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Episode-Constrained Cross-Validation
in Video Concept Retrieval

Jan C. van Gemert*, Cor J. Veenman, and Jan-Mark Geusebroek Member, IEEE

Abstract—Whereas video tells a narrative by a composition
of shots, current video retrieval methods focus mainly on single
shots. In retrieval performance estimation, similar shots in a
narrative may result in performance over-estimation. We propose
an episode-based version of cross-validation leading up to 14%
classification improvement over shot based cross-validation.

I. INTRODUCTION

MACHINE learning techniques have proven to be a
valuable addition to the repertoire of a multimedia

researcher. Applications of machine learning techniques in
multimedia are found in semantic video labeling [1], video
shot detection [2], audio classification [3], scene recogni-
tion [4], sports analysis [5], and in many other areas. More-
over, multimedia researchers have contributed to specifically
designed classifiers for multimedia analysis [6], [7].

Several machine learning techniques rely on accurate perfor-
mance estimation [8]. The estimated performance may be used
in finding the best parameters of a classification model and
helps when deciding between different features. Thus, accurate
performance estimation influences the quality of the machine
learning method.

The central issue addressed in this paper is the following:
How is classification performance estimation affected by the
narrative structure in multimedia data? Much multimedia data
is narrative in nature. For example, popular music has a verse
and a chorus, multimedia presentations have slides designed
with a message in mind, and shots in video data may be part of
a storyline. Such narratives typically build a story by repeating
similar elements. In separating narrative data in a test and
training set, these highly similar elements may easily end up
in both the test and the training set. Hence, commonly used
classifier performance estimation techniques need special care
when applied to multimedia classification.

In this paper we exploit the narrative structure present in
multimedia data to achieve accurate classification performance
estimation. We show that more accurate performance esti-
mation increases the final classification performance. Further-
more, we investigate how unbiased performance indicators can
be constructed, resulting in unbiased and accurate estimation
of classification performance in a narrative. As an instantiation
of narrative multimedia data we will focus on semantic concept
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detectors in video. However, the described techniques readily
apply to other types of data that share a narrative structure.

The idea of exploiting the narrative structure in video is not
novel [1], [9], [10], [11], [12], though using narrative units for
unbiased classification performance estimation is novel to the
best of our knowledge. Our earlier work [13] also noted the
influence of narrative structure on classification performance
estimation. This current paper, however, provides a more in-
depth analysis of this earlier work while also presenting a new
unbiased performance indicator for narrative data.

The organization of this paper is as follows. The next
section revisits standard classifier evaluation techniques. Then,
section III introduces an evaluation technique that respects
narrative structure in video concept retrieval. This narrative
structure introduces unbalanced data, which is discussed in
section IV. Section V presents the experimental setup followed
by the results in section VI and the conclusions in section VII.

II. CLASSIFIER PERFORMANCE EVALUATION

Correct classification error estimation not only provides
a quantitative assessment of the classifier, it also influences
classifier performance. Classifier performance depends on the
quality of the classifier model, which in its turn relies on
the input features and classifier parameters. These classifier
parameters and features are typically tuned by maximizing
the estimated performance over various input features and
parameter settings. For example in a semantic video concept
retrieval task, Snoek et al. [1] use the estimated classifier
performance to select the best low level features. Furthermore,
they find the best parameters for a Support Vector Machine
(SVM) by maximizing the estimated classifier performance. In
their framework, inaccurate classifier performance estimation
might result in choosing the wrong features, or in sub-optimal
parameter settings. Hence, classifier performance estimation
affects the selected classifier model, and thus the quality of
the tuned classifier.

Estimating classification performance is typically done by
training a classifier on one set, and testing the classifier on an
independent hold-out set. Thus, a straightforward approach to
classifier performance estimation is keeping a random sample
of the available data in an unseen hold-out set. This hold-out
set should be as large as possible, to accurately represent the
class variation that may be expected. However, keeping a large
part of the data from the training set gives the classifier less
data to train on. Hence, a balance between the size of the
training set and the size of the hold-out set must be struck.

In contrast to a single hold-out set, the cross-validation
method rotates the hold-out set over all available data. Cross-
validation randomly splits the available data in X folds,
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Video 1 Shot 1

Video 3 Shot 9

Video 3 Shot 15

Video 4 Shot 4

…

Video 1 Shot 3

Video 2 Shot 1

Video 3 Shot 24

Video 4 Shot 15

…

Video 1 Shot 4

Video 2 Shot 21

Video 2 Shot 17

…

Fold 1 Fold 2 Fold 3

Video 5 Shot 11

Video 6 Shot 42

Video 4 Shot 28

Video 5 Shot 43

Video 6 Shot 29

Video 5 Shot 32

Fig. 1. An example of partitioning a video set by using shot based 3-fold
cross-validation.

where each of these X folds is once used as a hold-out set.
The performance estimates on all rotating hold-out folds are
averaged, yielding an estimate of the classifier performance.
The cross-validation procedure may be repeated R times, to
minimize the effect of the random partitioning. An example
of cross-validation for a set of shots in a video is shown
in figure 1. The advantage of using cross-validation is the
combination of a large training set with several hold-out
sets. Therefore, cross-validation is the standard procedure for
classification performance estimation [8].

III. CROSS-VALIDATION IN VIDEO CLASSIFICATION

Machine learning is heavily used in semantic video index-
ing [7], [1]. The aim of semantic video indexing is retrieving
all relevant shots in a dataset to a given semantic concept.
Some examples of semantic concepts are Airplane, Car, Com-
puter Screen, Bill Clinton, Military Vehicle, Sports. Machine
learning techniques, and specifically classifiers, are commonly
used to rank a list of shots according to their probability of
being relevant to a semantic concept. These machine-indexed
semantic concepts provide a user with automated tools to
browse, explore, and find relevant shots in a large collection
of video. With growing digital video collections, there is a
need for automatic concept detection systems, providing in-
stant access to digital collections. Therefore, machine learning
techniques are vital to automatic video indexing.

For semantic video concept indexing, a video is typically
represented as a set of single shots [14], [1]. However, a
video document is the end result of an authoring process [1],
where shots are used to convey a message. For example, a
topic in news video, may consist of several similar shots, as
shown in figure 2. This temporal co-occurrence of similar
shots in a topic may be exploited for video indexing [10],
[11], [12]. Nevertheless, the video indexing task is oriented
towards single shots, whereas a semantic concept might span
several shots.

The granularity difference between the indexing task that
focuses on single shots, and semantic concepts that may
span several shots requires special care in estimating retrieval
performance. Consider figure 2, and note the high similarity

Video 156 shot 249 Video 156 shot 250 Video 156 shot 251 Video 156 shot 252

Fig. 2. An example of narrative structure in video: four consecutive shots
showing an interview with the former Lebanese President Mr. Lahoud.

between shot 250 and shot 252. The similarity between these
two shots can be expected, since they are part of the same
narrative structure. However, the retrieval task focuses on
single shots, and does not take this semantic relation between
shots into account. Therefore, the common practice [14], [1] of
estimating retrieval performance by cross-validation on shots
is biased. Cross-validation on shots will mix shots in a single
topic to different folds while randomly partitioning the data.
Thus, shots that belong to the same semantic concept will
be present both in the training set and in the rotating hold-out
set. This leaking of near-identical information creates a depen-
dency between the training set and the hold-out set, which will
manifest in too optimistic estimates for retrieval performance.
Moreover, if cross-validation is used for classifier parameter
tuning, the parameters will be biased towards near-duplicate
data and might consequently fail to find the best parameters
for true independent hold-out data. Therefore, the narrative
structure of video data should be taken into account when
estimating retrieval performance.

In order to preserve the narrative relation between shots in a
semantic concept, we propose an episode-constrained version
of cross-validation. In contrast to a shot based partitioning
of the video data, an episode-constrained partitioning aims to
keep shots together if they are part of the same episode. In
the context of a semantic concept retrieval task, an episode
ideally consists of all constituent shots of the concept at hand.
However, video story segmentation is an unsolved problem [9],
[15]. Therefore, we resolve to using whole videos as atomic
episodes. With videos as atomic elements, all shots in a video
are kept together, preventing the leaking of near-identical
information to the hold-out set. Whereas the traditional method
randomly distributes shots, our method randomly distributes
videos. An example of episode-constrained cross-validation

Video 1:

50 shots

Video 6

70 shots

…

Video 3

150 Shots

…

Video 2

25 Shots

…

Fold 1 Fold 2 Fold 3

Video 4

30 Shots

Video 5

50 Shots

Fig. 3. An example of a partitioning a video set by using episode-constrained
3-fold cross-validation.
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Fig. 4. Average precision for a worst-case retrieved list of 1000 elements,
where all relevant items are found at the bottom of the list. Note that the worst-
case average precision score increases with the number of relevant items.

for a video set is shown in figure 3. The episode-constrained
version of cross-validation creates truly independent hold-out
data, and will yield more accurate performance estimates of
video concept classification.

IV. PERFORMANCE ESTIMATION BETWEEN UNBALANCED
SETS

In semantic video retrieval, the performance measure of
choice is average precision [14], [16], [1]. For a ranked list
of elements, average precision denotes the area under the
precision recall graph. Let Lk = {s1, s2, . . . , sk} be the top
k ranked elements from the retrieved results set L, and let
R denote the set of all relevant items, then average precision
(AP) is defined as

AP(L) =
1
|R|

|L|∑
k=1

|Lk ∩R|
k

IR(sk) , for |R| > 0, (1)

where | · | denotes set cardinality and the indicator function
IR(sk) = 1 if sk ∈ R and 0 otherwise. Average precision
places a high emphasis on the top of the retrieved results
list. The bottom of the results list is weighted less heavy and
retrieval system benchmarks often truncate after a couple of
thousand results. This practical approach to truncation and
the high emphasis on the top retrieval results may explain
the popularity of average precision in the video retrieval
community.

Average precision describes the shape of the retrieved
results list. However, average precision does not take the a-
priori probability of relevant elements into account. Hence,
average precision is not normalized for the number of relevant
elements, and will give high scores when there are many
relevant elements. Consider a worst-case retrieval system, that
consistently places all relevant elements R at the bottom of
the retrieved result list L. When the cardinality of L is fixed,
|L| = c, the worst-case average precision (WAP) depends only
on the number of relevant elements |R|, reducing equation 1

to

WAP(|R|) =
1
|R|

|R|∑
k=1

k

(|L| − |R|) + k
, for |R| > 0. (2)

Figure 4 illustrates the worst-case average precision for an
increasing number of relevant elements. Note that a growing
number of relevant elements results in an increasing a-priori
average precision score. Thus, average precision scores are
hard to compare between sets with a varying number of
relevant elements because the average precision score is biased
towards high-frequency relevant elements.

Given average precision as the performance measure for
semantic video retrieval, it stands to reason to adopt average
precision as the performance measure in cross-validation. In
episode-constrained cross-validation, however, shots are kept
together to prevent leaking of similar shots to a rotating test
set. These atomic sets of shots hamper an equal distribution
of the relevant shots over the cross-validation folds. For
example, one news episode may contain several shots of a
popular sports event, whereas other episodes may contain
none. Hence, episode-constrained cross-validation yields an
unbalanced distribution of relevant elements over the folds.
Since the estimated performances on the folds are averaged to
give a final cross-validation performance estimate, the folds
that are randomly endowed with a high number of relevant-
item episodes will dominate the cross-validation performance
estimation. The effects of this will manifest itself in the
classifier model selection that fit best to the fold that has the
most relevant elements. Thus, in general, and for episode-
constrained cross-validation in particular, an alternative to
average precision is required that normalizes for unbalanced
folds.

A performance measure for cross-validation should optimize
average precision and allow equal weights when averag-
ing cross-validation folds. Hence, this performance measure
should scale between a fixed minimum and maximum, say 0
and 1, where 0 should represent the case where all relevant
elements are retrieved at the bottom of the list, and 1 should
indicate that all relevant elements are found at the top of the
list. This normalization between 0 and 1 remedies the bias of
average precision towards a high number of relevant elements.
Besides normalization, the performance measure should guar-
antee that it optimizes the original average precision score.
Any alternative to average precision as a performance measure
should follow these criteria.

Several alternatives to average precision may be found in the
literature. In classifier evaluation it is common to use receiver
operating characteristic (ROC) curves for representing classi-
fication performance [8]. The ROC-curve shows the variation
between the ratio of correctly classified positive elements and
the incorrectly classified negative elements. As an alternative
to average precision, the area under the ROC curve (AUC)
may be maximized [6]. Maximization of the AUC optimizes
the pairwise probability of retrieving a relevant element over a
non-relevant element [17]. The AUC has the required property
that an AUC value of 1 indicates perfect retrieval, and 0
denotes worst-case retrieval. However, optimizing the AUC
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Fig. 5. The relation between average precision and balanced average
precision. The solid blue lines represent different ratios of the number of
positive elements compared to the number of negative elements in a retrieved
list. In this example, the ratios range from 10% to 90% positive elements.
The dashed line y = x is included as an AP self-reference.

does not guarantee to optimize average precision [18]. Other
performance measures like R-precision [19], normalized av-
erage rank [20], normalized average precision [16], inferred
average precision [21] or interpolated precision [22] may
optimize average precision, however they do not scale between
a fixed minimum and maximum. To the best of our knowledge,
no performance measure exists that satisfies our demands.
Hence, for a retrieved results set L, we propose an unbiased
version of average precision which we name balanced average
precision (BAP),

BAP(L) =
AP(L)−WAP(L)

1−WAP(L)
, for WAP < 1, (3)

where AP and WAP refer to average precision and worst-
case average precision in equations 1 and 2 respectively.
The balanced average precision merely rescales the average
precision where the worst possible result is set at 0, and the
best possible results set at 1. Since balanced average precision
is a monotone rescaling of average precision, optimizing this
measure also optimizes the original average precision. Hence,
balanced average precision allows a normalized comparison
between sets with an unbalanced number of relevant elements,
while maintaining all properties of average precision.

In figure 5 we show the relation between average precision
(AP) and balanced average precision (BAP). The figure illus-
trates the BAP score corresponding to a given AP value for
various ratios between positive and negative elements in a list.
For a fixed AP score, an increasing positive ratio yields a sub-
stantially smaller BAP score (vertical lines). Note that a larger
difference between positive ratios yields a larger difference
between BAP scores. For example, at an AP value of 0.8, the
difference in BAP scores between the ratios of 80% and 90%
is 0.35, whereas the difference between the ratios 80% and
90% is 0.13. For cross-validation, therefore, BAP will have
more impact for folds with large differences between their
positive elements ratios. What is more, the inequality between

varying positive ratios increases, as the BAP score decreases
(horizontal lines). For example, the difference between the
ratio lines of 80% and 90% for a BAP value of 0.6 is 0.05,
whereas this difference is 0.12 for a BAP score of 0.1. Hence,
the effect of BAP becomes more pronounced for low classifier
performance, i.e., with hard problems. We deem multimedia
indexing a hard problem. Moreover, episode-constrained cross-
validation increased the inequality between folds. Hence, we
argue for using BAP for parameter estimation in multimedia
classification.

V. EXPERIMENTAL SETUP

We compare the episode-constrained version of cross-
validation with the shot based version of cross-validation on
a large corpus of news video: the Challenge Problem [23].
The Challenge Problem provides a benchmark framework for
video indexing. The framework consists of visual features, text
features, classifier models, a ground truth, and classification
results for 101 semantic concepts1 on 85 hours of international
broadcast news data, from the TRECVID 2005/2006 bench-
mark [14]. The advantage of using the challenge framework is
that the framework provides a standard set of features to the
TRECVID data. Furthermore, the framework is well suited for
our experiment, since there are a large number or shots, i.e.
close to 45, 000, and an abundance of semantic concepts.

The Challenge data comes with a training set consisting of
the first 70% of the video data, and a hold-out set containing
the last 30% of the data. We use the training set for training
both a k-nearest neighbor classifier (kNN) and a support
vector machine classifier with an rbf-kernel [8]. We opted
for the k-nearest neighbor classifier because of its simplicity,
its generally decent performance, and the fact that it has a
single tunable parameter. We included the SVM because it is
a popular classifier which performs well on this data [23]. The
features we use are the visual features [24] that are provided
with the Challenge framework.

VI. RESULTS

The focus of the experiment is on comparing episode-
constrained cross-validation versus shot based cross-
validation. To this end, we use both cross-validation methods
to randomly partition the data in 10 folds. These 10 folds are
subsequently used to estimate the best value for k for a kNN
classifier, where k ∈ {1, 2, 3, 4, 5}. For the SVM classifier we
preset the slack parameter C per class to the inverse of the
class frequency and logarithmically tune the rbf-kernel size γ,
where γ ∈ {1, 3.16, 10, 31.6, 100}. To evaluate the results, we
computed the classification scores for all k and γ parameters
on the hold-out set. The estimates and true hold-out average
precision scores for the of the SVM and kNN classifier are
displayed in figures 6 and 7 respectively.

1We did not evaluate the concept baseball, since all the examples in the
training set of this concept are found in a single video.
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Fig. 6. Performance estimates of episode-constrained and shot based cross-
validation compared to the true hold-out performance for the SVM classifier.
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Fig. 7. Performance estimates of episode-constrained and shot based cross-
validation compared to the true hold-out performance for the kNN classifier.

A. Evaluating Episode Constrained Cross-Validation

The results in figures 6 and 7 clearly show the over-
estimation of the average precision scores by the shot based
cross-validation method. This over-estimation is more evident
for the kNN classifier than for the SVM classifier. For the
SVM classifier the episode-constrained estimation is closer to
the true hold-out performance for 81 concepts, and in case
of the kNN classifier this holds for 93 concepts. We show a
more detailed figure for the kNN classifier in figure 8. In this
figure we show concepts with a large difference between their
scores on hold-out or between the scores of the two cross-
validation methods. Furthermore, we show the 7 concepts
where shot based cross-validation gives a closer estimate
to the hold-out performance than episode-constrained cross-
validation. These 7 concepts either have very few examples
or consist of shots that have near-copies in the hold-out
set. Concepts with few examples (i.e. Prisoner) cannot be
distributed completely over the 10 folds when videos are kept
together. These concepts yield zero-scores for some folds,
which in turn leads to a low fold average. The near copies
in the hold-out set are due to commercials (Bird, Fish, Cy-
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Fig. 8. Performance estimates of episode-constrained and shot based cross-
validation compared to the true hold-out performance for some selected
concepts with the kNN classifier.
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Fig. 9. Selected parameters of episode-constrained and shot based cross-
validation compared to the true hold-out performance for the kNN classifier.

cling, Waterfall) or due to little appearance variation (Soccer,
Nightvision). Other concepts score significantly lower on the
hold-out set because they have too little appearance overlap
between the examples in the train set and the hold-out set
(River, Motorbike, Mr. Nasrallah, Horse racing, Horse). The
remaining concepts (Cartoon, Drawing/Cartoon, Drawing) are
made up of highly repetitive shots within a video and therefore
benefit most from episode-constrained cross-validation as can
be seen by its accurate performance estimation compared to
shot based cross-validation.

In figure 9 we show the estimated classifier parameters and
the best parameters on the hold-out set. For space consider-
ations we only show the kNN classifier, since it gives the
best results. The first thing that is striking about the estimated
parameters in figure 9 is the discrepancy between methods in
selecting the best classifier parameter. The shot based cross-
validation method for kNN selects k = 3 for 97 out of
100 concepts, whereas episode-constrained cross-validation
correlates better with the best parameter of the hold-out
set. The parameter estimates influence the final classification
performance, and we summarize this in table I. In this table
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Shot Based Episode-Constrained
kNN SVM kNN SVM

Training set 0.573 0.474 0.310 0.345
Hold-out set 0.187 0.201 0.213 0.210

TABLE I
THE MEAN PERFORMANCE IN AP OVER ALL CONCEPTS USING THE

ESTIMATED PARAMETERS AS SELECTED BY EACH METHOD.

we present the mean performance in average precision over
all concepts, for both cross-validation methods and for both
classifiers. We show the estimated results on training data,
and the results on hold-out data where we tune the classifier
parameter by selecting the maximum performance according
to the cross-validation method at hand.

In analyzing table I, we focus on two points: 1) the accuracy
in estimating classifier performance and 2) the final classi-
fication performance. Starting with point 1, we consider the
difference between the estimated performance on training data
and the reported performance on hold-out data. For shot based
cross-validation there is considerable difference between the
estimated performance on training data and the performance
on hold-out data. Specifically, the difference is 0.386 for the
kNN classifier, and 0.273 for the SVM classifier. In con-
trast, for episode-constrained cross-validation the difference
between training data and hold-out data is only 0.097 for the
kNN, and 0.135 for SVM. This clearly shows that the esti-
mated performance of the episode-constrained cross-validation
is more accurate than the performance estimate based on shots.
Continuing with the issue of final classification performance,
we compare the performance on hold-out data for both meth-
ods. An analysis of the hold-out results per concept shows
that episode-constrained cross-validation yields equal or better
results for 85 concept with kNN and for 79 concepts for SVM.
Averaged over all concepts, the episode-constrained method
outperforms the shot based method by 14% for kNN, and 5%
for SVM, as shown in table I. The smaller improvement in
the case of the SVM is due to a large performance increase
when near-duplicates are present in the hold-out set. Since
near-duplicates are very similar, the SVM with its parameters
tuned by shot based cross-validation is very well tuned to these
duplicates. The large performance increase for near-duplicates
leads to a disproportional increase in the average value over all
concepts. The near-duplicates mostly consist of commercials:
Bird (+0.09), Waterfall (+0.10), NightVision (+0.19), Swim-
mingPool (+0.09), Beach (+0.06). Nevertheless, for the SVM
the performance for 79 out of 100 concepts improves by using
episode-constrained cross-validation. Therefore these results
show that performance estimation with episode-constrained
cross-validation is considerably more accurate than using shot
based cross-validation, and that this improvement in perfor-
mance estimation directly translates to an improvement in final
classification performance.

B. The Influence of Balanced Average Precision

Here, we evaluate the assumptions and motivation of using
balanced average precision. Balanced average precision allows
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Fig. 10. The difference per concept between estimated average precision
(AP) and balanced average precision (BAP) on training data.

Fold AP BAP % Relevant shots

1 0.919 0.863 63
2 0.917 0.864 60
3 0.900 0.824 65
4 0.911 0.841 66
5 0.867 0.779 61
6 0.906 0.830 66
7 0.873 0.785 62
8 0.892 0.820 61
9 0.896 0.810 67

10 0.930 0.866 70

TABLE II
AVERAGE PRECISION (AP) BALANCED AVERAGE PRECISION (BAP)

SCORES AND THE PERCENTAGE OF RELEVANT SHOTS IN EACH FOLD FOR
THE CONCEPT Face.

a fair comparison between collections with an unbalanced
number of relevant elements. We assumed that unbalanced
collections are more likely to occur with episode constrained
cross-validation, since atomic sets of shots hamper an equal
distribution of relevant elements over the cross-validation
folds. In order to test this hypothesis, we compare the spread
of the relevant elements over the folds for both episode-
constrained cross-validation and the traditional shot based
cross-validation. Specifically, we compute the standard devi-
ation of the number of relevant elements per fold, averaged
over all concepts. Both methods of cross-validation have on
average 135.21 relevant elements per fold, where the average
standard deviation of the shot based and episode-constrained
cross-validation method is 0.40 and 30.51 respectively. The
difference between both standard deviations clearly shows that
episode-constrained cross-validation creates significantly more
unbalanced folds than shot based cross-validation. Hence, the
motivation of using balanced average precision with episode-
constrained cross-validation is sound.

The unbalanced folds in episode-constrained cross-
validation necessitate the use of balanced average precision.
However, the difference between balanced average precision
(BAP) and traditional average precision (AP) may not nec-
essarily prove significant. We evaluate this significance on
the Challenge Problem. We employ episode-constrained cross-
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validation for classifier parameter selection and compare the
scores of average precision versus balanced average precision.
The results on the Challenge Problem show no difference in
parameter selection for both the kNN as the SVM classifier.
Hence, for this dataset there is no difference between average
precision and balanced average precision. In figure 10 we show
the difference between AP and BAP compared to the ratio of
positive examples for a concept. As illustrated in figure 10,
there are 89 out of 100 concepts with less than 10% positive
examples. Such concepts with relatively few positive examples
are less affected by unbalanced data. As we have shown in
figure 5, the benefit of BAP comes into its own with larger
number of positive examples. As an example, the scores on
the cross-validation folds for the concept Face are given in
table II. This table shows that the over-estimation bias in
average precision does occur, however not often enough. For
example, when comparing the scores for fold 1 and fold 2,
the AP in fold 1 is higher than the AP in fold 2, whereas
the BAP for fold 1 is lower than the BAP for fold 2. The
same holds for fold 8 and 9. Therefore, despite that there is
no difference between AP and BAP for parameter selection
on this dataset, the unbalanced data does have a biased effect
on average precision. Thus, when using episode-constrained
cross-validation balanced average precision is preferred over
average precision.

VII. CONCLUSIONS

In this paper, we compare two methods of cross-validation
for estimating classification performance for semantic concept
detection in video. The traditional method of cross-validation
is based on shots, whereas we propose a method based on
episodes. An episode-constrained method for cross-validation
prevents the leaking of similar shots to the rotating hold-out
set. We use a whole video as an episode. However, video
story segmentation [9], [15] seems a likely alternative to obtain
natural episodes. Since episode-constrained cross-validation
tends to produce sets with an unbalanced number of relevant
items, we introduce balanced average precision. Balanced av-
erage precision is an unbiased alternative to average precision.
In contrast to average precision, balanced average precision
normalizes for the number of relevant items and is therefore a
theoretically better choice when dealing with sets that contain
an unbalanced number of relevant elements. Experimental
results show that the bias of average precision for unbalanced
data does occur. However, in our dataset, balanced average pre-
cision performs equal to average precision because of the low
ratio of positive examples in this dataset. Further experimental
evaluation show that the episode-constrained method yields a
more accurate estimate of the classifier performance than the
shot based method. Moreover, when cross-validation is used
for parameter optimization, the episode-constrained method
is better able to estimate the optimal classifier parameters,
resulting in higher performance on validation data compared
to the traditional shot based cross-validation.
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