight vertical
background of any type (i.e. the example in the bottom row).
The red channel coefficient shows the opposite behavior,
whereas the one for the green channel remains relatively
stable. In fact, the three coefficients are dependable on each
other whenever the illumination intensity (I = R + G + B) is
evenly distributed over the whole scene. The assumption about
constant illumination can safely be made for images without
much shadows and shading.

The total number of features in the atmospheric scattering
set is 80. This feature set contains a simple and compact rep-
resentation of color properties which are altered with changes
in depth.

Feature type # feat.

Atmospheric scattering 5
- Color saturation: µ and σ2 2

- Illumination color: {R, G, B} coefficients 3

TABLE 3: Summary of our atmospheric scattering features.

3.3.4 Perspective line features
Some of the most useful information for depth estimation
are structures which reveal distortions due to perspective
projection. Straight lines, parallel in the observed scene but
tilted in the image, and ultimately converging at vanishing
points and the horizon, all contribute to determination of depth
directionality.

The detection of directional structures is often unreliable
when disturbing influences (such as noise, shadows and shad-
ing, blending object borders, etc.) have to be ignored. In
these cases, it is desirable to have a detection method which
ignores the distorting data aside the line, while accumulating
evidence of the line data along its orientation. This implies
a sampling of orientations by anisotropic filtering, suited for
robust measurement of the differential image structure.

Geusebroek et al. show the decomposition of the anisotropic
Gaussian filter in [36]. A filter at arbitrary orientation is
decomposed into a sequence of two Gaussian one-dimensional
filters in non-orthogonal directions:

gθ(x, y;σu, σv, θ) =

1√
2πσx

exp
{
−1

2
x2

σ2
x

}
∗ 1√

2πσϕ

exp
{
−1

2
t2

σ2
ϕ

}
(4)

Thus the sequence of two 1D Gaussian convolutions yields
the anisotropic smoothed image. Since texture gradient pa-
rameters of Section 3.3.2 are extracted for x and y direc-
tions, we use the anisotropic filter at 4 tilted angles, namely
for θ = {30◦, 60◦, 120◦, 150◦}. Using MLE estimator, we
parameterize the resulting gradient distributions by fitting a
Weibull shape to each (see Section 3.3.2). This way, a compact
descriptor of 4× 2× 16 = 128 features is obtained.

Figure 7 shows how our perspective line features change
with an increase in surface depth. As with the above texture
gradient features, γ increases with depth, whereas β decreases
from the fixation point.
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Fig. 7: Perspective line features, derived via anisotropic Gaussian filtering at 30◦, 60◦, 120◦ and 150◦. Weibull distribution parameters as
a function of depth for pavement (top two rows) and leaves surfaces (bottom two rows). The parameters were extracted from 100 × 100

image regions, then averaged along x direction.

Feature type # feat.

Perspective lines 8
- β at orientation {30◦, 60◦, 120◦, 150◦} 4

- γ at orientation {30◦, 60◦, 120◦, 150◦} 4

TABLE 4: Summary of our perspective line features.

3.4 Pre-processing steps

For our experiments, we use datasets which contain diverse
television recordings from various international channels. In
these datasets, image data can be distorted in many ways;
beside compression artifacts that are common in other datasets,
our frames may contain black bars around the image, as well
as superimposed channel logos and subtitles. All this implies
the necessity of pre-processing, so that only relevant pictorial
data is extracted and used in further analysis.

Before feature extraction can be performed, uninformative
parts of the image are removed in several steps, in a completely
automatic manner. Dark borders (i.e. within 8% of black) are
first removed around the whole image. Then upper image
corners are checked for the presence of channel logos, whereas
the bottom of the image is subjected to subtitle detection. In

both cases, the detection is performed in gradient domain,
where sharp edges for superimposed graphics are more easily
revealed. Namely, if the gradient histogram of the relevant
region is shifted towards very strong edges, the graphics are
likely to be present, and their contribution to the image is
removed. After the process, the original pictorial information
remains of the same size as before (as our approach depends
on the configuration of structures within the frame).

4 EXPERIMENTS
4.1 The data
For the evaluation of our stage classification algorithms, we
have used the keyframes of the 2006 TRECVID video bench-
mark dataset [9]. This benchmark provides nearly 170 hours
of news channel videos in various languages (English: CNN,
NBC, MSNBC; Chinese: CCTV4, NTDTV; Arabic: LBC).
For purposes of classification, we have annotated a subset of
1315 TRECVID keyframes into one of the 15 stage categories.
Beside these, there were 23 examples of other, less prominent
surface configurations, and 76 examples of cases difficult to
annotate. The difficult cases are usually images taken under
low visibility conditions, or depictions of crowds, explosions
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with smoke and fire, intricate shapes, and objects in extreme
close-up views. Figure 8 shows some examples.

(a) (b)

(c) (d)

Fig. 8: Examples of difficult cases for stage annotation. (a) Crowds.
(b) Smoke and fire. (c) Intricate shapes. (d) Extreme close up view.

4.2 Classification strategy
For purposes of stage classification, we design a generic, 1
vs. 1-based classifier that uses features from all the regions
and outputs a single stage label. Multi-class classifiers based
on a 1 vs. 1 approach involve K(K − 1)/2 different binary
classifiers on all possible pairs of classes; test points are then
classified according to which class has the highest number of
‘votes’ [37].

From a large variety of supervised machine learning ap-
proaches, we have chosen the Support Vector Machine (SVM),
which has proven to be a solid choice. We utilized the
LIBSVM [38] implementation, with radial basis functions as
kernels.

4.3 Description of experiments

4.3.1 Experiment I - Geometric context features
In the first experiment, we have used the 960-dimensional ge-
ometric context feature set. Although support vector machines
are known to be robust with large vector spaces, they could
not handle this highly-dimensional set very well, labeling all
images by the same category. The SVM results are therefore
not shown here. Instead, the numbers reported below have
been obtained with an AdaBoost [39] algorithm, another linear
classifier that proved reliable in practice.

4.3.2 Experiment II - Texture gradient features
For the second experiment, texture gradient features described
in Section 3.3.2 are being used. A 64-dimensional feature
vector containing Weibull parameters has been directly input
into an SVM. Note that this experiment is related to the one
reported in [8], except that in this case the frames are subjected
to the chain of pre-processing steps described in Section 3.4.

4.3.3 Experiment III - Atmospheric scattering features
Here, we have used the atmospheric scattering features of Sec-
tion 3.3.3. Information about color saturation and illumination
color was used as an 80-dimensional feature vector in SVM.

4.3.4 Experiment IV - Anisotropic Gaussian features
For the fourth experiment, we use the perspective line features
described in Section 3.3.4. The gradient distribution parame-
ters corresponding to oriented structures at 4 angles are fused
into a 128-dimensional feature vector.

4.3.5 Experiments V and VI - combined feature sets
In experiments V and VI, we test certain combinations of
individual feature sets, which are concatenated together for
that purpose. That way, the ‘Texture+atm.scatter’ combina-
tion results in a feature vector of 144 dimensions, whereas
‘Atm.scatter+perspective’ produces a 208-element vector. As
texture gradient and perspective features are encoding similar
information, their combination did not produce any improve-
ment in the results, and is therefore omitted. Similarly, texture
gradient information did not add value to the feature set
containing all the proposed individual features together. The
same was the case when ‘Geometric context’ features were
included in any of the combinations.

4.4 Results
In this section, we present stage classification results, where
we have combined the performance figures of symmetrical
variants (i.e. 1 side-wall, tilted background and ground+tilted
background types), such that numbers are given for 12 classes
only. Grouped symmetrical variants are represented with a
single stage model, in which violet color indicates the tilted
vertical plane both with left-to-right, as well as right-to-left
increase in depth.

Instead of the usual percentage of all correctly classified
samples, performance is given by per-class recognition rates.
This manner of reporting results is much more suitable for
problems involving uneven prior class distributions. In each
experiment, five runs are performed, each time with a different
random drawing of samples - one half for training, and the
other for testing purposes. The results reported represent the
mean average recognition rates over the five runs.

The results of all the experiments are summarized in Figure
9, which provides the comparison of different feature sets.
In addition to classification performance of different features,
the prior probability of each class is shown, which can be
considered as the performance baseline. The confusion matrix
for the best performing feature set is also shown in Figure 10.

From Figure 9, we see several trends for classification into
12 individual stages. For some classes, the performance is
above 25% in most experiments, and above 35% with the best-
performing feature set; this is the case for 8 out of 12 stages.
On the other hand, the recognition of 4 remaining types,
namely corridor, tilted background, ground+background and 1
side-wall, is relatively poor. This is due to the larger variability
of scene configuration, the diversity of objects and amount
of occlusions present in these categories. Most of the feature
sets result in recognition rates that are significantly higher
than prior probabilities for each class. The gap between the
baseline and the best result is biggest for stages sky+ground
(60.3% difference), person+background (51.4%) and no depth
(46.8%). Finally, for the eight classes on which good perfor-
mance is achieved, the ‘Atm.scatter+perspective’ feature set
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Fig. 9: Comparison plot of different feature sets in stage classification. Note that results with ‘Geometric context’ features have been obtained
with AdaBoost classifier, whereas the rest is achieved with support vector machines.

performs best, reaching almost 70% recognition for stages
sky+ground and person+background. In case of the poorly-
recognized classes, texture gradients are more important than
perspective lines, as these images are marked by vertical
walls where other information may not add much value. The
exception is the corridor stage, where perspective lines are
distinctively better; this is expected, considering that the stage
model contains tilted lines at four different image corners.

Additional insight into performance is acquired from the
confusion matrix given in Figure 10, describing results
with the best-performing ‘Atm.scatter+perspective’ feature
set. Stages are mostly confused with geometrically similar
types, or with those to which they have a direct link in the
transition graph of Figure 3. In addition, the poorly recog-
nized ground+background stage is mostly being mistaken for
ground+tilted background and corner types; tilted background
is confused with person+background; whereas corridor and
1 side-wall stages are often exchanged with all those three
types receiving many confusions. However, stages receiving
lots of confusions are also the most likely ones in the dataset
- ground+tilted background is represented with 10.3% of
samples, corner with 10.7% and person+background 13.2%.

Classification results are demonstrated more clearly by an
example of actual class assignment for the corner stage,
with ‘Atm.scatter+perspective’ features. Figures 11a-11c show
image samples and their classifications. Respectively, they
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Fig. 10: Confusion matrix for the best performing
‘Atm.scatter+perspective’ feature set.

represent the correctly classified samples, misclassifications
into stages that are ‘one camera operation away’ from the
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(a) Correct classifications.

(b) Misclassified samples, assigned to stage types which are ‘one camera operation away’ according to the diagram of Figure 3.

(c) Misclassified samples, assigned to stage types unrelated to the ground truth model.

Fig. 11: Stage classification of corner images, with actual class assignment indicated above the image.

ground truth model, and misclassifications into unrelated
classes. From the figures, the diversity of the dataset and the
difficulty of the problem become apparent. Nevertheless, the
classifier is able to recognize corner images in many cases
when the clutter does not obstruct the view of stage walls. The
majority of confusions are with classes that are geometrically
related to the ground truth model, most of them being with
the ground+tilted background class. There are, however, some
misclassifications which do not result in similar geometry, but
where occlusion, foreground objects, or image colors bias the
decision.

4.5 Stage hierarchy
Given the continuum of camera parameters (Figure 3), and
our stage models as the samples of that continuum, individual
stages could be organized or grouped in several ways. This
process would ideally result in a hierarchical ordering of
models, which would be entirely based on geometry. In such a
hierarchy, finer classification would impose more geometrical
restrictions on the stage configuration.

Figure 12 shows one possibility of a stage hierarchy. By
moving down in the figure, a more constrained geometry is

obtained. It also presents a possibility of grouping individual
stages into higher-level geometrical categories. That way,
classification is also defined at the level of 6 stage groups
(i.e. super-stages), shown by orange boxes in the figure.

We have evaluated this stage hierarchy by performing clas-
sification at the level of proposed stage groups. This is shown
in Figure 13. Again there are certain classes, here named
straight/no background, person+background and no depth,
which are recognized well. All three can be detected in at least
49% of the cases, with performance on straight/no background
reaching 72%. Only moderate performance is achieved for the
other classes, which are usually the super-stages of poorly-
recognized models in Figure 9. The ‘Atm.scatter+perspective’
feature set again performs best in most of the cases, with
‘Weibull+atm.scatter’ combination outperforming it occasion-
aly. Thus for classes tilted background and no depth, ‘Tex-
ture+atm.scatter’ is the best feature set, whereas for the
corridor class perspective information by itself marginally
improves the results.

A confusion matrix corresponding to the best performance,
achieved with ‘Atm.scatter+perspective’ feature set, is shown
in Figure 14. The confusions are similar to some degree to
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Fig. 13: Comparison plot showing the performance of different feature sets at the level of 6 stage groups.

those of individual stages. Namely, the straight/no background
group is recognized in over 70% of the cases, although samples
of other classes are often confused with it, accounting for
high numbers in the first column of the matrix. Similarly,
images are frequently incorrectly classified as belonging to
tilted background and person+background groups. These stage
groups, though, are the best represented ones in the dataset -
straight/no background contains 29.5% of all samples, tilted
background contains 16.8% and person+background 20.5%.

For completeness, Table 5 summarizes the performance of

various feature sets, at both levels of the hierarchy defined by
Figure 12. It gives average stage classification results for all
the experiments described in this paper.

4.6 Independent dataset

In order to investigate how our approach generalizes to other
image data, we have performed another set of experiments on
the collection of our own 2007 television recordings. These
recordings comprise samples from 14 broadcasting channels
over 13 days, containing 110166 frames in Dutch (from
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Feature set
Average performance

12 stages 6 stage groups

Geom. context
15.3 24.5

(960 f./AdaBoost)

Texture grad. (T)
27.5 35.8

(64 f./SVM)

Atm. scatter (A)
29.1 36.1

(80 f./SVM)

Persp. lines (P)
32.1 40.3

(128 f./SVM)

T+A
34.4 42.9

(144 f./SVM)

A+P
38.0 44.1

(208 f./SVM)

TABLE 5: Average stage classification results with various feature
sets at both stage levels.

channels Nederland 1, 2 and 3) and English (Al Jazeera, CNN,
Discovery and Eurosport). A subset of 3551 such frames has
been annotated and used for stage classification purposes1.

Comparison plots for performance of different features on
TV data are given in Figures 15 and 16. The analysis of
Figure 15 results in similar conclusions as for the TRECVID
dataset. Namely, in almost all of the cases, the same classes
are recognized very well (e.g. the three last stages - ta-
ble+person+background, person+background and no depth -

1. Due to copyright issues, we are unable to show example frames from
this dataset in the paper.
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Fig. 15: Comparison plot showing the performance of different
feature sets on TV data, at the level of 12 individual stages.

are detected with over 50% accuracy with the best performing
feature set), and the same ones poorly (i.e. 1 side-wall and
corridor recognized in less than 10% of the cases). The
exception are the stages sky+ground and ground+background,
which seem to have exchanged places - in this dataset,
the recognition rate of sky+ground drops to ∼25% (com-
pared to 68.7% in TRECVID experiments), whereas the rate
for ground+background is reaching almost 50% (relative to
18.3%). This is due to different distribution of confusions for
the ground+background class. The ‘Atm.scatter+perspective’
feature set remains the best choice overall, except in case of
ground+background, corridor and table+person+background
stages, where ‘Texture+atm.scatter’ performs slightly better. In
addition, except for ‘Geometric context’ features, most of the
feature sets achieve significantly better results than baseline.
Similar to the TRECVID dataset, the difference between
prior probability and the best achieved result is the biggest
for table+person+background (47.6%), person+background
(43.9%), and no depth (40.9%) stages.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no depth

person+bkg.

corner

tilted bkg.

corridor

straight/no bkg.
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Comparison of feature types on TV data, 6 classes
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Fig. 16: Comparison plot showing the performance of different
feature sets on TV data, at the level of 6 stage groups.

From Figure 16, showing classification of the TV record-
ings into 6 proposed stage groups, we again draw similar
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conclusions as for the TRECVID data. Classes straight/no
background, person+background and no depth are recognized
with more than 60% accuracy with the best performing feature
set, whereas moderate performance is achieved for other stage
groups. The ‘Atm.scatter+perspective’ feature set remains the
best choice in most of the cases, being slightly outperformed
by ‘Texture+atm.scatter’ combination in case of the no depth
group (containing only one member).

Overall, classification performance and conclusions derived
with the independent dataset are very similar to those with
TRECVID data, demonstrating the robustness of the proposed
methods and features.

5 DISCUSSION

The geometry of scenes changes very differently from the
geometry of objects acting in them. Whereas the shapes of
foreground objects may vary greatly, the scenes are more or
less stable geometrical environments. This is due to many
regularities present in images, arising both from inherent
structure of the world and from constraints related to camera
viewpoint. Since for many applications only a rough depth
model suffices for the scene, the image structure can be
accounted for by defining a limited number of 3D models
- stages - for typical scene geometries.

Based on these observations, we present a method to infer
weak scene geometry from a single image. We do so via
stage classification. Each stage has a specific 3D profile
and serves as the first approximation of global scene depth.
In addition to providing a background depth model, stage
information narrows down the possibilities with respect to
objects’ locations, scales and identities.

We investigate visual features relevant for depth estimation.
Low-dimensional representations are consequently proposed,
indicative of texture gradients, atmospheric scattering and per-
spective line information. For texture gradients and perspective
lines, Weibull γ parameter shows measurable correlation with
increase in overall depth, whereas β reaches the maximum
value at the location of camera focus. We also conclude that
saturation invariably decreases with depth, as is the case for
color correction coefficient for the blue channel, regardless
of the complex content of the scene. The color correction
coefficient for the red channel is, on the contrary, negatively
correlated with scene distances.

Using the proposed features, we obtain detailed quantitative
stage classification results on the keyframes dataset of the 2006
TRECVID benchmark. Comparison of performance demon-
strates that recognition rates achieved with the ‘Geometric
context’ [10] feature set are always lower than with the pro-
posed features. This is the case despite its high dimensionality,
and despite the improvement achieved by using AdaBoost
classifier instead of SVMs. Results with Weibull texture
gradient features are somewhat poorer than those presented
in [8]; this is due to the pre-processing steps described in
Section 3.4, which inevitably remove some useful pictorial
information from the image (e.g. if subtitles are detected,
the whole bounding box is discarded). The combination of
atmospheric scattering and perspective information, containing

only 13 features in each of the 16 regions, emerges as the
best choice for stage classification in general. However, the
more compact set combining texture and atmosperic scatter,
comprising 9 features per region, often approaches similar
performance, making it a good choice when efficiency is a
concern.

The results indicate that some simple scene configurations
can be detected very robustly. This is true for classes which
typically appear with small content variations (e.g. members
of the person+background stage group), which represent open
scenes (straight/no background group), or which are not likely
to contain object clutter. In these cases, eight well-recognized
stages can be detected with more than 35% accuracy, whereas
70% performance is approached for the sky+ground and per-
son+background types. On some of the other stages, however,
our detector is not performing as well. This is due to the lower
number of learning samples, the amount of variation within
the class, and the significant amount of occlusion and object
clutter - as in 1 side-wall, corridor and tilted background
stages.

More detailed analysis of actual class assignments, as shown
in Figure 11 for images of the corner category, demonstrates
that most misclassifications arise from confusions with geo-
metrically related stages, i.e. those which are ‘one operation
away’ from the ground truth model in the stage transition
graph of Figure 3. In fact, tolerating a deviation of one camera
operation while computing classification performance leads to
average recognition rate of 69% for the 12 stages, with highest
accuracy of 90% in case of the sky+background+ground type,
and lowest (31%) in case of the corridor stage.

Generic concept detection of video data remains a challeng-
ing problem. The performance in the TRECVID benchmark
reaches some 40% recognition rate for concepts such as street,
classroom, boat, and so on, after many rounds of performance
upgrades over the last several years [40]. Here, using a much
smaller feature set than in TRECVID systems, we achieve a
similar average recognition rate of 38% among 12 different
classes. This number is obtained regardless of real data with
large diversity in topic, often polluted by accidental graphics.
In addition, the results are confirmed by the evaluation on
an independent dataset, demonstrating the robustness of the
proposed approach.
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