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Abstract. For post incident investigation a complete reconstruction of
an event is needed based on surveillance footage of the crime scene and
surrounding areas. Reconstruction of the whereabouts of the people in
the incident requires the ability to follow persons within a camera’s
field-of-view (tracking) and between different cameras (tracing). In con-
strained situations a combination of shape and color information is shown
to be best at discriminating between persons. In this paper we focus on
person tracing between uncalibrated cameras with non-overlapping field-
of-view. In these situations standard image matching techniques perform
badly due to large, uncontrolled variations in viewpoint, light source,
background and shading. We show that in these unconstrained real-life
situations, tracing results are very dependent on the appearance of the
subject.
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1 Introduction

The two major applications of camera surveillance are real-time crime preven-
tion and crime investigation after an incident has occurred. For the first type
of application event detection [23, 22] or aggression detection [6, 30] are used to
understand people’s actions. For post incident investigation a complete recon-
struction of the event is needed which additionally requires to follow persons
within a camera’s field-of-view (tracking) and between different cameras (trac-
ing). A system aiding a human user in this process should therefore be able to
perform both tracking and tracing.

Person tracking is a very lively research area, with various workshops and
challenges organized each year such as Performance Evaluation of Tracking and
Surveillance (PETS) and People Detection and Tracking workshop of the 2009
IEEE International Conference on Robotics and Automation. Though this sub-
ject is far from solved, impressive results have been obtained in constrained as
well as real-life situations. Note, however, that surveillance data is often time-
lapsed and in these conditions tracking algorithms cannot be used as is, but need
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reconsideration or adaptation[15]. For an excellent overview of available tracking
methods and their advantages and disadvantages, see [29].

Up to now, studies regarding tracing have only been tested in controlled
conditions. The major issues of real-life surveillance situations however, are the
large, uncontrolled variation in viewpoint, light source and shading. These varia-
tions have great impact on the appearance of a person. Viewpoint changes affect
the shape of the person as well as the colors of clothing as the observed color
changes with the angle between light source and line of view. Changes in light
source have direct impact on the color of any object and while shading does
not change the color itself, it does change other characteristics like intensity or
saturation. In constrained situations these challenges could be reduced by us-
ing pre-calibrated cameras [31, 2] or by calibrating the cameras afterward using
information about the overlapping field-of-view [4]. If the cameras are not cal-
ibrated and either the cameras’ field-of-view do not overlap or it is unknown
what the overlap is, any description usable for tracing should be able to deal
with the lack of calibration. Color changes between cameras can be addressed
by using color constancy methods [27] and various color spaces can be used to be
invariant to shadows. These methods have been designed based on solid theoret-
ical foundations and proven to be optimal in lab conditions. A major question
is whether these methods generalize well enough to deal with the challenges of
surveillance data, or that other criteria play a role there.

The paper is organized as follows. First, a state-of-the-art person detection
system is described, which results are used throughout the paper. Section 3 in-
troduces the tracing methods and invariance properties to answer the questions:
How are image regions best described to be able to distinguish between persons?
And (how) can unwanted variation in image regions be suppressed? The results
of applying these methods to a benchmark and a real-life dataset are discussed
in Section 4.

2 System Description

Any post incident investigation system is composed of at least three major steps.
The first step is detection of persons in each of the cameras. The second step is
to track these persons within a single camera. Afterward, these tracks are used
to find instances of these persons in other cameras.

The standard approach for person detection is to match certain candidate de-
tections to a model which is previously trained on sample images. One method
to select these candidate detections is by simply selecting all regions over all
frames of all possible sizes and locations. This is known as the sliding window
technique. This method has two serious problems though: object classification is
a time-consuming method, so classifying every possible sub-region of all frames
in a dataset is infeasible. Another issue is that relying solely on classification
scores will result in a great dependency on the chosen threshold. Both issues
can be addressed by applying object classification only to certain regions of in-
terest. The standard approach to obtain these regions of interest is background
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extraction; we use [32] for its ability to automatically optimize the number of
components in a Gaussian Mixture Model. All regions of interest are described
using Histograms of Oriented Gradients [5] and classified using a Support Vec-
tor Machine (SVM) classifier [28], previously trained on the INRIA dataset1.
Regions of which the score exceeds some predefined threshold are then classified
as persons. A known issue of only applying classification on non-static regions
is that persons standing still cannot be detected. However, we focus on tracing
persons; the only requirement on detections is therefore that each person was
detected at least once.

To be able to combine the resulting detections into tracks either hysteresis
thresholding can be used [15] or the detections can be used as initializations
for a filtering method such as Kalman filtering [14]. While these methods will
help in reducing the number of false positives and might lead to better represen-
tations, we do not use either method but focus on matching of singular image
regions instead. The reason is that any method to combine the image regions
will make errors, leading to paths containing two different persons or false posi-
tives as well as true positives. This might distract us from the goal of this paper,
understanding how image regions should be matched.

If the camera’s field of view is actively changed, results of various meth-
ods assuming static cameras are poor, e.g. background extraction. Before doing
background extraction, we therefore automatically detect camera movement.
The simple method we applied to detect these moments of camera movement is
to measure the movement of salient points using sift features [19]. If the average
movement is greater than some predefined threshold the camera is assumed to be
moving. For the current paper these regions are excluded from further analysis.
In practice, however, these parts could contain relevant information like zoom-
ing in on specific persons. Figure 1 shows an overview of this person detection
system. A preliminary version of the system was published in [21].

3 Tracing

We now use the image regions obtained from the person detection system de-
scribed earlier to find image regions depicting the same person in other cameras.
This can be studied using three techniques: image matching, image classification
and image pair analysis. For image matching the image regions are described
using predefined features, after which a comparison metric is used to order all
image regions. Image classification uses similar features to represent an image
region, but a classifier is specifically trained to distinguish between objects. The
last method, image pair analysis, learns the most descriptive parts of an image
regions autonomously, using manually defined image-region pairs [20]. These im-
age regions are then used to identify a new object. The last two methods need

1

This publicly available dataset can be downloaded from
http://pascal.inrialpes.fr/data/human/
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Fig. 1. Operational scheme of our person detection system.

specific training data of a person of interest. Instead of identifying persons, we
aim to provide an overview of a dataset by helping the user to find multiple
occurrences of a selected person. In these cases a classifier cannot be learned
beforehand, so we focus on image matching techniques.

3.1 Feature Description

The simplest description of an image region is a global color histogram. This
method ignores all location information and while this is very useful in many
situations, it cannot make the vital distinction between a person wearing a red
jacket and blue jeans and a person wearing a blue jacket and red jeans.

To obtain some location information Gray et al [12] introduced a 1D color
histogram detected on predefined partitions of the image region. This method
first divides the image in three parts: the top one fifth and middle and bottom
two-fifths. For each sub-region three 1D histograms are calculated; the concate-
nated nine histograms are used as a descriptor for the complete image region.

In [1] an improvement of this descriptor is proposed which uses a collection of
grids of region descriptors. Each grid segments the object into a different number
of equally sized sub-rectangles. By combining fine regions with coarse regions,
both local and global information is preserved.

Both methods are able to combine color and location information, but are
unable to describe structure information such as patterns on a shirt. One method
to capture shape, location and color information is the covariance matrix [25].
This method extracts a feature vector fn for each pixel which are combined into
the covariance matrix C of a region by:

C =
1

N − 1

N∑
n=1

(fn −m)(fn −m)T (1)

where N is the number of points in the region, m the mean vector of all the
feature vectors and fn the feature vector used to describe a position in the
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region. To measure the influence of different descriptor types, we use three types
of feature vectors:

fshape = C(x, y, I, IX , IY , Ixx, Iyy,mag, o) (2)
fcolor = C(x, y, Ch1, Ch2, Ch3) (3)

fcombination = C(x, y, Ch1, Ch2, Ch3, Ix, Iy,mag, o) (4)

where Chx indicates the x color channel which is dependent on the used color
space. mag and o are based on the first order derivatives with respect to x and
y:

mag(x, y) =
√
I2
x(x, y) + I2

y (x, y) (5)

o(x, y) = arctan
(
Iy(x, y)
Ix(x, y)

)
(6)

fshape uses shape information in the form of Ix, Iy, Ixx, Iyy, mag and order and
no color information. fcolor considers only color information while fcombination

uses a combination of both shape and color: All feature vectors are used as a
collection of grids of region descriptors.

A second method to capture both shape and color information in a single
descriptor is the use of color SIFT features. To obtain fixed-length feature vectors
per image, the bag-of-words model is used [24], which is also known as ’textons’
[18], ’object parts’ [8] and ’codebooks’ [13, 17]. When using the bag-of-words
model a large number of randomly sampled descriptors is clustered to obtain
a visual codebook. In an image region all descriptors are then assigned to the
codebook element which is closest in Euclidean space. To be independent of
the total number of descriptors in an image, the feature vector is normalized
to sum to 1. In this paper a visual codebook of 128 elements is constructed by
applying k-means clustering to 20,000 randomly sampled descriptors from the
set of images available for training. As descriptors we use both the traditional
SIFT implementation without color information [19] and the concatenation of
these descriptors calculated in each color channel separately.

3.2 Distance Metrics

To compare the resulting histogram features, several distance measures can be
used, such as the Euclidean distance, intersection distance, quadratic cross dis-
tance and Bhattacharyya distance. Similar to [1] and [12] we use the Bhat-
tacharyya distance:

Dhist(h1, h2) = − ln

(∑
x∈X

√
h1(x)h2(x)

)
(7)

This distance metric is unsuitable for measuring the distance between co-
variance matrices. So for comparing elements described using equation 1 we use
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the metric proposed by Forstner and Moonen [10] which sums the generalized
eigenvalues of the covariances:

Dcovar(C1, C2) =
√∑

i

ln2 λi(C1, C2) (8)

3.3 Invariant descriptors

Changes in illumination and color of the light source can greatly affect matching
results if the descriptors used are not robust to these changes. To make trac-
ing robust to changes in shadows and shading, intensity invariance is needed.
Various methods have been proposed to obtain invariance to these unwanted
variations, where color models and color constancy focus on illumination and
color respectively.

Color model To measure colors of objects independent of shadings van de
Sande et al. [26] studied two aspects of intensity invariance in a non-surveillance
setting: light intensity change and light intensity shift. Light intensity change
stands for the constant factor in all channels by which the image values change
while light intensity shift stands for an equal shift in image intensity values in
all channels. Similar to their overview we compare the following models:

RGB histogram The RGB histogram is a 3-D histogram based on the R,
G and B channels of the RGB color space. This histogram possesses no invari-
ance properties and is the most basic represenation.
Opponent histogram The opponent histogram is a 3-D histogram based on
the channels of the opponent color space YCbCr. This color space was designed
to The color models of the first two channels are shift-invariant with respect
to light intensity. The third channel posseses intensity information and has no
invariance properties.
Hue histogram The HSV histogram is a 3-D histogram based on the Hue,
Saturation and Value channels of the HSV color space. The H and the S color
models are scale-invariant and shift-invariant with respect to light intensity.
XYZ, Lab and Luv histogram The XYZ, Lab and Luv histograms are 3-
D histograms based on the XYZ, Lab and Luv colorspaces respectively. These
colorspaces were designed to mimic the response of the human visual system.

Hue histogram and Opponent histogram can be used without the intensity
channel. The Opponent histogram then becomes invariant to light intensity shift
while the Hue histogram becomes invariant to intensity scale and shift. We aim
for some level of intensity invariance, so normalized rgb, Hue histogram without
intensity and Opponent histogram without intensity are expected to perform
best for tracing.

Color constancy Color constancy is the ability to measure colors of objects
independent of the color of the light source [11]. For each video, frame or de-
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tection a correction is computed which virtually changes the color of the light
source to white. For the RGB color space this leads to the following corrections:

Routput =
R√

3 ∗Rlightsource

(9)

Goutput =
G√

3 ∗Glightsource

(10)

Boutput =
B√

3 ∗Blightsource

(11)

where R, G and B are the input channels and Rlightsource, Glightsource and
Blightsource are estimates of the light source. To estimate the light source the
color constancy methods proposed by Forsyth [11] and Finlayson [9] are not
applicable, due to their complex nature and dependency on calibration datasets.
We thereore compare three methods to estimate the light source: Grey world [3],
max-RGB [16] and Grey Edge [27].

Of the three models Grey edge is expected to perform best as Weijer et
al. [27] showed that for real-world images color constancy based on the Grey-
Edge hypothesis obtains better results than those obtained with the Grey-World
method.

4 Experimental Results

In this section we assess the performance of the presented methods, color models
and color constancy methods.

4.1 Evaluation Criteria

To assess the performance of the tracing methods, we consider two scenarios.
The first is an investigator who wants to find clues to explore further. In this
case it is important that some evidence of a person’s presence in any camera is
found. The second is the full reconstruction of the event where all instances of
the person have to be found. In both secnarios there is an asymmetry between
the camera used as starting point and other cameras. In the start camera the
investigator can easily select the most appropriate detection to be used as query,
and correct detections if needed. The detections in the other cameras cannot be
controlled.

We resort to a method used for biometric identification systems that return
ranked lists of candidates to express the performance of the proposed tracing
methods: the Cumulative Matching Curve (CMC)[7]. Assuming we have a set
of samples Bi with associated ground truth ID(Bi), two subsets of samples are
created:

1. A gallery set G consisting of m samples of different subjects.
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2. A probe set Q with n samples associated with the n subjects. The probe
set Q can be from any set of individuals, but usually probe identities are
presumed to be in the gallery G. The probe set may contain more than one
sample of a given person and need not contain a sample of each subject in
G.

In order to estimate the CMC, each probe sample is matched to every gallery
sample resulting in a n×m similarity matrix S. The scores for each probe sample
are ordered to assign a rank k to every gallery sample, where kl is the rank of a
gallery sample obtained from the same person as the probe sample. CMC(k) is
then the fraction of probe samples that have rank kl ≤ k:

CMC(k) =
1
n

(#kl ≤ k) (12)

If an investigator is searching through a video archive it is unlikely that he
or she is focused on finding all instances of that subject. It is more important
that any instance of the subject in another camera is found as soon as possible
as this might lead to more information about the subject. We therefore redefine
the CMC curve. Again the scores for all probe samples are ordered to assign a
rank k to every gallery sample, but for each query only the first match kfirst is of
importance. This metric is called the First Matching Curve or FMC. Formally,
FMC(k) is then the fraction of probe samples that have rank kfirst ≤ k:

FMC(k) =
1
n

(#kfirst ≤ k) (13)

4.2 Datasets

As benchmark we use the VIPeR dataset [12] to show the performance of all
image matching techniques and invariance properties described in section 3.
This dataset consists of 632 persons, where each person was photographed twice
under various viewpoints, poses and lighting conditions. Sample pictures of this
dataset are shown in figure 2. While the images in the VIPeR dataset are taken
from surveillance cameras and a lot of variance is present, persons are always
positioned in the center of the image and in an upward position.

In real-life, image matching techniques should not only be able to match
these perfectly located persons, but also retrieve images of the same person with
less than optimal detections. For that reason we recorded a dataset with the
assistance of the Dutch police; twenty cameras are used without any overlap in
field-of-view. These recordings were made as part of the regular surveillance pro-
cess for that area. A ground-truth is obtained by manually labeling the positions
of four persons who were asked to walk around in the area under surveillance.

The dataset contains several sources of variation. Most notably are the pres-
ence of a large number of pedestrians participating in traffic, changes in weather,
camera angle, colors and texture of clothing and reflections in windows. In ad-
dition, the area where we collected data was under active surveillance leading
in some cases to movement of the cameras. Sample frames from this dataset are
shown in figure 3.
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Fig. 2. Some examples of the VIPeR dataset.

Fig. 3. Sample frames of the used surveillance data.
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4.3 Results

The results are divided in two sections, we first present the performance on the
VIPeR dataset and then show how the best method performs in an unconstrained
situation.

Results on the VIPeR dataset The average CMC curves on the VIPeR
dataset can be found in figures 4, 5 and 6. Figure 4 shows that if a user is willing
to observe the first 20 matches, in 70% of the cases the person he was looking
for could be found.
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Fig. 4. CMC curves of the described matching techniques on the VIPeR dataset.

To be able to compare different color constancy methods we apply the meth-
ods implemented by [27]. Similar to [27] we vary the order of the method, the
Minkowski norm and the local smoothing. Specific parameter settings can be
found in table 1.

Method Parameters

Order Minkowski Smoothing

Grey-World 0 1 0

Max-RGB 0 ∞ 0

Shades of Grey 0 7 0

general Grey-World 0 11 1

Grey-Edge 1 7 4

2nd order Grey-Edge 2 7 5
Table 1. Parameter settings for different color constancy methods.
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Fig. 5. CMC curves of color covariance matrix using different color spaces on the
VIPeR dataset.
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Fig. 6. CMC curves of color covariance matrix using different color constancy methods
on the VIPeR dataset.
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In conclusion, the covariance matrix with both color and shape information
performs best on this benchmark. Adding color constancy slightly improves re-
sults, with Max-RGB performing best. Different color models did not influence
results greatly, but HSV slightly outperforms all other methods.

Results on the real-life dataset Sample results of applying our person de-
tection system to the real-life surveillance dataset are shown in figure 7. The
detection results are thresholded in such a way that for each camera all per-
sons in that camera’s field-of-view were detected at least once. As a result, the
number of false positives is large. Please note the large variation in amount of
background within each bounding box.

Fig. 7. Sample frames of the used surveillance data with their detection results.

The automatic detections generated by the person detection system described
in section 2 were matched to the ground truth. All detections with an overlap
larger than 75% with a ground truth region are labeled as that specific person.
Elements in the ground-truth larger than 6000 pixels, showing a complete, un-
obstructed body and not over or under saturated are then used as queries. We
order the automatic detections in other cameras based on similarity to the query.
A selection of these queries is given in figure 8. Automatic detections with the
same label as the query are considered a match. Sample orderings using Cas-
caded 1d Histograms and covariance matrices with a combination of color and
shape features are given in figure 9.

For each person separately the average CMC curve is measured to show
the influence of different clothing. Initially we use covariance matrices with the
combination of color and shape information, Max-RGB color constancy and HSV
color space since this method performed best on the VIPeR dataset. We use a
binary, person shaped mask to reduce the influence of backgrounds. Results are
shown in figure 10.

A clear difference in performance can be observed between the four subjects;
when person one, two and three are used as queries approximately random per-
formance is obtained. This means that if a person is to be found, it is in general
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Fig. 8. The four persons used to query the automatic detections.

Fig. 9. Sample orderings using Cascaded 1D Histograms (top row) and covariance
matrices (bottom row). The query image is shown left with the first 7 results after the
line.
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Fig. 10. CMC curves for different persons in real-life surveillance videos using Covari-
ance matrices with a combination of shape and color information.
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better to search the dataset chronologically. For person four however, perfor-
mance is much worse than random. Since this person is visually very distinctive
by the red jacket, a direct conclusion is that a representation more focused on
color is more suitable for this type of data.
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Fig. 11. CMC curves for different persons in real-life surveillance videos using Cascaded
1D Histograms.

Results of applying the Cascaded 1D Histogram are given in figure 11. Again
Max-RGB color constancy is used, with the YCbCr colorspace and a binary,
person shaped mask. As expected, person four is retrieved more easily than the
three other subjects. For person one the performance is similar to random which
is mostly due to the large difference in back and frontal appearance. Person two
appears to be more easily traced using covariance matrices than color histograms.
This is due to the fact that this person wore mostly gray colored clothes while
the pattern on the jacket is more distinctive. Lastly, while person three wore
mostly black clothes the combination of the black jacket with the white shirt
underneath proves to be a strong enough visual cue to be able to trace ths
person. In situation where the shirt was not visible it is unfeasible to find this
person.

As mentioned earlier a person using the described person tracing system
might not be interested in finding all instances of the person he or she is looking
for but is more interested in finding a single instance of that person in another
camera as fast as possible. We therefore apply the FMC metric to the same
data and method. We show the results in figure 12.

The same observations we made after figure 11 apply here, but now the best
results are obtained for person three instead of person four. The reason for this
is that the image regions where for person three both his jacket and shirt were
visible had a very high ranking. A user of a tracing system as described in this
paper would then be able to obtain extra information leading to easier searches
for other instances.
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Fig. 12. FMC curves based on the first match for different person using Cascaded 1D
Histograms. Only the first 250 ranks are shown out of 4000 image regions for readability.

5 Conclusion

In this paper we showed various methods to describe an image region which were
used to trace a person over multiple cameras. We showed that a combination
of color and shape information is needed for effective tracing on a dataset sim-
ulating perfect detection results. In situations where the detections are not so
good however, this combination proved unsuccessful. A method focussing solely
on color information was effective for two of the four subjects. This leads to
the conclusion that before searching for a particular person the defining char-
acteristics should be determined. If that person is wearing black clothes, any
color based feature representation will fail for its inability to represent the color
distribution properly. In these cases either more information should be used or
a simple chronological search is recommended. If, however, the subject wears
clothes with one or more distinctive colors, enough visual cues are present to be
able to search through all videos based on a color-based feature representation.

To deal with changes in light and shadings, various color models and color
constancy methods were applied. We showed that color constancy can slightly
improve results by reducing the influence of color changes between cameras.
Secondly, the use of a color space invariant to intensity is shown to improve
tracing results by reducing the influence of shades.

We would like to point out that instead of using a single image of a person as
query, multiple detections of the same person can be combined to obtain a track
representation. Since such a representation can combine spatial and temporal
information with the appearance information used in this paper, tracing perfor-
mance could be greatly improved. Another point of interest is the large number
of background regions falsely classified as persons. This issue can be dealt with
in two ways. First of all the background extraction method can be improved.
Background extraction is a very challenging task, but great results have been
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achieved. However, there is still enough room for improvement. Secondly, the
model classifying regions of interest as pedestrians can be improved. We de-
scribed a method which is generally considered the state-of-the-art in person
detection, but the SVM classifier was trained on a general pedestrian dataset.
We expect a big improvement by training the model on a dataset more focused
on real-life surveillance data.

In conclusion, methods for automating the process of incident reconstruction
are promising, but it is a major step from the lab to real-life surveillance data.
Our results give some guidelines for optimizing the process and for seeing under
which conditions automatic analysis should be pursued.
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