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Abstract

Visual tracking is a fundamental task in computer vision.
However there has been no systematic way of analyzing vi-
sual trackers so far. In this paper we propose a method that
can help researchers determine strengths and weaknesses of
any visual tracker. To this end, we consider visual tracking
as an isolated problem and decompose it into fundamen-
tal and independent subproblems. Each subproblem is de-
signed to associate with a different tracking circumstance.
By evaluating a visual tracker onto a specific subproblem,
we can determine how good it is with respect to that di-
mension. In total we come up with thirteen subproblems in
our decomposition. We demonstrate the use of our proposed
method by analyzing working conditions of two state-of-the-
art trackers.

1. Introduction
While tracking has made considerable progress over the

last few years, there is a lack of systematic evaluation
benchmarks. In this paper we argue for the need of a sys-
tematic analysis of visual trackers. In this way progress
towards robust and general trackers can be documented in
terms of their conditions of functioning and failure.

Current trends in evaluating trackers are either using self-
made videos or using benchmark datasets. Using self-made
videos [9, 8, 14] is a good way to pinpoint the strengths
of a tracker. However one can hardly assess what the
working conditions precisely are as for such an assess-
ment it is equally important to know the conditions of fail-
ure. Using benchmark datasets [15, 4, 5, 2] with evaluation
metrics [11, 6] provides common frameworks to compare
trackers. However state-of-the-art benchmark datasets still
suffer from limitations. Firstly, datasets are task-specific
with rather limited visual repertoires. Many of the datasets
[6, 17, 18, 1] are surveillance data with static cameras, rela-
tively stable background, rigid, opaque objects only. Track-
ers are left untested outside this domain. Secondly, the ex-
isting datasets do not yet sample the full breadth of tracking

conditions. This paper aims to take a step into the direction
of creating a systematic evaluation benchmark, which cov-
ers a broad range of tracking circumstances. The videos in
the benchmark are ordered based on their difficulty levels.

In this paper we ask the question: how to get a good
sense of the full breadth of conditions of proper functioning
and failure of a visual tracker? Our contributions are: (1)
we discuss thirteen different tracking conditions in a sys-
tematic way; (2) we collect data for each condition and or-
der them from the easiest ones to the more difficult ones.
The data are divided into two classes: laboratory videos and
realistic videos; (3) we evaluate two state-of-the-art trackers
on this dataset.

2. Related work on Benchmark Datasets
There are two trends in evaluating tracking algorithms:

one is by considering tracking as a low-level task in a
higher-level purpose. The performance is evaluated at the
higher-level task. The other trend is to consider tracking
itself as an end-level task and evaluate the performance di-
rectly. In this paper, we contribute to the latter.

Performance Evaluation of Tracking and Surveillance
(PETS) [6] is a series of workshops devoted to boost perfor-
mance evaluation of tracking and surveillance. Each year
particular surveillance challenges are posed. Most of the
PETS datasets are surveillance data and the challenges are
focused on security issues on public places, e.g. detect lost
luggages, detect loitering. Many tracking scenarios have
been considered. The datasets are however not designed
to measure trackers’ ability to cope with different track-
ing conditions. We use some videos from PETS2007 and
PETS2009 in our realistic dataset.

ETISEO [13] is a performance evaluation framework for
visual tracking, object detection, localization, classification
and event recognition in video surveillance systems. It aims
at identifying suitable scene characteristics for a given video
processing algorithm and to highlight algorithm weaknesses
by underlining the dependencies between the algorithm and
its conditions of use. ETISEO addresses two problems,
namely shadows and weakly contrasted objects. We aim to
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investigate the problem of determining strengths and weak-
nesses of trackers with a broader range of tracking condi-
tions.

In ICCV 2009, the LabelMe Video [19] was introduced
as an extension of the LabelMe image dataset. This on-
going project will allow internet users to upload their own
videos and do annotation online. The purpose of the project
is to get the prior knowledge of motion, location and appear-
ance at the object and object interaction levels in real-world
videos. The absence of systematic sampling is its weakness.

Video Verification of Indentity Databases [4] provides
an opensource tracking testbed, which allows researchers
to run and log tracking experiments, and compare differ-
ent trackers. The dataset contains 10 video sequences. The
dataset focuses on tracking ground vehicles from airborne
cameras limiting the repertoire to multiple similar objects,
moving cameras with occlusions.

Classification of Events, Actions and Relationships
(CLEAR) [17, 18] and SPEVI [12] consider person track-
ing, face tracking and vehicle tracking. The datasets are
recorded indoor from multiple fixed cameras. CLEAR also
proposes a novel tracking metric, which calculates the basic
types of errors made by multiple object trackers.

In summary, all existing datasets are developed in depth
for specific high-level purposes. This has its own advan-
tages. LableMe Video [19] has potential to cover the full
breadth. However it lacks a systematic approach. We aim
to cover a broad set of variations and also introduce a de-
gree of difficulty for each dimension. Hence we are able to
validate tracking algorithms in breadth.

3. Categorization of Thirteen Different Condi-
tions in Visual Tracking

For a visual tracking system, four main dimensions will
determine the complexity of the solution: light source,
scene, objects and camera. Each of these dimension has a
number of degrees of freedom influencing the performance
of the tracking system, see Figure 1.

Figure 1. Photometric model and notations used in this paper.

1. We model the light source as incoming flux ψ(ξ, λ, t),
which is the spectral power distribution of light at spa-
tial position ξ at time t. Variabilities may originate

from changes of ψ over position ξ of the light source,
wavelength λ or time t.

2. A point in the scene is modeled by a set of five most
relevant parameters {R∞, ρf , n, s, v}. Fresnel surface
reflectance ρf indicates how the incoming light is re-
flected at the surface of the scene. Body reflectance
R∞ describes how the incoming light is refracted to
the object’s body at the incidence point. Refractive in-
dex n indicates how transparent the scene at the inci-
dence point is.

3. The light going from the scene to the camera is mod-
eled by outgoing flux ϕ(x, λ, t), where x is 2-D posi-
tion in the image. We denote by ϕO and ϕB the outgo-
ing fluxes from the object and the background respec-
tively.

4. The camera is modeled by its position in the scene and
zooming level.

In total we will consider thirteen dimensions as the most
relevant ones (see Table 1), where we will leave out in this
paper less important degrees of freedom, such as backscat-
ter, non-white balanced cameras and other more compli-
cated models for the object, the scene and the camera. We
acknowledge that there are interdependencies between the
thirteen dimensions. We aim to start from the point where
these interdependencies are low (so that they can be studied
independently) and leave more complex interrelations for
later. We now discuss the thirteen dimensions in detail.

(1) Light: the light source is modeled by ψ(ξ, λ, t). We
distinguish three situations:

Uneven light source: we consider changes of incoming
light flux ψ over spatial position ξ resulting in uneven illu-
mination of the object. Modelling the object appearance in
the trackers is complicated due to the uneven object appear-
ance. Trackers using point or line representations suffer this
condition as it creates lots of artificial points and lines in the
image. An uneven light source may also induce false move-
ment of object albedo and hence cause drift. The fraction of
unevenly illuminated areas is the ordering measure in this
subcategory. A hard case of uneven light source is a scene
under foliage, see Figure 2.

Light color: we consider changes of incoming light flux
over wavelength λ. The object is illuminated by different
light colors over time. We choose the speed of the color’s
change as the ordering parameter. A hard case of light color
is a scene illuminated by city lights.

Changing light intensity over time: the object is illumi-
nated with lights of intensities ψ varying over t. This re-
sults in different appearances of the object and of its shad-
ows. The speed of the change determines how severe the
sequence is. A hard case of changing light intensity over
time is a scene under flash light.
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Table 1. Description of the 13 categories. “Uneven” implies spatial changes. “Unstable” implies temporal changes.
No Aspects of tracking Effect on observed field Ordering parameters Examples of

hard cases
1 Light Uneven and unstable light Fraction of unevenly illuminated Disco light

area; speed of light color
or intensity changes

2 Multiple light sources Multiplicity of shadow The number of light sources Mist
3 Albedo Uneven and unstable albedo Changes of R∞ Person redressing
4 Specularity Uneven and unstable specularity Fraction of specular highlights Mirror
5 Transparency Uneven and unstable transparency The amount of transparency n Transparent ball
6 Shape Uneven and unstable shape Convexity complexity [20] Octopus
7 Motion smoothness Unstable speed Object motion smoothness Brownian motion
8 Motion coherence Uneven motions of object parts Variation of part motions Flock of birds
9 Clutter Clutter of object in background Bravo and Garid [3] Camouflage
10 Confusion Similarity between objects SSD similarity Herd of cows
11 Occlusion Object’s presence or absence Fraction of the occluded area Object getting out

of scene
12 Moving camera Unstable camera position Camera motion smoothness Shaking camera
13 Zooming camera Unstable zooming Zooming speed Abrupt close-up

Figure 2. The trellis sequence from Ross et al. [15] as an example
of severe uneven light source. The trellis makes the illumination
to the face uneven.

(2) Multiple light sources coming from many directions:
the main issue with multiple light sources is that they create
multiplicity of shadows or no shadow at all. For omnidi-
rectional illuminant, it takes away shading, and hence there
is no geometrical detail. Many trackers implicitly rely on
shading to prevent drift. We can order sequences by the
number of light sources in each sequence. A hard case of
multiple light sources is mist with indefinitely many light
sources.

(3) Albedo: when body reflectance R∞ changes over
time the object albedo changes as well, which induces
changes in object appearance. The change of R∞ deter-
mines the order of sequences. A hard case of body re-
flectance is a chameleon changing its skin to adapt with en-
vironment. Another example is a person redressing.

(4) Specularity: specularity is indicated by the Fresnel
surface reflectance ρf . Specular-reflected light is the result
of the light source, the geometry and the pose of the object.
Specular highlights occlude the real object and bring abrupt

changes. The fraction of specular highlights determines the
video sequence order. Hard cases of specularity are mirrors.

(5) Transparency: we use the refractive index n to mea-
sure the transparency of an object with respect to the sur-
rounding environment. With transparent objects there are 2
movements of 1 pixel. The refractive index n is the order-
ing parameter in this category. A hard case of transparency
is a glass-like object.

(6) Shape: many trackers track objects by following the
development of their shapes. The underlying assumption is
that the objects’ shapes do not change abruptly over time.
The convexity measurement [20] of the object shape is the
ordering parameter in this category. A hard case is a moving
octopus.

Rotating of a non-convex object may also induce abrupt
shape changes. In this situation, the projected shape is very
different from the real 3D object shape and unstable inher-
ently. Tracking a rotating mouse pad is an example.

(7) Motion smoothness: motion is a very useful cue in
predicting future positions of the object. When the object’s
motion is smooth in both velocity and direction, prediction
may be successful. The smoothness of the object motion
determines its order. A bouncing ball is an example of hard
cases. Another example is a Brownian-moving object.

(8) Motion coherence: with an articulated object, it may
happen that the object parts move with different motions.
Variation of the part motions determine the state of the ob-
ject motion coherence. A hard case of motion coherence is
a flock of birds or fireworks.

(9) Clutter: clutter occurs when the neighborhood back-
ground has many different patterns. We use the clutter mea-
sure in Bravo and Garid [3] as the ordering parameter. A
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hard case of clutter is camouflage.
(10) Confusion: confusion happens when there are

similarly-appearing objects close to the object of interest.
The similarity causes trackers to confuse the object of inter-
est others. We use the sum-of-squared-difference similarity
measure between the objects to order the video sequences.
A hard case of confusion is a herd of cows or zebras.

(11) Occlusion: we use the ratio between the area of the
occluded portion and the whole object area to measure oc-
clusion. A hard case of occlusion is a object getting out of
the scene and returning in a different place, pose and illu-
mination.

(12) Moving Camera: a moving camera induces changes
in the object and also the background. We use the smooth-
ness of the camera motion as the ordering parameter. An
obvious hard case is a shaking camera. In this case, the
object movement is very fast.

(13) Zooming Camera: when a camera zooms, it changes
scale of the whole scene. The zooming speed determines
how fast the change is. A hard case of zooming camera is
abrupt close-up.

The thirteen categories are summarized in Table 1. The
fourth column of the table are measures expressing the
severeness of the dimension. The last column lists one
example of each hard case, which indicate extreme cases.
These are hard situations for visual tracking.

4. Datasets
4.1. The Laboratory Data

We setup a recording environment to make videos fea-
turing the 13 dimensions. The recording setup is similar to
the one used in [7]. In most cases we use one light source,
which is mounted at a corner of the recording table. When
special light conditions are needed we use strobe lights with
different colors and mount them on the half-circle ring on
top of the table. We use a ruler, a checkboard and a color
checker to calibrate the camera. A single background, see
the upper half of Figure 3, is used for all the cases (except
for the clutter and confusion cases where the background
needs to be changed).

The lower half of Figure 3 shows some of the objects that
we used. For all the recordings, we roll the objects from the
open end to the other end of the table. Table 2 gives an
overview of the laboratory videos (since we have not been
able to create a mist-like lighting condition in lab, we de-
cided to leave out the multiple light category. However we
do collect realistic data for this category). In making the
laboratory videos, we vary the condition of interest and try
to keep the other conditions constant as much as we can.
In each category, the videos are divided into three subcate-
gories, namely high, medium and low with decreasing level
of difficulty corresponding to their ordering parameter val-

(a)

(b)

Figure 3. (a): the background used in making the laboratory data.
When cluttered backgrounds are needed, we add more small ob-
jects with different shapes and color to the background; (b): some
of the objects used in the recording.

ues.

4.2. The Realistic Data

In addition to avoid the peculiarities of only laboratory
data we also collect a dataset following the 13 dimensions
from realistic videos. The main sources of videos we collect
are: existing tracking datasets [13, 12, 6, 16], YouTube and
videos used in some tracking papers. In selecting realistic
videos, we try to search for videos that feature the condition
of interest and contain as few other conditions as possible.
For example, with the occlusion category, a video from the
SPEVI dataset [12] are chosen as it was made deliberately
by the authors with the purpose of studying occlusion.

In total we have two datasets of about 6GB with approx-
imately 100 videos. For both datasets annotation is done by
a rectangular box every fifth image.

5. Performance Evaluation
5.1. Measures

We adapt the evaluation measures proposed by Kasturi
et al. [11] and Kao et al. [10] to our framework. Let Gt

denote the ground-truth object in frame t; Dt denotes the
tracked object in frame t and Nframes denotes the number
of frames where either the ground-truth object or the tracked
object exists.

Average tracking accuracy (ATA) proposed in [11] is
defined as the average ratio of the spatial intersection and
union of the ground-truth object and the tracked object over
all the frames.

ATA =
1

Nframes

Nframes∑
i=1

|Gt ∩Dt|
|Gt ∪Dt|

. (1)

As in Kao et al. [10], we also want to define ROC-like
curves for trackers’ performance. To this end, we define
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Table 2. Overview of the videos in the laboratory dataset.
Category laboratory Data
Light Yellow ball, red ball and green-black ball. Flashing light is made with a strobe.

Color light is made with a color strobe. Uneven illuminated light is made with a board
that allows light go through some holes on it.

Albedo Yellow ball, green-pink ball and a ball with 4 different colors.
Specularity Yellow ball, red ball, polished ball and mirror ball.
Transparency Yellow ball, transparent ball and wine glass.
Shape Pig toy, bear toy and beer opener.
Motion smoothness Yellow ball and silver car. The ball moves either straight or bouncing against the wall.

The car either moves straight or goes back and fourth.
Motion coherence Yellow ball and small herd of similar balls moving together.
Clutter Yellow ball, green-pink ball and a ball with 4 different colors.
Confusion Yellow ball, a set of identical balls
Occlusion Yellow ball, red ball, blue car and silver car. Occluders are chosen so that they occlude

0%, about 50% and 100% of the objects.
Moving camera Red ball with 3 settings of the camera: stationary, smoothly moving and shaking.
Zooming camera Yellow and green ball with 3 settings of the camera: stationary, slowly zooming and

abrupt zooming.

the average tracking error (ATE) as follows

ATE =
1

Nframes

Nframes∑
i=1

|Dt \Gt|
|Dt|

. (2)

ATA and ATE can be interpreted respectively as the true
positive rate and false positive rate. (ATE ,ATA) together
provides ROC-like curves to evaluate performance, where
the top performance is the top-left corner point (0, 1).

The two abovementioned measures evaluate perfor-
mance of a tracker with respect to one video. With our cat-
egorization of tracking conditions, it is also interesting to
consider tracking performance evaluation in category level.
Category-level average tracking accuracy (CATA) is de-
fined as:

CATA =
∑Nvideos

i=1 ATAi

Nvideos
, (3)

and category-level average tracking error (CATE ) is de-
fined as:

CATE =
∑Nvideos

i=1 ATE i

Nvideos
, (4)

where ATAi,ATE i are the average tracking accuracy and
average tracking error of the tracker with the ith video re-
spectively; Nvideos is the number of videos of interest.

5.2. State-of-The-Art Trackers

We choose two state-of-the-art trackers to demonstrate
the usefulness of our approach in gaining insight into their
conditions of working and failure by doing performance
evaluation from our categorization perspective of tracking
conditions. The incremental visual tracker (IVT) [15] builds

an object appearance model by making use of the new ap-
pearance information that comes available to incrementally
improve a model of the target. Incremental PCA allows the
tracker to perform an efficient subspace update.

The foreground-background tracker (FBT) [14] is a dis-
criminant tracker. It follows an object by keeping an incre-
mental classifier between features sampled from the object
and its neighboring background. Effectively it tracks a hole
in the background.

6. Results

We ran the two trackers on both datasets with the initial
positions of the objects taken from the annotations. CATA
and CATE values of each tracker are computed from the
tracking results and the annotations.

6.1. The Orderings of the Videos

The first experiment is to see how our orderings of track-
ing conditions are reflected from the trackers’ performance.
Figures 4 and 5 show the performance of the IVT and FBT
with the laboratory dataset respectively. With the IVT we
observe that the ordering is reflected clearly in the light,
albedo, specularity, confusion, occlusion and moving cam-
era categories. Under mild transparency the IVT perfor-
mance improves in this category, which can be explained
by resistance of the object model in the tracker to uniform
changes in the object appearance. In the case of the shape
category, the tracker performs very well in three subcases.
The lower score for simple-shape objects compared to the
score for mildly-complicated shape objects is caused by
the fact that our annotation are made using only vertically-
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aligned rectangles. Nevertheless the difference is small.
The performance in the zooming camera shows an opposite
ordering, which is attributed to the use of scaling in the dy-
namics model of the IVT. Essentially the IVT is invariant to
scaling of the object. In the “low” case of zooming camera,
a moving ball is used with stationary camera while a static
ball is used in the “medium” and “high” cases. The changes
in appearance of the moving ball cause the low score of this
sequence.

The performance of the FBT with the laboratory dataset
(Figure 5) reflects our ordering of tracking conditions with
exception in the cases of albedo, motion smoothness. Vi-
sual inspection of the FBT performance in the albedo videos
shows that the FBT does not get affected when the albedo’s
change is small. However when the effect is bigger the
tracker starts to perform worse. We note that with the mo-
tion smoothness case, the difference between the 3 levels
is small. This is attributed to the searching strategy of the
FBT, where the tracker puts equal weights in all the direc-
tions.

In conclusion, the performance of the IVT and FBT sup-
ports our assumption on the ordering of the tracking condi-
tions with different difficulty levels.
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Figure 4. The performance of the IVT with respect to the cate-
gories in the laboratory dataset. The “low”, “medium” and “high”
bars indicate the videos corresponding to lowest, medium and
highest values of the ordering measures with increasing level of
difficulty.

6.2. The Correlation of the Laboratory Dataset and
Realistic Dataset

We have considered the correlation between the labora-
tory dataset and the realistic dataset to have a first impres-
sion whether the laboratory dataset allows a similar perfor-
mance as the realistic dataset. To this end, we compute
the relative difference of the FBT and IVT on each dataset
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Figure 5. The performance of the FBT with respect to the cate-
gories in the laboratory dataset.
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Figure 6. The correlation plot of the laboratory dataset and realistic
dataset.

based on the following equations:

ρlab(i) =
CATAFBT

lab (i)− CATAIV T
lab (i)

CATAIV T
lab (i)

(5)

ρreal(i) =
CATAFBT

real (i)− CATAIV T
lab real(i)

CATAIV T
real (i)

, (6)

where index i indicates one of the thirteen categories. The
result is depicted in Figure 6. In general, the impression
from Figure 6 is an acceptable correlation between the labo-
ratory and realistic datasets. The number of videos (N = 4
in average per laboratory or realistic category) and espe-
cially the number of trackers (N = 2) is too low to draw
general conclusion on the compatibility of the two datasets
yet.

6.3. Assessing Strengths and Weaknesses of Visual
Trackers

The dataset enables us to analyze the performance of a
tracker with respect to the 13 tracking dimensions. We ran
the two trackers with both datasets. Figures 7 and 8 depict
the results. Figure 7 gives an overview of the IVT perfor-
mance. As can be seen from the figure, the IVT performs
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Figure 7. The performance of the IVT with the combined dataset.

best with the case of zooming camera where the tracking
accuracy is high and the tracking error is very low. The
specularity, shape and motion smoothness categories also
get very high performance with the IVT. They are attributed
to the fact that the IVT is focused on modeling object ap-
pearances and dealing with scale changes (as mentioned in
the original paper [15]). The low score of the confusion
(and also clutter) case suggests the inherent drawback of
appearance-based tracking which does not take into account
background information. The high CATE value with the
light category shows that changes in lighting conditions are
very challenging for the IVT.

From Figure 8 we observe that the FBT performs best
with the shape case. This reflects the fact that the FBT ef-
fectively tracks a hole in the background. The FBT per-
formance with the albedo, specularity, transparency is also
high for the same reason. The low score of the FBT with
the clutter case is caused by the large spread of the back-
ground pattern, which reduces the discrimination of the
foreground and background. These properties go along with
the claims in the FBT original paper [14]. Similarly to the
IVT, changes in lighting conditions is also very challenging
for the FBT with low CATA score and high CATE score.
The low CATA score of the zooming camera case is at-
tributed to the fact that we do not consider scaling in the
implementation of the FBT.

In summary, the performance analysis derived from our
dataset goes along with the claimed properties of the two
trackers. We note that although the two trackers were tested
with varying lighting conditions in the original papers, they
do not perform well on the videos in our lighting category.
This is because we created very challenging lighting con-
ditions with changing color light, fast flashing light and
foliage-like lighting in the laboratory dataset. These are in
general difficult for any visual tracker.

6.4. Comparing Visual Trackers

Comparison between two trackers with respect to the
13 tracking conditions can also be done with the proposed
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Figure 8. The performance of the FBT with the combined dataset.
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Figure 9. The true positive scores (CATA) of the IVT and FBT
with the combined dataset. The FBT outperforms the IVT in most
of the cases

dataset. For the IVT and FBT, the result is depicted in Fig-
ure 9 and Figure 10 for the CATA and CATE measures re-
spectively (the data in this two figures are in fact already in-
cluded in the Figure 7 and 8. We regroup them for the com-
parison purpose). As we can see from Figure 9, the FBT
outperforms the IVT in the light, multiple light, albedo,
transparency, motion coherence, confusion, occlusion and
moving camera categories. The IVT is better in the zoom-
ing camera and motion smoothness categories. The Figure
10 shows that the false positive rate of the IVT is smaller
than that of the FBT. This is attributed to the fact that the
IVT can track objects with varying size better than the FBT.

7. Conclusions
We discuss a categorization of visual tracking consist-

ing of thirteen representative categories in a systematic way.
We propose parameters that order the space of videos in or-
dered sequences of complexity. For each of the tracking
categories, we provide an ordered set of small laboratory
videos recorded in our lab or selected from real life videos.
The laboratory videos and realistic videos are shown to have
acceptable correlation scores.
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Figure 10. The false positive scores (CATE) of the IVT and FBT
with the combined dataset. The IVT is in general better than the
FBT in term of the false positive score.

We propose two kinds of tracking measures: category-
level average tracking accuracy and category-level aver-
age tracking errors, which can be seen as true positive rate
and false positive rate. The combined use of the proposed
dataset and the tracking measures enables to assess a broad
range of conditions of proper functioning and failure of a
visual tracker.

We demonstrate usages of the datasets by analyzing and
comparing two state-of-the-art trackers. The conclusions
derived from our analysis go along with the claimed prop-
erties of the two trackers in their original papers. The com-
parison shows that while in term of true positive rate CATA
the FBT is better, in term of false positive rate CATE the
IVT is better.

The proposed datasets are still limited in the number of
videos per category. The use of the two trackers does not
yet allow us to give a general conclusion about the compat-
ibility of the two datasets. We plan to address these issues
in the future work.

The proposed datasets will be made publically available.
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