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ABSTRACT

Interpreting the relevance of a user-contributed tag with re-
spect to the visual content of an image is an emerging prob-
lem in social image retrieval. In the literature this problem
is tackled by analyzing the correlation between tags and im-
ages represented by specific visual features. Unfortunately,
no single feature represents the visual content completely,
e.g., global features are suitable for capturing the gist of
scenes, while local features are better for depicting objects.
To solve the problem of learning tag relevance given multiple
features, we introduce in this paper two simple and effective
methods: one is based on the classical Borda Count and the
other is a method we name UniformTagger. Both methods
combine the output of many tag relevance learners driven by
diverse features in an unsupervised, rather than supervised,
manner.

Experiments on 3.5 million social-tagged images and two
test sets verify our proposal. Using learned tag relevance as
updated tag frequency for social image retrieval, both Borda
Count and UniformTagger outperform retrieval without tag
relevance learning and retrieval with single-feature tag rel-
evance learning. Moreover, the two unsupervised methods
are comparable to a state-of-the-art supervised alternative,
but without the need of any training data.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.4 [Database Management]: Sys-
tems—Multimedia databases
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1. INTRODUCTION
Image sharing websites such as Flickr and Facebook are

hosting billions of personal photos. Social image tagging,
assigning tags to images by common users, is reshaping the
way people manage and access such large-scale visual con-
tent. One might expect tag-based retrieval to be a natural
and good starting point for search. Compared to content-
based image retrieval [6], tag-based retrieval copes more eas-
ily with semantic queries. Moreover, its scalability has been
verified by text retrieval research [2]. However, due to the
diversity of knowledge and cultural background of its users,
social tagging is often subjective and inaccurate. We con-
sider a tag objective and relevant with respect to an image
if the tag accurately describes objective aspects of the visual
content. In other words, users with common knowledge re-
late the tag to the visual content easily and consistently. As
a consequence, objective tags reflect visual concepts such as
objects, scenes, and events. In contrast to free text descrip-
tions, wherein tag relevance might be reflected by tag statis-
tics [2], individual tags are used once per image in the social
tagging paradigm. Hence, a fundamental problem for social
image retrieval is how to objectively learn the relevance of
a tag with respect to the visual content it is describing.

Recently, several papers have appeared in the literature to
tackle the tag relevance learning problem [17–19]. In [17], for
instance, we proposed a neighbor voting algorithm which es-
timates a tag’s relevance by exploiting tagging redundancies
among multiple users. The key idea is that if different per-
sons label visually similar images using the same tags, these
tags are likely to be relevant. Starting from the neighbor vot-
ing results, the authors in [19] further exploit pairwise sim-
ilarity between tags to reinforce relevant tags. In general, a
single feature is used to define visual (dis)similarity between
images. Unfortunately, no single feature can represent the
visual content completely [20], e.g., global features are suit-
able for capturing the gist of scenes [21], while local features
are better for depicting objects [3]. Representing images by
multiple features of different types might be beneficial as
shown in previous studies, e.g., [24] for content-based image
retrieval and [5, 8] for visual categorization. In [5, 8, 24], a
considerable amount of training data is demanded to learn
an optimized combination strategy per concept. Given the
potentially unlimited array of query concepts in social im-
age retrieval, an unsupervised or lightweight method which
effectively and efficiently exploits diverse features for tag rel-
evance learning is required.

In this paper, we introduce two such simple and effec-
tive solutions for multi-feature tag relevance learning: one



solution is based on the classical Borda Count [1] and the
other is our proposed UniformTagger. Using a neighbor vot-
ing algorithm as a base learner [18], both methods combine
the output of multiple tag relevance learners in a generic
and unsupervised way. We evaluate the viability of the two
methods on 3.5 million social-tagged images and two bench-
mark sets.

2. RELATEDWORK
According to their query-dependence, we divide related

work for social image retrieval into two types of methods:
query-dependent methods and query-independent methods.

2.1 Query-dependent Methods
Given unsatisfactory image search results caused by sub-

jective social tagging, query-dependent methods aim to im-
prove image retrieval, either by re-ranking search results in
terms of their visual consistency [10, 11, 14] or by aggregat-
ing search results returned by multiple sources of textual
descriptions [22]. Re-ranking methods, for instance, assume
the majority of top n, typically 1000, search results are rel-
evant with respect to the query and relevant examples tend
to have similar visual patterns such as color, texture, and
shape. To find the dominant visual patterns, density esti-
mation is often used, typically in the form of clustering [11]
or a random walk on a graph wherein each node is a re-
sult image and each edge is weighted by pairwise visual
(dis)similarity [14]. Density estimation tends to be inac-
curate when feature dimensionality is high and samples are
insufficient for computing the density [23], both of which of-
ten happen in the re-ranking scenario. Besides, density esti-
mation is computationally expensive. Pre-computing search
results is possible for some common queries. It is challeng-
ing to cover diverse user queries. Since social-tagged images
might have extra meta-data such as notes and comments
from users, some seek to improve retrieval accuracy by ag-
gregating image search results ranked by retrieval systems
built on individual meta-data. For example, the authors
in [22] use Borda Count, a rank aggregation strategy for
meta-search in text retrieval [1], to aggregate top image
search results obtained with a set of user-provided notes.
In summary, the fundamental problem of subjective social
tagging is unaddressed in query-dependent methods.

2.2 Query-independent Methods
Query-independent methods target at improving social

tagging accuracy by predicting objective tags which reflect
visual concepts visible in images. As a consequence of more
accurate tagging, better image search results might be achieved.
Predicting relevant tags for unlabeled images, or image auto-
tagging, has been intensively studied in the last decade [8,
16]. Learning tag relevance for social-tagged images is how-
ever relatively new, and distinguishable from automatic im-
age tagging in the following two aspects: 1) a small number
of candidate tags to predict for individual images, and 2) a
large number of concepts to model for a collection. First,
given a social-tagged image, relevant tags are identified only
from the associated tags. It is thus “easier” than tagging un-
labeled images. Second, given the diversity of social tagging
and numerous loosely tagged visual data, the number of con-
cepts to be modeled is larger than the relatively small num-
ber of predefined concepts in a typical image auto-tagging
scenario [16]. Therefore, a simple and efficient solution to

social tag relevance learning is desirable.
As the first attempt to learn social tag relevance, we pro-

posed a neighbor voting algorithm which infers the relevance
of a tag with respect to an image from the tagging behavior
of its visual neighbors [17]. By updating tag frequency us-
ing the learned tag relevance value in a tag-based retrieval
paradigm, better search results are obtained, while simulta-
neously scalability is maintained. Despite its simplicity, the
neighbor voting algorithm is quite effective as confirmed by
several other papers, e.g., [15, 19]. In [19], the authors base
a tag ranking method on the neighbor voting results. The
authors in [15] find that objective tags can be identified by
visual neighbor voting. In [26,27], the authors combine both
tag similarity and image similarity. In the literature, how-
ever, only a single feature is used for tag relevance learning.
How to leverage multiple features in the existing frameworks
remains unclear, which will be the focus of this paper.

3. MULTI-FEATURE TAG RELEVANCE
We first introduce some notation. Let x be an image and

F = {f1, . . . , fm} a set of feature extraction functions yield-
ing visual features for image representation. Given a large
collection of N social-tagged images and query concept w, let
Dw = {x1, . . . , xNw

} be images in the collection labeled with
w, where Dw+ and Dw− represent images relevant and irrele-
vant to w, respectively. For fi ∈ F , we define a tag relevance
measure gi,j(fi(x), θj , w) ∈ [0,1], where {θj |j = 1, . . . , n} is
a set of model parameters.

We aim to derive a ranking function G(x, w) ∈ [0, 1] which
ranks any relevant images ahead of any irrelevant images. To
make this operational, we formulate the goal as finding the
G maximizing the objective function of RankBoost [7],

r(G) =
X

x∈D
w+

X

x′∈D
w−

λ(x, x
′)

`

G(x, w) − G(x′
, w)

´

, (1)

where {λ(x, x′)|
P

λ(x, x′) = 1} are non-negative weights in-
dicating the importance of correctly ranking the pair (x, x′).
Intuitively, r(G) prefers G which generates correct ranking
with high confidence. As G is supposed to be better than
random guess, we have r(G) ∈ (0,1]. Since linear combina-
tion or additive modeling has proven to be a solid choice for
combining classification/ranking models [7,9], we adopt the
choice for combining multi-feature tag relevance learning. In
particular, we seek a convex combination,

G(x, w) :=
m

X

i=1

n
X

j=1

αi,j · gi,j(fi(x), θj , w), (2)

to maximize r(G), where {αi,j |
Pm

i=1
αi,j = 1, αi,j ≥ 0}

are weighting parameters indicate the importance of individ-
ual tag relevance learners. For convenience, we abbreviate
gi,j(fi(x), θj , w) to gi,j(x, w) hereafter.

3.1 Single-feature Tag Relevance Learning
Before surmounting the multi-feature problem, we first in-

troduce a single-feature tag relevance learner. Since learning
tag relevance by neighbor voting is shown to be effective by
previous studies [15,17–19], we follow this idea to derive the
single-feature learners. We employ a neighbor voting algo-
rithm which estimates the relevance of a tag with respect
to an image by taking into account both the tag’s frequency
in the image’s visual neighborhood and the tag’s prior fre-
quency [18]. Concretely, given the visual feature extracted
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Figure 1: Multi-feature tag relevance learning. Using a neighbor voting algorithm as a single-feature base
learner [18], we propose to improve tag relevance learning by combining the output of many base learners
obtained with different features and model parameters.

by fi ∈ F and some distance metric, let kj,w be the number
of images labeled with w in the kj-nearest neighbor set of
image x found in the collection. The tag relevance measure
gi,j(x, w), normalized by dividing by kj , is

max(ε,
kj,w

kj

−
Nw

N
), (3)

where ε is a very small positive constant. We use the max

function to reject unreliable estimates. As shown in Eq. 3,
the more neighbor images labeled with the tag, the larger
the tag relevance value will be, meanwhile high-frequency
tags are penalized for their high prior. We employ the pop-
ular Euclidean distance throughout this work. With such
simplification, the model parameters {θj} correspond to the
number of neighbors {kj}.

3.2 Combining Multi-feature Tag Relevance
Varying both the features and the model parameters, we

will obtain multiple tag relevance estimates. If these es-
timates complement each other, combining them yields a
better result, as illustrated in Fig. 1. To be precise, we aim
for a combination method which maximizes the performance
of image retrieval using the learned tag relevance value as
a ranking criterion. We now elucidate how to perform such
combination in an unsupervised manner without any train-
ing data and in a supervised manner with training data.

3.2.1 Unsupervised Combination Methods

As we target at the potentially unlimited array of concepts
existing in social tagging where well-labeled training data
are likely unavailable, we seek a generic and unsupervised
combination algorithm. Since we have no prior knowledge
of which tag relevance learners are most appropriate for a
given concept, we propose to combine many base learners

with different features and model parameters in a uniform
manner, which we term UniformTagger. The rationale for
this simple strategy is as follows. Envisage that the parame-
ters {αi,j} follow certain, yet unknown, probability distribu-
tions. According to the principle of maximum entropy [13],
a postulate in probability theory, when no information is
given about the distribution, the best, or safest, choice is
the one with largest entropy, or in other words, the uniform
distribution. Consequently, we have the ranking function
G(x, w) of UniformTagger as

1

m · n

m
X

i=1

n
X

j=1

gi,j(x, w). (4)

As an alternative to UniformTagger, we consider Borda
Count, a well-known rank aggregation algorithm [1], to com-
bine image search results ranked by individual tag relevance
learners. Different from UniformTagger, Borda Count quan-
tizes continuous tag relevance values into discrete ranks.
The ranking function G(x, w) of Borda Count is expressed
as

1

m · n

m
X

i=1

n
X

j=1

(Nw − rank(gi,j(x, w))) , (5)

where rank(gi,j) ∈ {1, ..., Nw} returns the rank of image x

after ranking the image set Dw in descending order accord-
ing to the base learner gi,j . The constant Nw is the number
of images in Dw, as defined earlier.

3.2.2 Supervised Combination Methods

When well-labeled training data of a given concept are
available, the weighting parameters {αi,j} in Eq. 2 can be
optimized to fit that concept. To this end, we consider three



Table 1: (Un)Supervised methods to combine multi-feature tag relevance learning results for social image
retrieval. These methods implement the component “Combining multi-feature tag relevance” in Fig. 1. We
shorten gi,j(x, w) to gi,j for better view of the table.

Method Input Weights {αi,j} Ranking function G(x, w)

Best Single Learner [18] {gi,j} i
∗
, j

∗ = argmax
i,j

r(gi,j), αi∗,j∗ = 1 gi∗,j∗

Supervised Weighted Borda Count [1] {rank(gi,j)}
1

2
ln

„

1 + r(gi,j)

1 − r(gi,j)

« m
X

i=1

n
X

j=1

αi,j · (Nw − rank(gi,j))

RankBoost [7] {gi,j}
1

2
ln

„

1 + r(gi,j)

1 − r(gi,j)

« m
X

i=1

n
X

j=1

αi,j · gi,j

Unsupervised
Borda Count [1] {rank(gi,j)}

1

m · n

1

m · n

m
X

i=1

n
X

j=1

(Nw − rank(gi,j))

proposed UniformTagger {gi,j}
1

m · n

1

m · n

m
X

i=1

n
X

j=1

gi,j

state-of-the-art supervised methods, i.e., Best Single Learner
[18], Weighted Borda Count [1], and RankBoost [7].

The Best Single Learner method selects as the ranking
function an individual learner gi∗,j∗ maximizing the objec-
tive function r(·) in Eq. 1. In contrast to selecting one
learner, Weighted Borda Count aggregates multiple ranked
lists obtained with {gi,j}, wherein each list is weighted ac-
cording to the training performance of the corresponding
gi,j . RankBoost sequentially combines the output of indi-
vidual learners with an adaptive weighting scheme to empha-
size base learners capable of correcting mis-ranking made in
previous learning rounds. To be precise, if a pair of posi-
tive example x and negative example x′ is mis-ranked in the
current round, λ(x, x′) in Eq. 1 increases so that an un-
used learner correctly ranking (x, x′) will be selected in the
next round. By contrast, all pairs in Best Single Learner
and Weighted Borda Count are equally important, namely
{λ(x, x′) = 1

|D
w+|·|D

w−|
}. For the three methods, a weight-

ing function is required to convert the training performance
into the weights. To make a fair comparison, we compute
αi,j using the weighting function of RankBoost,

1

2
ln

„

1 + r(gi,j(x, w))

1 − r(gi,j(x, w))

«

. (6)

Since good tag relevance learners generate high r(·), they
receive large weights when combined.

We summarize both unsupervised and supervised meth-
ods in Table 1. Note that RankBoost and (Weighted) Borda
Count have to maintain m×n copies of tag indexing data
structures in memory to fuse search results during query
time. In contrast, since UniformTagger converts multiple
tag relevance estimates into a single value before search, it
has to keep only one copy of the indexing structure in mem-
ory. Hence, the proposed UniformTagger requires a smaller
memory footprint and is more efficient for image retrieval.

4. EXPERIMENTAL SETUP
For multi-feature tag relevance learning, there are two

questions to answer: 1) is multi-feature better than single-
feature, and 2) are the unsupervised methods competitive to
the supervised alternatives? We answer these two questions
in the context of tag-based social image retrieval.

4.1 Data Collections
A large social-tagged image set. For neighbor voting,

we use 3.5 million social-tagged images randomly collected
from Flickr in our earlier work [18].

Two evaluation sets. For evaluation, we use the fol-
lowing two sets: Social201 [18] and NUS-SCENE [4]. The
Social20 set has 20 visual concepts and 19,972 images. Each
concept has 1000 images labeled with that concept by social
tagging. These images have been re-labeled in terms of their
relevance, and evenly divided into the training data and the
testing data. The NUS-SCENE set has 33 concepts cover-
ing a range of scenes. The number of training examples per
concept ranges from 140 to 7,142, with an average value of
1,484. The statistics of the test set are similar.

4.2 Experiments
Experiment 1: Unsupervised image retrieval. We

evaluate the two unsupervised methods: UniformTagger and
Borda Count. For each concept, we obtain the Tag baseline
by ranking images according to the concept’s occurrence fre-
quency in descending order. Then, for each image in the two
test sets, we estimate the relevance of its associated tags by
single-feature tag relevance learning with various settings.
The multi-feature counterpart is obtained by combining the
single-feature results using the two methods, respectively.
To perform tag-based retrieval with tag relevance learning,
we update tag frequency using the learned tag relevance val-
ues, and rank images in terms of the updated tag frequency.
By doing so, we study how multi-feature tag relevance learn-
ing improves social image retrieval.

Experiment 2: Supervised image retrieval. For each
concept, we train the three supervised combination meth-
ods, i.e., Best Single Learner, Weighted Borda Count, and
RankBoost, on the training set. We then apply the trained
models on the testing set.

Evaluation criteria. To assess image retrieval accuracy,
we use Average Precision (AP), a common evaluation crite-
rion in multimedia retrieval. To evaluate the overall perfor-
mance, we use Mean Average Precision (MAP), the mean
value of AP scores over all concepts.

1The Social20 set is available at http://staff.science.
uva.nl/~xirong/tagrel/.



4.3 Implementation
Visual features. As an instantiation of feature extrac-

tion functions {f1, . . . , fm}, we use three types of visual
features: Color64, GIST, and Dense-SURF. The Color64
is a 64-d global feature combining the 44-d color correlo-
gram [12], the 14-d texture moments [28], and the 6-d RGB
color moments. The GIST is a 980-d global feature rep-
resenting dominant spatial structure of a scene by a set of
perceptual dimensions such as naturalness, openness, and
roughness [21]. Finally, the Dense-SURF is a 4000-d bag-of-
keypoints feature depicting local information of the visual
content. We adopt dense sampling for keypoint detection
and SURF [3] for keypoint description, using a fast imple-
mentation of the Dense-SURF [25]. For all features, we use
the Euclidian distance to measure visual dissimilarity.

Parameters of base tag relevance learners. For each
of the above three features, we vary the model parameter θ,
i.e., the number of neighbors k in the neighbor voting algo-
rithm, to create multiple tag relevance learners gi,j defined
in Eq. 3. k We choose k from {500,1000, 1500,2000,2500},
and thus create 3×5=15 base learners in total.

Approximate visual neighbor search. To implement
the neighbor voting algorithm, we perform approximate k-
Nearest-Neighbor search on the 3.5 million collection as a
tradeoff between accuracy and efficiency. We build a vi-
sual index for each feature by dividing the entire collection
into smaller subsets by K-means clustering. Each subset
is indexed by a cluster center and cached into main mem-
ory. For a query image, neighbor search is conducted within
those subsets whose centers are closest to the query. For
high-dimensional features such as the 4000-d Dense-SURF,
the amount of computation and memory cost can still be
considerable even in much reduced subsets. To tackle such
difficulty, we employ Principal Component Analysis to re-
duce the original feature dimensionality to 30. To summa-
rize, we first run K-means clustering on the original feature
to create a coarse index of 1000 clusters. Neighbor search
is then executed based on the reduced feature. The com-
putational complexity of ranking cluster centers in terms of
their distance to a query is O(d · K + K · log K), where d

is the original feature dimensionality and K the number of
cluster centers. Suppose we select p points from the closest
clusters, the computational complexity for finding k nearest
neighbors within the selected points is O(d̃ · p + p · log k),

where d̃ is the reduced feature dimensionality.

5. RESULTS

5.1 Experiment 1: Unsupervised image retrieval
We summarize the unsupervised retrieval results on So-

cial20 and NUS-SCENE in Fig. 2(a) and Fig. 2(b). Both
UniformTagger and Borda Count outperform the Tag Base-
line and the single-feature runs. On Social20, for instance,
UniformTagger reaches 47.6% and 8.6% improvements of
MAP, compared to the Tag Baseline and the average result
of the 15 single-feature runs, respectively. While the cor-
responding numbers on NUS-SCENE are 16.5% and 5.4%.
For most of the individual concepts, UniformTagger is also
superior to the average result of the Single-feature runs. As
shown in Fig. 2(a), 14 out of the 20 concepts in the Social20
set have more than 5% improvement in terms of MAP. As
shown in Fig. 2(b), 16 out of the 33 concepts in the NUS-

0 0.2 0.4 0.6 0.8 1

MEAN

20. tiger

19. street

18. sheep

17. rhino

16. mountain

15. lion

14. kitchen

13. horse

12. harbor

11. flower

10. dog

9. classroom

8. cityscape

7. car

6. butterfly

5. bus

4. bridge

3. boat

2. beach

1. airplane

Average Precision

C
o

n
c
e
p

t

 

 

Tag baseline

15 Single Learners

Best single learner

Borda Count

UniformTagger

(a)

0 0.2 0.4 0.6 0.8 1

MEAN
33. window

32. waterfall
31. water
30. valley
29. town

28. temple
27. sunset
26. street
25. snow

24. sky
23. road

22. reflection
21. rainbow
20. railroad

19. plant
18. ocean

17. nighttime
16. mountain

15. moon
14. lake

13. house
12. harbor
11. grass

10. glacier
9. garden

8. frost
7. cloud

6. cityscape
5. castle

4. building
3. bridge
2. beach
1. airport

Average Precision

C
o

n
c

e
p

t

 

 

Tag baseline

15 Single Learners

Best single learner

Borda Count

UniformTagger

(b)

Figure 2: Experiment 1. Comparing unsupervised
multi-feature tag relevance learning with single-
feature cases for tag-based social image retrieval.
Multi-feature tag relevance learning outperforms
the single-feature cases on the two test sets, namely
(a) Social20 and (b) NUS-SCENE.

SCENE set have more than 5% improvement in terms of
MAP. Moreover, UniformTagger surpasses the best single-
feature learner obtained by comparing all single-feature runs
on the test sets. All these results verify the effectiveness of



multi-feature tag relevance learning.
For the two unsupervised methods, UniformTagger is slightly

better than Borda Count. Since Borda Count quantizes tag
relevance values into ranks, it is more robust to outliers.
Consider the concepts street and tiger in Social20 for ex-
ample. The GIST feature is superior to the Color64 feature
for street, while inferior for tiger. For both concepts, base
learners using Color64 generate larger tag relevance values
than using GIST. Canceling out larger yet inaccurate esti-
mations by quantization, Borda Count obtains better results
for street. While for tiger, by preserving the original tag rel-
evance estimations, UniformTagger surpasses Borda Count.
Therefore, only when there are some base learners produc-
ing large yet inaccurate estimates, Borda Count is preferred.
Otherwise, UniformTagger is the best choice.

5.2 Experiment 2: Supervised image retrieval
We show the supervised retrieval results on Social20 and

NUS-SCENE in Fig. 3(a) and Fig. 3(b). Among the three
supervised methods, RankBoost is the best, while Best Sin-
gle Learner is inferior to the two competitors for the major-
ity of the concepts. Since the best learner is determined by
training, the divergence between the training and the test-
ing data might result in a suboptimal option. In contrast
the best single strategy, combining multiple tag relevance
learning results tends to be more reliable and accurate.

Further, we compare UniformTagger, the best unsuper-
vised method, with RankBoost. In general, UniformTag-
ger, with an MAP of 0.782 on Social20 and 0.672 on NUS-
SCENE, is on par with RankBoost, which has an MAP of
0.783 on Social20 and 0.679 on NUS-SCENE. For Social-
20, the performance difference between the two methods for
each concept is less than 5.0% in terms of AP. For NUS-
SCENE, RankBoost outperforms UniformTagger for the fol-
lowing four concepts: harbor (16.8%), glacier (11.5%), rain-

bow (10.5%), and house (5.9%), where the numbers in the
parentheses are relative improvements in terms of MAP.
Looking into search results ranked by the individual base
learners, we observe the common phenomenon that when
one feature is significantly better than the other two fea-
tures, e.g., GIST for harbor and rainbow, and Color64 for
glacier, base learners with the best features are reinforced
by training. Notice the relatively small improvement for con-
cept house. We explain this result by the observation that
both Color64 and GIST are suitable for house and form the
majority even in UniformTagger. Note that the good per-
formance of RankBoost and the other supervised methods is
gained at the expense of acquiring a considerable amount of
training data. Surprisingly, UniformTagger, as well as Borda
Count, are comparable to these supervised alternatives, yet
without resorting to any training effort.

Our explanation of such counter-intuitive results is as fol-
lows. Recall that RankBoost weights the base learners with
respect to their training performance measured by the ob-
jective function r, which favors a ranker predicting good
ranking with high confidence, as aforementioned. It is thus
possible to over-emphasize a ranker which gives large tag
relevance estimates yet suboptimal ranking. In such case,
“optimized” weights indeed make the performance degener-
ate, as opposed to the uniform weights (see concept street in
Social20 for instance). Though UniformTagger and Borda
Count might not be the best option for some concepts, they
are as effective as the supervised alternatives in general.
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Figure 3: Experiment 2. Comparing unsuper-
vised and supervised methods, on combining multi-
feature tag relevance learning for tag-based social
image retrieval on the two test sets, (a) Social20 and
(b) NUS-SCENE. UniformTagger and Borda Count
are comparable to the supervised alternatives, but
without any training effort. The horizontal axis
starts at 0.3 for a better view of small differences.

Finally, we present some image search results in Fig. 4.
Search performances for concepts having strong visual clues,



e.g., snow, can be easily improved by single-feature tag rel-
evance learning. For airplane, since users tend to label im-
ages of aerial views taken from airplane windows as airplane,
learning tag relevance by neighbor voting does not yield
much improvement. While for concepts having larger intra-
concept visual diversity such as kitchen or concepts having
larger inter-concept visual ambiguity such as rainbow versus
colorful things like balloons, UniformTagger performs best
by combining multi-feature tag relevance learning results.

6. CONCLUSIONS
Given subjective social tagging, how to objectively inter-

pret the relevance of a user-contributed tag with respect to
the visual content it is describing is an emerging problem
in social image retrieval. In this paper, we investigate both
unsupervised and supervised methods for multi-feature tag
relevance learning. As a main contribution, we propose the
UniformTagger method. Using a neighbor voting algorithm
as the base single-feature learner, UniformTagger combines
tag relevance estimations of many base learners in a uniform
and unsupervised manner. Compared to an unsupervised
alternative, namely Borda Count, and three supervised al-
ternatives, i.e., Best Single Learner, Weighted Borda Count,
and RankBoost, UniformTagger achieves better or compara-
ble performance. Meanwhile, it requires a smaller memory
footprint and is more efficient for tag-based image retrieval.

Experiments on 3.5 million social-tagged images and two
realistic test sets verify the effectiveness of multi-feature tag
relevance learning. Compared to a retrieval baseline with-
out tag relevance learning, UniformTagger achieves a rela-
tive improvement of 47.6% and 16.5% in terms of MAP, on
the two test sets. Compared to the average result of re-
trieval using single-feature tag relevance learning, Uniform-
Tagger gains an improvement of 8.6% and 5.4% in terms
of MAP. Moreover, UniformTagger is comparable to Rank-
Boost, a state-of-the-art supervised alternative, but without
any training effort. In light of the current trend towards
large-scale visual search, we consider the simplicity and the
lack of supervision, coupled with the good performance, the
most valuable assets of the proposed method.
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(a) Concept snow

(b) Concept airplane

(c) Concept rainbow

(d) Concept kitchen

Figure 4: Tag-based image retrieval results with and without (multi-feature) tag relevance learning for query
concepts (a) snow, (b) airplane, (c) rainbow, and (d) kitchen. From the top row to the bottom row, each sub-
figure shows top 15 results of a concept returned by the Tag Baseline, the worst single-feature tag relevance
learner, the best single-feature tag relevance learner, and the proposed UniformTagger. Images with (red)
borders are false positives with respect to the concept.


