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Abstract. Tracking can be seen as an online learning problem, where
the focus is on discriminating object from background. From this point
of view, features play a key role as the tracking accuracy depends on
how well the feature distinguish object and background. Current dis-
criminative trackers use traditional features such as intensity, RGB and
full body shape features. In this paper, we propose to use color invari-
ant SURF features in the discriminative tracking. This set of invariant
features has been shown to be of increased invariance and discrimina-
tive power. The resulting tracker inherits a good discrimination between
object and background while keeping advantages of the discriminative
tracking framework. Experiments on a dataset of 80 videos covering a
wide range of tracking circumstances show that the tracker is robust
to changes in object appearance, lighting conditions and able to track
objects under cluttered scenes and partial occlusion.
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1 Introduction

In many visual object trackers [1–4], traditional features such as intensity, RGB
and full body shape features are used. They reflect the state of the image directly
and they are fast to compute. However, to cope with varying aspects of the ob-
ject and the scene, features should be invariant to the undesired variations in the
appearance of the object such as shadows, shadings and occlusions and discrim-
inative enough to distinguish object from other objects and background. These
above features are of limited invariance to such changes. The SIFT/SURF [5, 6]
show increase in discriminative power [7, 8]. In particular Van de Sande et al.
[9] show that the set of color and invariant SIFT obtains the best performance
in the object recognition task. Moreover, the computations of SIFT and SURF
are recently made fast enough for real-time application [10]. Inspired by these
results, in this paper we aim to investigate invariant features in visual object
tracking.

At large, trackers can be divided by three main mechanisms: background
models [11, 12], foreground-based trackers [3, 4] and discriminative (foreground-
background) trackers [2, 13, 14]. Many background-based trackers and foreground-
based trackers resort to assumptions that an aspect of the background or the
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foreground is constant (or at least predictable for the next image). They are de-
signed to work well when disturbing scene-related circumstances develop slowly
over time and place. Under that condition, the model of the background or the
model of the foreground can be adapted. However, the assumption of slow de-
velopment of the lighting and scene conditions is frequently violated in reality
when there are abrupt changes in object appearance due to entering into shadow,
abrupt albedo changes due to rotation, abrupt object motion changes, or abrupt
silhouette changes due to occlusion. In many of such situations, discriminative
trackers are in favor over the other two as they put in the center the distinc-
tion between foreground and background rather than modeling the foreground
alone or background alone. Concentrating on discriminative trackers, invariant
discriminative features are the natural ingredient to incorporate.

This paper proposes a novel tracking method using foreground/background
discrimination. Unlike the above-mentioned methods, the proposed tracker uses
color invariant SURF features for discrimination. The aim is to be robust to
changes in object appearance and lighting conditions. And, the aim is to track
objects under cluttered scenes and partial occlusions. An innovation of the re-
search is the use of a broad dataset [15] developed to test the robustness of all
sorts of tracking conditions as they occur in reality.

2 Related work

Our work is based on two components: discriminative tracking and color invari-
ant features. We hence review these two topics in this section.

2.1 Discriminative Trackers

The discriminative trackers in [16, 17] are focused on classifier selection. A set of
weak classifiers is trained on object features and background features. Grabner
et al. [16] use online boosting to establish a strong classifier. Avidan [17] combines
the weak classifiers into a decision by AdaBoost. Although online boosting and
AdaBoost help to select best results from the weak classifiers, they disregard
the spatial relation between object features. They suffer from a large number
of free parameters to estimate, making the tracking computationally expensive
and unstable under varying conditions.

The discriminative trackers in [18, 19] are focused on feature selection. Grab-
ner et al. [18] propose a semi-supervised online learning method to select features.
Mahadevan and Vasconcelos [19] define saliency measure for features, which
ranks features how well they discriminate. Since the features are not invariant
with respect to varying tracking conditions, feature selection methods will select
best features on the fly. This method however leaves many degrees of freedom.

In [2], linear discriminant analysis is applied to discriminative tracking. An
analytical incremental solution is found for updating the classifier online. It en-
ables fast updating scheme with a small number of free parameters. The tracker
also retains a spatial relation between object features. This allows the tracker to
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overcome partial occlusions and compensate for global changes of illumination.
Due to its computational simplicity and the small number of free parameters we
follow this discrimination technique in our tracker.

2.2 Features in object trackers

Many trackers successfully replace grey features by color features (see an overview
in [20]) and by SIFT/SURF features. He et al. [21] propose a SURF-based tracker
where SURF-features are extracted from the object and its surrounding area us-
ing interest points. Object feature correspondence is estimated and then used to
predict the object motion. Background features are only used to detect occlu-
sions. The tracker imposes a smooth transition of the object appearance. Zhou
et al. [22] apply original SIFT features into the mean shift tracking framework.
Due to the discriminative power of SIFT, the resulting tracker outperforms the
original version at the expense of considerably more computation. Tran and
Davis [23] use SIFT in blob tracking, where objects are represented by a set of
MSER regions. Object motion is estimated from the estimations of the blobs’
motions. The tracker can track objects undergoing illumination changes due to
the use of SIFT feature. These results show the potential of using SIFT/SURF
in tracking.

The trackers in [24–26] successfully apply color features into the discrimina-
tive tracking framework. The tracker in Collins et al. [26] works on a pool of 49
linear combinations of R, G, B. For each feature, the log likelihood ratio between
foreground and background feature histograms is computed, which is then used
to rank the features. Similar mechanisms can also be found in [24] with multi-
ple color spaces and color distribution models, or in [25] with 7 types of color
histograms and gradient orientation histogram. These trackers demonstrate the
usefulness of color features in discriminative tracking.

Our tracker is different from the above trackers. We use a different set of
features in discriminative tracking. The features are the combinations of SURF
with different color spaces and color invariants. These features are of enhanced
discriminative and invariance power.

3 The Proposed Tracker

3.1 Discriminative Tracking Framework

Discriminative tracking treats tracking as a two-class instant classification prob-
lem between the object class and the background class. The object features
are densely sampled in the object region and denoted by fo

1, . . . ,f
o
n. The back-

ground features are also densely sampled in the neighbor background region and
denoted by f b

1, . . . ,f
b
m. As we aim to discriminate the object from background,

with each object feature fo
i , a classifier gi is trained to distinguish it from all

the background features. The set of classifiers {g1, . . . , gn} constitutes the dis-
crimination between the object and background. gi should be fast to train in the
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incremental mode and have few free parameters to arrive at a robust solution
on few samples. To this end, we follow [2] with the use a linear classifier:

gi(x) = 〈ai,x〉+ bi, (1)

where ai ∈ RN , bi ∈ R and 〈,〉 denotes the inner product; N is the dimension
of the used feature. The classifier gi is trained such that

gi(fo
i ) > 0 and gi(f b

j) < 0 for all f b
j . (2)

When a new frame comes in, denote by θ the spatial transformation between
the two frames and by I(fo

i , θ) the feature in the new frame that correspond to
feature fo

i . The search for the object in the new frame is cast into the following
maximization problem:

θ̂ = arg max
θ

n∑
i=1

gi(I(fo
i , θ)). (3)

The maximization effectively pushes the object candidate as far away from the
known background features as possible and pulls it close to the known object
features. We notice that as gi(I(fo

i , θ)) = 〈ai, I(fo
i , θ)〉+bi and bi is independent

from θ, we only need to compute ai.
Learning and updating the classifiers: given the object features fo

1, . . . ,f
o
n

and the background features f b
1, . . . ,f

b
m, we learn the classifiers gi by solving

the following optimization problem:

min
ai,bi

(〈ai,f
o
i 〉+ bi − 1)2 +

m∑
j=1

αj

(〈
ai,f

b
j

〉
+ bi + 1

)2
+

λ

2
||ai||2

 , (4)

where αj are the weighting coefficients of the background features,
∑m

j=1 αj = 1.
The closed-form solution of (4) is given by ([2]):

ai = ci (λI + B)−1 (
fo

i − f̄ b
)
, (5)

where B and f̄ b are the weighted covariance and mean of the background fea-
tures; I is the identity matrix:

f̄ b =
m∑

j=1

αjf
b
j , (6)

B =
m∑

j=1

αj

(
f b

j − f̄ b
) (

f b
j − f̄ b

)T
, (7)

ci =
1

1 + 0.5
(
fo

i − f̄ b
)T

(λI + B)−1 (
fo

i − f̄ b
) . (8)

Equations (6), (7) and (8) allow a fast learning step for the classifiers. We notice
that the background features are compactly represented by the weighted mean
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and the weighted covariance. It is hence not necessary to keep all the background
features.

After each tracking step, we extract new object and background features.
Suppose that θ̂ is the spatial transformation found by solving the optimization
problem in Equation (3). Then I(fo

1, θ̂), . . . , I(fo
n, θ̂) are the new object features.

In order to allow the tracker to remember the past appearance of the object,
we allow the old features to stay in the object representation with decreasing
weights:

f
o(new)
i = (1− γ)fo

i + γI(fo
i , θ̂), (9)

where γ is a predefined decay coefficient.
Suppose that f b

m+1, . . . ,f
b
m+k are the new background features. We put total

weight for the new background to be γ, while the weight of each old background
feature is downscaled (1−γ). The updated background mean and covariance are
given by:

f̄ b
(new)

= (1− γ)f̄ b + γ
1
k

m+k∑
j=m+1

f b
j , (10)

B(new) = (1− γ)B + (1− γ)f̄ bf̄ b
T − f̄ b

(new)
f̄ b

(new)T
+

γ

k

m+k∑
j=m+1

f b
jf

b
j

T
.

(11)

The set of Equations (5), (8), (9), (10) and (11) allows the tracker to update
the classifiers in the incremental mode efficiently.

3.2 Features

The use of SURF in visual tracking is rather limited in few foreground-based
trackers [21–23]. One of the reasons is due to the expensive procedure to compute
SURF descriptors at interest points. We overcome this problem by extracting
features {fo

1, . . . ,f
o
n;f b

1, . . . ,f
b
m} densely and using the fast algorithm to com-

pute SURF descriptors recently proposed in [10].
The original intensity-based SURF features have been extended to differ-

ent color spaces and color invariant spaces. They have not yet been explored
in visual tracking. Among the color spaces, we choose the opponent space as
the high decorrelation between the 3 channels. Opponent color space contains
one intensity channel and two chromaticity channels. As the three channels are
highly decorrelated they are likely to improve the discriminative power when
used together: O1

O2

O3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 . (12)

With the color invariants, Geusebroek et al. [27] show an inclusion relation-
ship: H ⊂ C ⊂ W , where H, C and W are three invariants derived from the
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Kubelka-Munk photometric model under different assumptions. The inclusion
implies that H has highest invariance and essentially H flattens out all patterns
in an image. This is not a desired property for tracking since we want to keep
a certain level of discriminative power to distinguish the object from the scene
and from other objects. On the other hand, W lacks invariance. It does not wipe
out accidental changes from illumination. We did experiments with the 3 invari-
ants separately and observed consistently degraded performance of the H and
W versions over the C version (the differences are approximately 58% and 8%
respectively. Further data is not shown here). We hence will focus on C-SURF.
We also use the intensity SURF (I-SURF) as baseline.

The C invariant [27] is an object reflectance property independent of the
viewpoint, surface orientation, illumination direction and illumination intensity.
The C color space consists of one intensity channel and 2 channels {Cλ, Cλλ}
computed as follows:

Cλ = Eλ

E

Cλλ = Eλλ

E ,
(13)

where E(λ) is the energy distribution of the incident light over wavelength λ.
E,Eλ, Eλλ are estimated from an RGB image as follows: E

Eλ

Eλλ

 =

0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

 R
G
B

 . (14)

4 Dataset and Evaluation Metric

As we aim to design a tracker robust to the wide variety of tracking circum-
stances, we use the dataset in [15] covering 12 most important tracking condi-
tions: lighting condition, object albedo, object specularity, object transparency,
object shape, motion smoothness of object, motion coherence of object, clutter,
confusion, occlusion, moving camera and zooming camera (the reference gives
more detail on the selection and creation of the dataset). This dataset enables
evaluation of a tracker with respect to different tracking circumstances. The
dataset contains 80 videos covering both realistic videos and in-lab videos. The
distribution of the videos over the categories are uniform. The videos are man-
ually annotated in every 5th frame. Some example videos from the dataset are
depicted in Figures 3, 4 and 5.

To measure the trackers’ performance, [15] proposes to use a category-level
average tracking accuracy measure (CATA), which indicates how much a tracker
covers the object in each frame in average. CATA ranges from 0 to 1. The higher
CATA is, the more accurate the tracker is. A CATA value of 0.6, for example,
implies that in average in each frame where the object is present, the tracker
covers at least 60% of the object and at least 60% of the tracked box is covered
by the object.
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5 Results

We demonstrate the performance of the proposed tracker in this section. For
comparison purpose, three other state-of-the-art trackers are considered: the
foreground background tracker (FBT) in [2]; the incremental visual tracker (IVT)
in [3] and the Kalman predictive tracker (KAT) in [4]. We reimplemented the
FBT and KAT, while the IVT is publicly available online from the author web-
site.

5.1 Quantitative Comparison between Features

This section shows comparison of the proposed discriminative tracking frame-
work with different types of features. In [2], the intensity Gabor feature is used.
We extended it to include rudimental color information, resulting in the RGB
Gabor feature. We compute CATA values of the discriminative tracking frame-
work for 5 different types of features: intensity Gabor, RGB Gabor, I-SURF,
C-SURF and Opponent-SURF. The data is visualized in Figure 1. As can be
seen from the figure, the SURF-based versions outperform the Gabor-based ver-
sions in 11 out of 12 cases. This is attributed to the high discriminativeness of the
SURF-based features, which especially is suited for our discriminative tracking
framework. Large differences between the SURF-based versions and the Gabor-
based versions can be seen in the following categories: albedo, transparency,
clutter, confusion and occlusion.

Among the SURF-based versions, Opponent-SURF and C-SURF show better
performance than I-SURF. This is attributed to the high decorrelation between
three channels in the opponent color space, which contains one intensity channel
decorrelated from the two chromaticity channels. The discriminative power of
C-SURF regardless accidental shadows and shadings makes it well suited in
combination with the online classifier which is at the core of this tracker. C-SURF
improves the classification accuracy in our tracker especially in the confusion and
occlusion cases where the object shares similar patterns with other neighbor
objects or the object loses part of its appearance in occlusion.

Table 1. The average performance of the discriminative tracking framework with the
5 features in the whole dataset. This is computed by averaging all the CATA values of
the 12 categories.

Intensity Gabor RGB Gabor I-SURF C-SURF Opponent-SURF

Average 0.43 0.51 0.58 0.61 0.60

To conclude, SURF-based features outperform Gabor-based features. Fur-
ther, color-based features outperform intensity-based features. As can be seen in
Table 1, I-SURF gains improvement of 0.15 (35%), while Opponent-SURF and
C-SURF gain even 0.17 (40%) and 0.18 (42%) respectively with respect to the
original tracker in [2].
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Fig. 1. Performance of the discriminative tracking framework with different types of
features and different tracking circumstances. The x-axis indicates the CATA measure.
The y-axis contains 12 different tracking categories in the dataset with total 80 videos.

5.2 Quantitative Comparison to Other Trackers

This section shows a quantitative comparison of the proposed tracker with the
KAT and the IVT. We have integrated RGB, SURF, C-SURF and Opponent-
SURF into the KAT and the IVT. However the SURF-based features do not
improve the two trackers. The reason is that the numbers of free parameters in
the IVT and the KAT are proportional to the feature’s dimension. The use of
the SURF-based features hence increases the number of free parameters to be
estimated in the IVT and KAT with a limited number of samples. Hence the
SURF-based features downgrade their performances. With IVT, we observe the
best performance with the RGB feature, while the intensity feature is the best
with KAT. The results of the proposed tracker with C-SURF, KAT with inten-
sity and IVT with RGB are shown in Figure 2. As can be seen from the figure,
the proposed tracker is more robust to changes in illumination conditions, object
albedo and transparency. This is explained by the invariance of SURF to light
intensity change and light intensity shift, which aids the tracker to overcome a
certain level of illumination changes. The KAT gets affected most in the trans-
parency case. The reason is that in such a case the object appearance reflects the
color of the local background behind the object. Because of the inhomogeneous
background, the object appearance changes abruptly, which violates the smooth
assumption the KAT imposes on the object features.

Figure 2 also shows that the proposed tracker is more robust to confusion
with the CATA value 63% while the scores for the IVT and the KAT are about
40%. The discriminative and invariance power of C-SURF enables the proposed
tracker to distinguish the object from other nearby objects of similar appear-
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Fig. 2. Quantitative comparison between the proposed tracker with the IVT and the
KAT. We select the best features: C-SURF for the proposed tracker, intensity for KAT
and RGB for IVT. The x-axis indicates the CATA measure. The y-axis contains 12
different tracking categories in the dataset.

ance. We notice that confusion downgrades the IVT and the KAT as the two
trackers have no mechanism to isolate the object even though they keep good
representations of the object. The proposed tracker also outperforms the IVT
and the KAT in the occlusion category. We notice that the IVT is the best in
the zooming camera case. This is attributed to the scaling handling mechanism
enabling the tracker to cope with objects with changing size due to camera’s
zooming. Overall, as can be seen from Table 2, the proposed tracker gains im-
provement of 0.12 (24%) and 0.07 (13%) over the KAT and the IVT respectively.

Table 2. The average performance of each tracker in the whole dataset. This value is
computed by averaging the CATA values of the 12 categories.

IVT-RGB KAT-Intensity Proposed-CSURF

Average 0.54 0.49 0.61

5.3 Robustness to Changes of Illumination and Object Appearance

In this section we analyze the performance of the proposed tracker with changes
in illumination and object appearance. We select the best feature for each
tracker: RGB with FBT, intensity with KAT, RGB with IVT and C-SURF
with the proposed tracker.
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Frame 1 Frame 100 Frame 165 Frame 193

Frame 1 Frame 65 Frame 170 Frame 380

Fig. 3. The first row: a person undergoing foliage-like illumination. The second row: a
person undergoing large changes in illumination intensity. Results of the 4 trackers are
shown: yellow - IVT; red - FBT; blue - KAT; green - ours. Our tracker is able to track
the targets despite abrupt changes of illumination over space and time.

In Figure 3, two targets undergoing different illumination conditions are be-
ing tracked. In the first row, the target is a person walking under dense foliage
with abrupt changes in lighting over space and time. The FBT suffers small
drift in each time step and eventually loses the object at frame 193 as the lim-
ited discriminative power of the feature and the presence of similar patterns in
foreground and background. The KAT and IVT get small drifts at the end when
the object turns left and the trackers are locked at an illuminated region in the
background. The uneven illumination does not affect our tracker. Despite many
false movements of the object, the results of tracker remain accurate.

In the second row of Figure 3, the target is a person moving from a dark
area to a brighter area with the illumination intensity changing largely. The
IVT gets difficulty at the beginning of the sequence since it confuses the face
with the background. Due to lack of invariance of the features, the FBT and
KAT drift away from the object at frame 170 and 380 respectively. Our tracker
successfully tracks the object because of the invariance to light intensity changes
of the SURF feature.

Figure 4 demonstrates the performance of our tracker with changes of object
appearance. In the first row, a face undergoes translation and rotation move-
ments. At frame 50, the other 3 trackers lose the object due to the rotation
movement of the object. After that the KAT and the IVT accidentally recover
the object. But only the KAT and the proposed tracker successfully follow the
object till the end. This video shows the ability of our tracker in coping with
new patterns when the object rotates in the vertical axis. The use of highly dis-
criminative features enables the tracker to avoid the confusion of the black area
of the head with the blackboard in the background. This is the reason why the
FBT loses the object. In the second row of Figure 4, an experimental video is
shown to demonstrate our tracker’s robustness to changes in object appearance.
The target is a rotating three-color ball. At frame 50 when the pink area occurs,
the other 3 trackers drift away while our tracker still can follow the ball.
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Frame 1 Frame 50 Frame 240 Frame 300

Frame 1 Frame 50 Frame 200 Frame 300

Fig. 4. The first row: A person with translation and rotation motion. The second row:
a 3-color ball undergoing rotation. In both cases, the targets undergo large variations in
appearance. Our tracker can adapt to new appearance patterns and successfully follow
the targets.

5.4 Robustness to Confusion and Partial Occlusions

Figure 5 shows examples of tracking under clutter and confusion conditions.
In the first row, a pupil in uniform runs in front of many other classmates. We
notice that as all the pupils are in uniform, the object looks very similar to other
nearby objects. This causes KAT and FBT to fail at the beginning and IVT to
fail at frame 75. Our tracker succeeds in disregarding the confusion as the use of
the discriminative feature, which allows it to focus on very distinct pattern of the
object that discriminate it from the background patterns. A similar phenomenon
can be seen in the second row and the third row of Figure 5, where our tracker
successfully follows a person running in a marathon with similar objects in the
vicinity and Waldo moving in front of a Where’s Waldo picture.

The two videos in Figure 6 demonstrate the ability of the proposed tracker to
cope with partial occlusion. Before the object enters the occlusion area, it enters
a shadow area. As can be seen from the two videos, both IVT and KAT fail as
the shadows change the object appearance abruptly. With the red ball video in
the first row, the FBT overcomes the shadow area due to the distinct color of
the object. It however fails to follow the toy car in the second row when it is
occluded. Due the shadow invariance property of C-SURF, our tracker does not
get affected by shadow and successfully follow the objects in both situations.

5.5 Failure Analysis

We search for failure cases of the proposed tracker. Figure 7 depicts 3 situations
where the proposed tracker fails. In the first row, the target gets bigger as the
camera is zooming in. The proposed tracker does not drift away from the target.
However it cannot cope with the changing size of the object. The IVT however
precisely follow the target. The reason is that the IVT considers scaling while
searching for the object. The proposed tracker, on the other hand, uses a fixed
template window. In the second row, the target is a flock of birds. We notice that
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Frame 1 Frame 25 Frame 41 Frame 75

Frame 1 Frame 28 Frame 70 Frame 98

Frame 35 Frame 70 Frame 180 Frame 229

Fig. 5. Tracking under cluttered scene and confusion. The first row: a pupil running in
front of other classmates in the same uniform. The second row: a person in a marathon.
The third row: tracking Waldo. Our tracker successfully discriminates the targets from
nearby objects with similar appearance and cluttered background due to the use of
invariant feature.

Frame 1 Frame 14 Frame 18 Frame 28

Frame 1 Frame 12 Frame 15 Frame 25

Fig. 6. Tracking under partial occlusion. The targets are the red ball and the toy car
undergoing partial occlusion. Our tracker is able to follow the target accurately when
they enter shadow and partial occlusion.

the dynamics of the flock shape makes it very difficult for the trackers to follow
where many background patterns are present in the object region. In the third
row, the changing light color is the challenge. At frame 13, the light becomes
completely dark. We notice that the second and third rows represent two very
extreme cases in visual tracking.
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Frame 1 Frame 43 Frame 67 Frame 140

Frame 237 Frame 245 Frame 253 Frame 260

Frame 7 Frame 11 Frame 13 Frame 18

Fig. 7. Failure cases of the proposed tracker. The first row: tracking under zooming-in
condition. The second row: tracking a flock of birds. The third row: tracking under
changing light color.

6 Conclusion

We have presented a tracker that takes advantage of the discriminative tracking
framework and highly discriminative power of SURF-based features. The result-
ing tracker is capable of tracking objects under changes in lighting conditions
and object appearance and undergoing partial occlusion. The proposed tracker
is also robust against confusion and cluttered scenes where there are similar
objects in the vicinity of the tracked object.

The combination of SURF with the C invariant and the opponent color space
are shown to be the best choice for the discriminative tracking framework. The
conclusion goes along with the finding in Van de Sande et al. [9] in the object
classification task. This makes an interesting link between object classification
and discriminative tracking.
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