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In this paper, we provide a new formulation for video queries as structured combination of concept
threads, contributing to the general query-by-concept paradigm. Occupying a low-dimensional region
in the concept space, concept thread defines a ranked list of video documents ordered by their combined
concept predictions. This localized representation incorporates the previous concept based formulation
as a special case and extends the restricted AND concept combination logic to a two-level concept infer-
ence network. We apply this new formulation to interactive video retrieval and utilize abundant feedback
information to mine the latent semantic concept threads for answering complex query semantics. Sim-
ulative experiments which are conducted on two years’ TRECVID data sets with two sets of concept lex-
icons demonstrate the advantage of the proposed formulation. The proposed query formulation offers
some 60% improvements over the simple browsing search baseline in nearly real time. It has clear advan-
tages over c-tf-idf and achieves better results over the state-of-the-art online ordinal reranking approach.
Meanwhile, it not only alleviates user’s workload significantly but also is robust to user mislabeling
errors.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Since the revolution in web information retrieval, multimedia
(video, especially) retrieval has been regarded as the next grand
challenge for accessing and managing the huge amount of informa-
tion involved. Until now, videos are mainly accessed from noisy
text associated with the content, whether automatically recog-
nized speech, closed captions, or social tags. Though standard text
retrieval approach has been successfully applied in web search, the
achievement of this query-by-text paradigm is limited in the video
domain. The reason is that apart from its noisy nature, the succinct
text usually does not elaborate on the visual obvious. A query-by-
image paradigm, which aims at mapping low-level image features
of color, texture and edge directly to arbitrary complex information
need, has been limited by the semantic gap [1]. In a quest to narrow
the semantic gap, a few hundreds of semantic concepts are defined
and detected automatically quite recently: LSCOM [2] has defined a
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lexicon of 834 semantic concepts for news video, including various
roles of people, objects, scenes and events; 363 concepts are de-
tected in [3], 374 in [4] and 311 in [5], all from LSCOM and lever-
aging on generic learning approaches, though with varied
performance below the user expectation. For each video clip2, pre-
dictions are made to indicate the confidence of all concepts’ presence
and stored as semantic indices. These concept indices direct to a new
query-by-concept video search paradigm for video achieve access. For
example, a query as ‘‘scenes with snow” can be retrieved with con-
cept Snow, but not likely with Fire.

In the query-by-concept paradigm, one needs to represent video
query as the combination of selected concepts, and rank the video
documents through their relevance to these concepts, often in the
form of a weighted sum of concept prediction scores. The former
step, also known as query-concept-mapping (QUCOM), is neces-
sary since specific queries are relevant to only a few concepts. This
representation implicitly assumes that relevant clips about a query
gather at the top of the rank lists of all relevant concepts. However,
given the limited size of the concept lexicon currently available,
this assumption may not be valid due to the following two obser-
vations. First, the well matched target concepts can be out of the
vocabulary (OOV). Often we run into some super-concept, or
2 Usually videos are segmented at the shot granularity, defined as one uninter-
rupted camera taken.
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hypernym, of the missing one. For example, when concept Basket-
ball is missing, we may leverage on Sports. When hypernym is used,
it may be problematic to assume that relevant video clips about the
specific concept gather at the top of rank list of its hypernym. See
Fig. 1 for a real-world example. Second, even with in-vocabulary
concepts, information needs often add certain restrictions on the
relevant concepts. It is quite possible that clips containing the re-
stricted concept are not always clustered at the top of the corre-
sponding rank list (cf. Section 5.2 for empirical support).
Subsequently, representing the query as direct combination of con-
cept scores may not be optimal. In contrast, it may be desirable to
identify the region in the concept prediction score space which is
most densely populated by the target OOV/restricted concept.
These observations are rather general since the problems still per-
sist when the number of concepts grows to 5000, or even 10,000.

However, given the brief text query description, together with a
few query images sometimes, it is difficult to identify relevant con-
cepts in automatic video retrieval (AVR) [6,16,17], not to say min-
ing relevant OOV concepts. In interactive video retrieval (IVR),
users are often required to browse a large amount of data before
finding results satisfying the information need. Thus current day
IVR systems put great emphasis on interface design to present
search result efficiently, e.g. [7–9], where the query-by-concept par-
adigm serves as one important component. Nonetheless, as Chri-
stel [10] suggests, in spite of its great potential for future video
retrieval, query-by-concept risks a too complex interface as the
number of concepts grows from tens to one thousand. More impor-
tantly, users cannot search with OOV concepts. Thus, it seems dif-
ficult to achieve satisfactory query-by-concept by designing novel
user interfaces alone. As an alternative, a more expressive query
representation which relaxes the top-rank relevance assumption
may produce improved retrieval experience. Unlike in the auto-
matic mode, the significant amount of interactive user feedback
may provide necessary information for such purpose.

Thus motivated, we propose a new concept-thread based for-
mulation for describing video query in this paper and apply it to
interactive video retrieval. Partitioning the whole concept index
score range into some sub-ranges, we obtain many concept threads
as a certain low-dimensional region in the concept prediction score
space, like Sports: [0.65,0.70] in Fig. 1 as one example. The region is
called as thread since it contains a list of examples ranked by their
respective concept prediction score combinations. Viewing the
feedback examples as points in the semantic concept space, we
try to cover the relevant points with a small number of threads.
This feedback by semantic thread formulation (abbreviated as
Fig. 1. The statistic of video clips about Soccer and Basketball in the Sports index
on TRECVID 2006 data set. Ranges on x-axis denote Sports prediction score range
and numbers on y-axis the proportion of Soccer and Basketball in each range.
Video clips about Basketball densely populated in [0.5–0.8] while those about
Soccer in [0.75–1].
SemanFeed hereafter) naturally takes concept performance into
account. Threaded concept is a localized query representation
which permits dynamically updated thread following. It also ex-
tends the simple AND concept combination logic to a two-level
concept inference network with possible diverse logic types. Con-
cept thread is a departure from the concept based query represen-
tation by allowing flexible combination scheme and query logic for
video retrieval.

Given a query, SemanFeed generates a few candidate concepts,
and generate subsequent single-concept threads by dividing the
candidate concepts into regions, and then adopts an Apriori [11]
like algorithm to mine possible concept combinations to form
additional multi-concept threads. See Fig. 2 for an illustrative
example with query ‘‘multiple people in formation”, where one
multi-concept thread from Crowd and Protesters is presented in
the first query component. As new feedback data arrive, threads
are iteratively formed, the structured query representation is up-
dated and a list of ranked documents is produced considering both
thread relevance and concept relevance.

To validate the proposed SemanFeed approach, we conduct sim-
ulative experiments on the TRECVID 2005 and 2006 data sets with
two different lexicons of 311(Tsinghua)/374(Columbia) concept
detection results. The results demonstrate that the proposed query
formulation offers some 60% improvements over the simple
browsing search baseline in nearly real time. SemanFeed has clear
advantage over the simple yet powerful c-tf-idf approach and,
while being more efficient, achieves better result over the state-
of-the-art online ordinal reranking [12] approach. Experiments
also confirm that SemanFeed not only alleviates user’s workload
significantly but also is robust to user mislabeling errors.

We organize the remainder of this paper as follows. We intro-
duce related works in Section 2, present the proposed query repre-
sentation in detail in Section 3, and apply SemanFeed to interactive
retrieval in Section 4. Then we present the experimental results in
Section 5 and conclude this paper in Section 6.
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Fig. 2. The query representation as structured concept-threads.
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2. Related work

The generic concept detection problem has been treated exten-
sively in the past few years [13–15] while the research of using
semantic index for retrieval get more attention only recently. A
few studies positively support the usefulness of the query-by-con-
cept paradigm for video retrieval [3–5,16–19]. However, some of
these results are too optimistic in using oracle selected concepts
[18] or human judged relevant concepts [19], and only the top con-
cept is selected in [3]. Others use a rather small lexicon (<40) of
concepts [16,17,19] where no sufficient concepts can be selected.
Therefore they bypass the QUCOM problem, and subsequently
the query representation problem.

A comparison of the standard text retrieval and query-by-con-
cept video retrieval paradigm helps us better understand why QU-
COM is indispensable for concept-based query representation.
Viewing shots (the basic video retrieval units) as visual documents
and concepts as visual terms, the parallelism between text and vi-
deo documents can be created. In the former paradigm, the query
and the documents reside in the same feature space, and a few
query words are explicitly given. However, in the latter paradigm,
the query keywords, at best, only implicitly specify the semantic
concepts, in another different feature space. By solving QUCOM, a
few relevant concepts are selected and subsequent retrieval is per-
formed in the semantic concept space. In a recent review paper
[20], Natsev et al. name the QUCOM problem as semantic con-
cept-based query expansion and explicitly categorize QUCOM in
automatic retrieval by the information involved as three kinds of
text based, visual based and retrieval result based QUCOM. We
adopt this categorization in our review. We further identify an
important categorization dimension as the granularity of the query
representation because through finer granularity, the problem of
the limited concept lexicon can be alleviated to answer complex
queries.

2.1. QUCOM in automatic video retrieval

It is a fast solution to link query to concepts by text matching
between the query text and concept description [4] or a predefined
concept ontology [3] if explicit semantic relation can be estab-
lished between the query and concept descriptions [6,21]. Neo
et al. [17] further take the concept detection performance into ac-
count, with the same text match approach. However, this line of re-
search ignores the visual aspect of the concepts, which might be
also important for solving QUCOM. For example, it is not straight-
forward to relate Mosques to the query ‘‘helicopters in flight” or re-
late Kitchen to ‘‘people reading a newspaper” by direct text match.
However, they are really relevant as the connection can be mined
through visual cues [5]. To count for the semantic correlation
among concepts in QUCOM, an ontology-enriched semantic space
is proposed [22] to enable modeling and reasoning concepts in a
linear space.

Query images, if provided, establish visual links between user
information need and semantic concepts. Predicting concepts on
one query image, the resulting scores can be concatenated as a vec-
tor in the concept space. Searching by this full vector without per-
forming QUCOM resembles a very verbose text query with all
words in the lexicon present, as presented in previous work
[16,23,24]. The irrelevant concepts will not only decrease the re-
sponse time significantly, but also severely degrade the retrieval
performance [5]. Treating concepts as basic ‘‘visual terms” for
describing visual documents, we propose a tf-idf like scheme in
our previous work [5]. The c-tf-idf scheme combines both concept
popularity and concept specificity for a given query. In the search
process, the well-established vector space model or language mod-
el can be deployed. Experimental results [5] show that c-tf-idf is
among the best approaches for QUCOM in AVR. Despite its robust-
ness, c-tf-idf does not consider possible correlation across concepts
and the concept index performance variations. It also restricts itself
to a simple AND logic for concept combination to express the com-
plex query semantics. For example, in searching ‘‘multiple people
in formation”, the most salient concept combination from LSCOM
may be comprised of Demonstration_Or_Protest and Crowd. How-
ever, another combination of Soldiers, and Military may provide no-
vel relevant results. The two sets of concepts should be combined
in an OR logic instead of the AND logic taken by c-tf-idf.

The result based QUCOM takes inspiration from the pseudo-rel-
evance feedback approach. It examines initial retrieved documents
for a query topic as pseudo-relevant/irrelevant examples in order
to select discriminative concepts to improve the retrieval perfor-
mance. It holds a strong assumption that the initial results are of
sufficient quality. Hsu et al. [25] first propose to rerank the video
search results via the information bottleneck principle. A robust
probabilistic local context analysis (pLCA) approach is adopted in
[20]. Kennedy and Chang [26] mine the search results to discover
and leverage concept co-occurrence patterns for reranking the ini-
tial search result. To the same end, Yang and Hsu [12] adopts an
online ordinal reranking framework based on ListNet [27]. Ordinal
reranking changes the optimizing goal from classification to rank-
ing and the underlying ListNet algorithm solves the efficiency for
the ranking problem involved.

Combination of textual and visual cues for better QUCOM
[28,20] is also possible. Fusing query-by-concept with query-by-text
and query-by-image often brings further improvements [5,29,20].
However, given the limited supervision information available, it
is hard for these approaches in AVR to fully discover the potential
of the query-by-concept paradigm and overcome the shortcomings
of limited lexicon size, high index noise and simple AND combina-
tion logic, not to say further exploit finer granularity query
representation.

2.2. QUCOM in interactive video retrieval

Compared with AVR, the IVR mode enjoys the benefit of user
judgements for superior performance, often 200% gain in percent-
age, as witnessed by past TRECVID [30] campaigns. Current day IVR
systems put more emphasis on user interface design rather than on
query analysis, e.g. [7–9]. One typical example is the Extreme Vi-
deo Retrieval (XVR) [8], which delivers one RSVP (Rapid Serial Vi-
sual Presentation) or MPVP (Manual Paging with Variable Pagesize)
display and requires user’s extensive effort to browse significant
portion of examples to find more relevant items. Beside XVR, sev-
eral novel interfaces are designed by the MediaMill group [9] as
Galaxy Broswer and Cross Broswer, Rotor Broswer and more recently
Fork Broswer. All these browsers emphasize the multi-modal nat-
ure of the video retrieval process by allowing users to visualize sig-
nificant data portion in multiple dimensions. A collaborative
search scheme [31] is recently designed to exploit the synergy of
multiple users based on the current, active search behavior of one’s
fellow searchers. Among many other studies with expert users who
are familiar with the retrieval system, a recent user study [10] ex-
plores the use of the search system by government intelligence
analysts and reports a usage of the query-by-concept paradigm
36% of the search time on average. Noticing that this community
is dominated by text search system expertise, their better perfor-
mance on and favor for a system with concept shows the practical
utility of the query-by-concept paradigm. In designing a static
browsing unit for news video corpus, de Rooij et al. [32] describe
various forms of related video fragments as video threads, such
as textual similarity, image feature similarity or temporal adja-
cency. Semantic threads are also built by consider the concept
space as a whole and run k-means clustering using some similarity
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function. Clearly, they do not use the same word thread for con-
cept-based query representation. Rather they are doing document
clustering instead.

Given the immature video retrieval technology, the synergy be-
tween user and retrieval system should be explored. With a pre-
defined large-scale concept lexicon, the user feedback, no matter
explicitly or implicitly given, provides valuable supervision infor-
mation to further exploit the latent power of the query-by-concept
paradigm. As a natural result, the user’s mental load can be greatly
relieved since browsing with highly relevant concepts may in-
crease the chance of finding relevant shots. Few studies are con-
ducted to explore the concept space for more efficient feedback.
In our previous work [29], we apply c-tf-idf to IVR and significant
improvement over the text baseline is achieved. However, c-tf-idf
is not expressive enough to fully explore the feedback information
because after a few feedback examples are given, the weights for
the selected concepts will become nearly constant.

To the best of our knowledge, almost all formulation for query-
by-concept, no matter in AVR/IVR, are based on the concept level
instead of finer thread granularity. The only exception is our previ-
ous work [33] where a concept thread (called as concept segments
in [33]) feedback mechanism is proposed. However, it aims not at a
new formulation for video query and does not provide the impor-
tant understanding of why thread based representation is better
over concept based representation. In this paper, we provide a gen-
eral thread based representation for video query and fully develop
the SemanFeed approach, addressing issues related to improved
parameter estimation and multi-concept threads. In addition,
extensive experiments are also carried out, including empirical
query ground-truth analysis, sensitivity analysis to varied concept
detection results and initial rank list, and comparative study with
some state-of-the-art reranking method.
3. Representing query with semantic concepts

In this section, after presenting the preliminaries and the gen-
eral retrieval model, we briefly introduce the concept based query
representation as a basis. Then we present the structured thread
based query representation and the corresponding retrieval model.

3.1. Preliminaries

Let L = {cj} be a lexicon of concepts with M = jLj as the number of
concepts. Let C = {si} be a video corpus and N = jCj is the number of
documents in C. Each shot (visual document) si is represented by a
concept vector di ¼ ½di1; di2; . . . ; diM�T 2V, V being the concept
space di resides. Note that dij = P(cjjsi) is the probabilistic prediction
score of concept cj occurring in si. Let the scalar form di also denote
shot si. In interactive retrieval, the user feedback specifies a series
of examples (shots) clicked as F ¼ fsit ; yitg

T
t¼1 where it is the index

of the shot chosen at time t, corresponding to a series of points
fditg �V. Here yit 2 f�1;1g is the user provided label for irrele-
vant and relevant examples, respectively. Let F+ (F�) denote the
set of those relevant (irrelevant) examples.

By viewing concepts as visual terms and shots as visual docu-
ments, the parallelism between video and text document is natu-
rally created. With this premise, we leverage on the well-
founded model in the information retrieval field, i.e., Vector Space
Model to perform video retrieval [34]. It considers a document dt

and a user query qt as Mt-dimensional vectors dt
w and qt

w, respec-
tively, where each dimension is a weight associated with a distinc-
tive term and Mt is the size of the term lexicon. We denote the
superscript t for text and add subscript w to emphasis that they
are not raw term counts. The relevance of dt with regard to qt is
measured as
Rðdt
; qtÞ :¼ dt

w � qt
w ¼

XMt

i¼1

wði;dtÞwði; qtÞ ¼
X
qt

i
2qt

wði; dtÞwði; qtÞ; ð1Þ

where w(i,dt) and w(i,qt) are weights for the ith term. w(i,dt) mea-
sures the importance of the ith term for document dt and w(i,qt) for
query qt similarly. Intuitively R(dt,qt) measures the similarity be-
tween dt and qt and important terms for both document and query
are emphasized. Often a query only contains a few terms qt

i . This al-
lows for efficient inverted list operations to speedup the retrieval
process.

Unlike text retrieval where keywords are provided explicitly,
user usually does not specify the relevant concepts for a video
query. A video query q can be represented as some plain text
with/without additional query images. An automatic retrieval
model accepts the query input and generates an initial ranked
list for interactive retrieval. During the feedback process, a QU-
COM algorithm finds a subset of relevant concepts Lq, which cor-
responds to a few dimensions in V. After getting Lq, the same
vector space model ranks each shot d by its relevance to query
q, defined as

Rðd; qÞ :¼
X
cj2Lq

wðj;dÞwðj; qÞ; ð2Þ

where for each concept cj 2 Lq, two weights w(j,d) and w(j,q) are
associated with the shot and the query, respectively. Similarly, the
weights should consider both concept occurrence frequency in
one shot and occurrence frequency across shots.

3.2. Concept based query representation

The central problem of concept based query representation is
concept selection and weight assignment. Here we introduce the
concept tf-idf (c-tf-idf) approach to show how concept based query
representation works. c-tf-idf takes inspiration from the tf-idf term
weighting scheme in the information retrieval field. By viewing
concepts as virtual terms (the occurrence frequency of a concept
in a shot is a real value in [0,1]), we obtain the c-tf-idf metric.
The intuition is that highly probable concepts in the query are
more likely to be relevant; concepts occur in too many documents
might be less informative. The c-tf-idf of concept cj in a shot di is
defined as

c � tf � idf ðcj; diÞ ¼ freqðcj;diÞ log
N

freqðcjÞ

� �
; cj 2 C; ð3Þ

where freq(cj,di), the occurrence frequency of cj in di, is approxi-
mated by dij = P(cjjdi), and freqðcjÞ ¼

P
ifreqðcj; diÞ is the occurrence

frequency of cj in the corpus and approximated similarly. P(cjjdi)
is the probability of finding cj in di, estimated by the concept detec-
tors. The essence of this tf-idf based concept selection method is to
pick out concepts which maximally reduce the uncertainty of the
corpus’s relevance to the query [35].

Thus we calculate both w(c,d) and w(c,q) in Eq. (2) by the c-tf-
idf metric. The c-tf-idf calculation for a shot d is quite straightfor-
ward since both freq(c,d) and freq(c) are known. Given a query q
with a few query image examples, c-tf-idf takes the averaged
occurrence frequency of the image examples as the occurrence fre-
quency estimation for each concept. When a certain feedback
information F is collected, we assume F express the query need
and generate w(c,q) similarly with the averaged occurrence fre-
quency. More specifically, we take freqðcj; qÞ ¼ 1

jFþj
P

i2Fþdij and cal-
culate w(c,q) by Eq. (3). w(c,q) measures the relevance of concept c
to query q. So we select the top k concepts with highest query c-tf-
idf score. Given the selected concepts, shots are ranked by rele-
vance score defined in Eq. (2) for search and further fusion with
other retrieval results.
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c-tf-idf is a robust approach since it takes the average of concept
prediction scores of multiple relevant examples, as shown in Eq.
(3). However, when over tens of relevant examples are discovered
in the interactive feedback process, the c-tf-idf metric becomes al-
most fixed and is too robust to incorporate more information.

Yang and Hsu [12] takes c-tf-idf as the concept selection method
and iteratively re-estimates the weights for the selected concepts
in an ordinal ranking framework. They assume that automatic re-
trieval result is meaningful, and adopt the ListNet [27] algorithm
to align the combined concept scores with the retrieval result by
tuning the weight for each selected concept.

3.3. Structured concept threads for query representation

Observing the fact that relevant shots for a query may not be
top-ranked ones in the corresponding concept lists, we are moti-
vated to relax the concept based formulation by introducing con-
cept threads. To put it simple, query representation by structured
concept threads can be divided into two parts of thread definition
and mapping query to structural threads. Each concept index is a
ranked list of the shots in the corpus. Threads for one concept
can be defined as a partition of the concept index into some non-
overlapping regions, better still if the partition has some explicit
semantic interpretation. Also multi-concept threads are also possi-
ble since often specific concept can be identified by certain combi-
nation of two broad-meaning concepts. For example, Athlete is
People who is playing Sports. Subsequently, Basketball Player may
be implied as People [0.7,0.8] and Sports [0.6,0.7].

Given a non-overlapping partition function Hj:[0,1] ? {l} for a
concept cj, a partition bins {bjl} of the concept index can be derived
as bjl = {d,Hj(d) = l}, satisfying [ lbjl = C and bjl \ bjl0 = £ for l – l0. The
partition function can be a simple histogram partition, or an adap-
tive function with respect to the distribution of the scores in the
concept index. The continuity of the partition function is required.
Each bjl serves as a concept thread candidate. The joint bin of bjl and
bj0l0 of different concepts cj and cj0, defined as bjlj0l0 = d,Hj(d) = l and
Hj0 = l0, may also provide additional multi-concept threads.

Given the single-concept threads, together with some metric to
measure their utility to a query, a stronger combination of multi-
concept threads can be mined by adopting the Apriori [11] algo-
rithm. Take the two-concept thread as an example, it defines actu-
ally a region in the two-dimensional concept space and covers a
few relevant examples. It is a stronger representation for possible
AND logic among sub-concepts. By searching only the combination
of threads with large pþjl , we can control the computational com-
plexity at reasonable level.

Given the threads, an important problem of measuring thread’s
utility with respect to a query should be considered. If a large pool
of past queries can be obtained, together with some click-through
data, one can leverage on the implicit feedback information, and
possibly additional semantic information to relate the current
query to existing threads. Otherwise, explicit feedback information
can provide such kind of cue, as we will explain in Section 4. A met-
ric reflecting the strength of the thread bjl for a query should be de-
fined, from semantic correlation, query relatedness or the probability
of relevant example occurrence in bjl as pþjl ¼ Pðyi ¼ 1jdi 2 bjlÞ. We
choose this pþjl , relevant example ratio (rel-ratio) as the metric. A
detailed description of estimating pþjl is given shortly afterwards
in Section 4.1. However, one relevant example can belong to sev-
eral bins of different concepts with different pþjl . Noticing that, sim-
ply presenting the thread with the largest pþjl to the user omits the
impact of other bins and the respective c-tf-idf scores of each
example. Instead, combining the concept level c-tf-idf score and
the thread level pþjl estimation well balances the two cues. More
formally, we adapt the vector space model as
Rðd; qÞ ¼
X
cj2Lq

X
l

pþjl wðcj;dÞwðcj; qÞdðd 2 bjlÞ; ð4Þ

where d(x) is the indicator function which is 1 when x is true and 0
otherwise. Given an inverted list of the concept indices, d(x) can be
implemented very efficiently. Similarly, multi-concept threads
emphasize the documents in the joint bin of both concepts and their
scores are defined as pþ

jlj0 l0
dðd 2 bjlj0 l0 Þðwðcj; dÞ wðcj; qÞ þwðcj0 ; dÞ

wðcj0 ; qÞÞ. For the sake of understanding, we can take the threads
as possible potential sub-concepts, and each with a probability to
indicate its usefulness for the current query. In this way, the vector
space model remains unchanged but our concept index changes. It
will be interesting to see how to mine real sub-concepts from the
query feedback information and we leave it as an important future
work.

Until now, we are treating each query as one weighted sum of a
certain concepts/concept threads. This corresponds to the simple
weighted AND (WAND) logic of the underlying concept threads.
However, in many cases, the query information need could be
more complex. Take the query ‘‘multiple people in formation” as
an example, the most salient concepts may be Demonstra-
tion_Or_Protest, Crowd and Protesters. However, another concept
combination of Soldiers, Crowd and Military_Personnel, may also
contribute some relevant results. We term the WAND combination
of a few concept threads as the query component hereafter. An OR
logic will be suitable to combine two WAND query components.
Thus we propose a two-layer query inference network for the
structured query representation, as shown in Fig. 2. Multiple query
components can be generated again through various information
source, e.g. from multiple related queries identified from the query
pool. Each query component qr defines a relevance score as in Eq.
(4). The OR logic is implemented as a max operation of the scores
obtained from multiple query components as

Rðd; qÞ ¼max
r

Rrðd; qÞ: ð5Þ

This two-layer query inference network can incorporate different
kinds of query operations and it is possible to take different types
of query operations with respect to a given query.

4. Mining implicit semantics from feedback analysis

4.1. Generating concept threads

Given the feedback information as points in the concept space,
concept threads can be obtained by covering the points with low-
dimensional regions. This is essentially a distribution density esti-
mation problem with much noise present. Assuming a parametric
form of the distribution, the Expectation Maximum (EM) algorithm
can be applied. However, EM is slow and it is difficult to decide
proper distribution form which fits for all different queries. Mean-
while, the relevant examples are found through a browsing pro-
cess, and may possibly not be sampled according to its
underlying distribution. Considering the huge amount of noise in-
volved, we take the non-parametric histogram estimation as a ro-
bust partition scheme for the concept index. This solution is also a
trade-off between accuracy and real-time update needs. For inter-
active retrieval, real-time execution is a must since users cannot
tolerate over 2 s of delay while searching [36]. Even with this sim-
plified representation, searching over all concepts in the lexicon is
neither necessary nor feasible at feedback time. Since the c-tf-idf
measure provides a rough estimation of the usefulness of the con-
cept to a query, we first filter out a few concept candidates for gen-
erating the actual threads. We also fix the size of the histogram
bins to be equally split and adaptively increase the bin size as
the feedback examples accumulate. More specifically, we set
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jHj /
ffiffiffiffiffiffiffiffi
jFþj

p
as in standard non-parametric distribution estimation,

together with minimal and maximum limits of jHjmin = 5 and
jHjmax = 20, respectively. These bins serve as thread candidates.

Now we discuss how to estimate pþjl . Given the number of rele-
vant examples in bjl as jFþjl j or more briefly as rjl, and the browsed
examples in bjl as jFjlj or ajl, a straightforward estimation would
be pþjl ¼

rjl

ajl
. A Laplacian smoothing of

pþjl ¼
rjl þ 1
ajl þ 1

ð6Þ

prevents both zero division and omitting those threads where no
relevant examples are discovered to that point. However, the num-
ber of total shots in bjl, ojl, can be counted in for estimating pþjl . One
variation is

pþjl ¼
rjl þ 1
ojl þ 1

ð7Þ

which simply replaces ajl to ojl. This is a robust and conservative
estimator and degrades gracefully to the original c-tf-idf approach
when only one histogram bin is used. A more complex Bayesian
inference method assumes that the presence of the relevant/irrele-
vant examples in a given thread bjl obeys the binomial distribution
with a Beta conjugate distribution as f ðx;a;bÞ ¼ 1

Bða;bÞ x
a�1ð1� xÞb�1.

Here B(a,b) is a normalization constant, a and b are hyper-parame-
ters. The posterior distribution can be derived as

pþjl ¼
rjl þ a

ojl þ aþ b
: ð8Þ

The hyper-parameter can be chosen in proportion to the total num-
ber of shots in bjl as

a ¼ ojlP
l

ojl
rjl; b ¼ ojlP

l
ojl
ðajl � rjlÞ: ð9Þ

From another point of view, this update can be seen as a smoothing
technique.

To further improve the estimation accuracy of rel-ratio, we use a
kernel function to smooth the examples. So here we allow the
example counts to be real number. We take the Epanechnikov ker-
nel which has the profile

kEðxÞ ¼
1� x; 0 6 x 6 1;
0; x > 1:

�

Fig. 3. The structured query com
The Gaussian kernel could be an alternative choice. Accordingly, the
bandwidth h which controls the spread of each example should be
considered as well. As examples accumulate, shrink the bandwidth
h accordingly and we will asymptotically arrive at the exact rele-
vance estimation, as guaranteed by kernel density estimation liter-
ature, e.g. [37]. Also, when the concept indexing performance can be
estimated before search, we can choose the bandwidth h for each
concept independently with respect to its performance since lower
performance corresponds larger score variance, which can be re-
flected in h. However, in the current datasets (as detailed in Section
5), we do not have reliable performance estimation and fix h to half
of the histogram bin size.

Given single-concept threads, we can generate multi-concept
threads as outlined in Section 3.3. In this study, we allow first half
of the threads ordered by pþjl to be searched and accept the com-
bined thread only when the joint thread with pþ

jj0 ll0
> 5pþjl pþ

j0 l0
. These

multi-concept threads enrich the representation.

4.2. Structured query representation

Given the thread generation process, the two layer query infer-
ence network is produced sequentially by a boosting like greedy
search method. In one round of feedback, first a few concept
threads are obtained as one query component. Because this query
component may only explain part of the examples, a weight up-
date of the examples emphasizes the not well-explained ones.
Thus, we select a few new threads as a second query component
and this can be repeated until the desired number of query compo-
nents (Nv) is obtained. Please see Fig. 3 for details of this process,
where we define the weight output for each relevant example to
account for the contribution of the all threads containing it in Step
2.b.

For each query component qr with weighted examples, both c-tf-
idf and pþjl are upgraded to a weighted version. Accordingly, qr defines
a relevance score Rrðd; qÞ ¼

P
cj2Lr

q

P
lp
þ
jl dðd 2 bjlÞwðcj; dÞwðcj; qÞ

where Lr
q is the set of selected concepts for threads in round r. The

OR logic is implemented as a max operation over multiple query
components, as defined in Eq. (5).

4.3. Fusion via reranking

Query-by-concept, on its own, still cannot achieve optimal re-
trieval performance since other modalities (e.g., text) also provide
useful ranking information. We study this multi-modal fusion
ponents generation process.
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problem under a reranking framework. That is, given a search re-
sult list obtained from certain modalities (e.g. text), we target at
improving the search quality by reranking the list with query-by-
concept results. A linear fusion model, though simple, has been
shown adequate to fuse visual and text modalities in video retrie-
val [25,12]. Given a search result list, we divide the reranking pro-
cess into two steps: (1) obtain a reranked list from the query-by-
concept modality; (2) linearly combining the initial list with the
new reranked list, as

simnewðd; qÞ ¼ b � siminitialðd; qÞ þ ð1� bÞsimrerankðd; qÞ; ð10Þ

where b 2 [0,1] is a weighting factor, indicating the bias on the two
ranked lists. b = 1 means no reranking is introduced at all; b = 0
means totally reranked. Ideally, the list with higher precision
should be more favored. We use an unbiased weighting scheme
for the sake of simplicity, i.e., setting b = 0.5.

With regard to sim(d,q), we use a robust rank-based normaliza-
tion method [38],

simðdi; qÞ �
N þ 1� i

N
; i ¼ 1; . . . ;N; ð11Þ

where di is the ith shot in the ranked list, and N the list’s length.

5. Experiments

After introducing the experimental setup, experiments are car-
ried out in five parts: First of all, we show the necessity of QUCOM
and the insufficiency of the concept based query representation
through empirical evidence. Secondly, we present the detailed
parameter settings of the proposed representation with the
SemanFeed approach for feedback. Then comparative studies of
SemanFeed, c-tf-idf and ordinal reranking [12] are conducted, to-
gether with comparison of two sets of concept detectors and two
different initial rank lists in Section 5.4. Finally, SemanFeed’s error
tolerance and efficiency are reported.

5.1. Experimental setup

It has been always difficult to obtain enough data to evaluate
multimedia systems due to copyright issues and the sheer volume
of data required. Thanks to NIST for the TRECVID video retrieval
benchmark, an open, metric-based evaluation via a common large
data set for video retrieval and indexing techniques is thus avail-
able to the research community. So experiments are carried out
on both TRECVID’05 (TV05) and TRECVID’06 (TV06) data set, fol-
lowing the standard benchmark and the official Average Precision
(AP) measurement to ensure the comparability across system.
TRECVID’07 dataset is not used because the data set mainly are
educational programs while the LSCOM concept training set is ori-
ginal annotated on TRECVID’05 TV news programs. This train-test
distribution mismatch violates the basic independently identical
distribution assumption of the indexing algorithm and causes se-
vere indexing performance degradation. Thus TRECVID’07 is not
helpful to test the proposed representation.

5.1.1. Data sets and measurement
TV05 and TV06 share the same training set (TV05d) but have

different test set (TV05t and TV06t). The whole set (TV05+06) con-
Table 1
Data set statistics.

TV05d TV05t

Length (h) 80 80
Shots 44k 46k
Keyframes 75k 78k
Time span October–November 2004 November–December 2004
tains 310-h multilingual news video captured from MSNBC/NBC/
CNN (English), LBC/ALH (Arabic) and CCTV/PHOENIX/NTDTV (Chi-
nese). The video data are divided in shots and each shot is repre-
sented as a few keyframes. An official set of �300k image
keyframes are extracted. Table 1 provides some statistics of the
data sets.

We use 37 multimedia search queries defined in TV05 and TV06
for the experiments. The selected queries express diverse informa-
tion needs concerning general people, things, events, locations, etc.
and combinations of these needs. Please refer to [30] for more de-
tails on query topics and data sets. We excludes 11 ‘‘PersonX”
query topics since those query topics rely on query-by-text para-
digm strongly and do not conform to our goal.

The performance is evaluated by Average Precision (AP) on shot
level. Given a ranked list L, AP is defined as 1

R

PS
j¼1

Rj

j Ij where R is the
number of true relevant instances in a set of size S; Rj the number
of relevant instances in the top j instances; Ij = 1 if the jth instance
is relevant and 0 otherwise. It can be seen as an approximation to
the area under the Precision–Recall curve. The relevant shots are
judged by NIST using a pooling method. To compare results across
queries, Mean Average Precision (MAP) is defined as the mean AP
scores involved for all queries.

The concept models for indexing are trained on the leave-out
TV05d data set and concept indices are generated by fusing the
prediction results on the test set, respectively. TV05d is annotated
with 449 concepts from the LSCOM [2] multimedia concept ontol-
ogy, from which 311 concepts with more than 20 positive exam-
ples are chosen to index. The concept index generation process
consists of three stages of multiple feature extraction, classifier
training and fusion. We use five kinds of features, SVM classifier
and a simple average fusion algorithm for the three respective
stages. This lexicon is referred as concept311 hereafter. Its index-
ing mechanism is among the state-of-the-art approaches, as pro-
ven by past TRECVID benchmark. Please compare [5,15] for more
details. In addition, another external set of concept lexicon, 374
concept detectors from Columbia University [39] (referred as con-
cept374 hereafter), is also evaluated to test the sensitivity of
SemanFeed to underlying concept detectors.

5.1.2. Evaluation protocol
User’s behavior is one of most important factors influencing the

interactive retrieval performance. To compare different approaches
fairly and to facilitate the labeling effort, we use the officially pro-
vided ground truth by NIST as a surrogate to simulate the human
labeling process. Analysis of previous user log shows that user
can browse average 2000 shots during a 15-min process (standard-
ized TRECVID search time). Since the temporal dimension is proven
to be very effective among diverse functions of the browsing inter-
face, we incorporate this simulative action also, as shown in the
evaluation protocol outlined in Fig. 4.

5.2. Why c-tf-idf is not enough?

Though TRECVID queries are designed towards utilizing the
smaller LSCOM-Lite lexicon of 39 concepts, a small number of
concepts in a larger LSCOM lexicon also contribute to the overall
search performance. To show that we exhaustively evaluate each
concept index for each TRECVID’06 query in automatic retrieval
TV06t TV05+06

150 310
80k 170k
144k 297k
November–December 2005 October–December 2004/2005
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setting and count the number of concepts with AP > 0.01. The re-
sult is plotted in Fig. 5. Clearly, many queries have only a few
(<10) relevant concepts, indicating the necessity to perform QU-
COM. While on average 6.1 concepts are relevant to a query, a
large standard deviation variance of 7.3 concepts is present
across different queries. Also, almost no concept can help retrie-
val of ‘‘PersonX” queries. This observation demonstrates the
importance of performing QUCOM when we intend to exploit
the concept modality.

Another ideal experiment tries to show that even with rele-
vant concepts, relevant examples may often clustered some-
where in the middle of the ranked concept index instead of
only heavily populated at the top of the index, as illustrated in
Fig. 6. In this experiment, the ground truth shots for four ran-
domly selected queries are identified in the four hand-selected
relevant concept indices. Their respective rel-ratio is calculated
and plotted. Except query 163 (‘‘meeting with a large table
and more than two people”) which is only densely populated
at the top position, all three others have some other densely
populated threads. For query 161, there exist no relevant results
in the top ranked shots until the prediction confidence is around
0.8. Given the large number of relevant shots (1245 for 161 and
1160 for 163) and the state-of-the-art concept indexing tech-
nique adopted, the significance is evident. This experiment
shows the necessity of using SemanFeed to mine the potential
threads. One possible reason for this clustering phenomenon is
the hypernym surrogate for a target concept. The specific nature
of query need also supports our local clustering assumption,
although clusters found in this way sometimes may lack clear
semantic meaning.

5.3. Parameter settings

We evaluate the influence of different parameters here, includ-
ing: the number of threads in one concept Nt, the number of con-
cepts Nc in one query component, the number of query
components Nv and the OR query logic. In these experiments, we
fix the default parameters as Nt = 5, Nc = 3, Nv = 3 and c = 10 unless
otherwise stated.

Parameter Nt. We run an experiment with fixed Nt by allowing
Nt varying in [1,15] and show the result in Fig. 7. Note that Nt = 1
is c-tf-idf with the re-weighting scheme. We find that Nt = 5 consis-
tently yields the best performance on both TV05 and TV06. Then
we adopt the adaptive bin size scheme which has a similar perfor-
mance with that of Nt = 5. So fixing Nt = 5 is enough for the limited
amount of feedback examples, at least for the current data set.
Fig. 4. The evalua
Parameter Nc. Unlike leveraging on KL-divergence to automati-
cally determine the number of related concepts [28], we just use
c-tf-idf to filter Nc + 2 top concept candidates, and then choose
the best Nc concepts with the largest pþb and their respective
threads. Nc could be selected on a per query basis. But we choose
Nc = 3 for efficiency since no improvements can be observed after
that point, as shown in Fig. 8. And we can see that SemanFeed is
not sensitive to the number of concepts selected when Nc > 3.

Parameter Nv. Similarly, the number of query components are
chosen as shown in Fig. 9. Again, the result is consistent over both
TV05 and TV06 and we choose Nc = 3. Note that Nv = 1 corresponds
tion protocol.



Fig. 7. Deciding the number of threads Nt in one concept.

Fig. 8. Deciding the number of concepts Nc in one query component.

Fig. 9. Deciding the number of query components Nv given a query.

3 A few topics have no more than 100 ground truth shots are browsed with more
eighbor shots around the discovered relevant shots to get 2000 shots. However, this
ill not influence MAP too much because these queries usually have low APs.
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to concept thread without structured query formulation. The de-
tailed evaluation of concept thread without structured query for-
mulation is presented in Section 5.4, where for most query
topics, structured formulation outperforms the single query com-
ponent. So this structured formulation is more powerful in repre-
senting the query information need.

We list the structured concept thread formulation for three
queries in Table 2. For ‘‘office setting”, the second query compo-
nent and the third one are supplements to the first component.
For example the thread [0.6,0.8] of Computer-TV-Screen possibly
contains a lot of computers and the Report and Anchor imply
news studio which has high visual similarity with office setting.
For ‘‘people reading newspaper”, it is clear that the relevant
threads of Newspaper are dominating. We also synthesize one to-
pic ‘‘helicopter or ship/boat” by combining the ground truth of
topic 0187 ‘‘helicopters in flight” and 0183 ‘‘water boats ships”.
The first two query components consist of Lake, Waterway and
Airplane-Takeoff, which mainly captures the concept ship/boat.
Then the structured formulation finds another component con-
sisting of Helicopter-Hovering, Smoke-Stack and Factory with a
clue about sky, thereby video clips about Helicopter possibly con-
gregate in this component.
5.4. Comparative experiments

5.4.1. SemanFeed vs. c-tf-idf
For easy comparison, we decompose SemanFeed into two sepa-

rate configurations:

1. SF-Single: SemanFeed with a single query component of con-
cept-threads from Nc = 3 concepts with leading c-tf-idf scores.

2. SF-Full: SemanFeed with the structured query formulation, with
Nv = 3 and Nc = 3.

The top-ranked automatic runs in the respective TRECVID
benchmark are taken as the initial rank lists, respectively (TV05
NUS4, TV06 IBM_QCLASS). Here we stick to the concept311 index.
Both conditions will be changed to test SemanFeed’s sensitivity to
initial rank list and concept index later. We establish two baselines
for comparison. The first one is produced by browsing Nt = 2000
shots3 following the protocol in Fig. 4, without executing the feed-
back step. The second one is feedback with the c-tf-idf approach.
As previous experimental result shows [29], c-tf-idf works as good
as the logistic regression model in IVR.

The per-query comparison results are shown in Fig. 10. MAP is
also shown, together with an additional MP1 calculated as MAP
excluding query 171 (195) on TV05 (TV06) since this nearly perfect
query result cannot help to distinguish different approaches. It is
evident that the two concept based approaches significantly im-
prove the browsing only baseline both on TV05 (70%) and TV06
(55%), measured in MP1. The observation that SF-Full is 20% better
than c-tf-idf, shows that SemanFeed explores the feedback data
more fully. Note the large performance gap between c-tf-idf and
SemanFeed in both query 185 and 189 can be explained by the for-
mer’s inability to further identify relevant thread in the correct
concept. For 185, the relevant examples are densely populated in
[0.5,0.7] while the top of the index is filled with many close-up
Newspapers. See Fig. 6 and Table 3 for further evidence. Similar
phenomenon is observed for 189.

Comparison of SF-Full and SF-Single shows for queries with ex-
plicit or implicit OR logic, like 167, 168 and 169 in TV05, and 192,
193 in TV06, the performance increase is evident. For example,
query 169 ‘‘tanks or other military vehicles” is clearly one with
OR concept logic; query 193 ‘‘smokestacks, chimneys, or cooling
towers with smoke or vapor coming out” is another one. Query
167 ‘‘airplane taking off” is one with implicit OR logic. Through
carefully examining the concept index, we find that Cigar-boat se-
lected in the second component has some water related appear-
ance which resembles the airplane run into the sky. When no
explicit OR logic is present in the query, the two-layer query infer-
ence network does not hurt the performance. Thus we consistently
observe a 7% performance gain of SF-Full over SF-Single.

To understand why thread outperforms c-tf-idf, we pay close
attention to the difference between the representations and per-
form one round feedback with both c-tf-idf and SemanFeed on
the top 200 shots of automatic search result for each topic. For
SemanFeed, 5 concepts are chosen as initial candidates and the
top threads are generated. Results for a few queries with different
overall relevant ratios are shown in Table 3. Although concepts se-
lected by c-tf-idf are quite reasonable, we find that their weights do
not change much. In contrast, the thread representation not only
selects finer-granular concept threads, but also gives more diverse
rel-ratio weights for the threads. The difference is evident in ‘‘peo-
ple reading newspaper”. For c-tf-idf, Newspaper and Host receive al-
most the same weight, while their rel-ratio weights are quite
n
w



Table 2
Three query components of ‘‘office setting”, ‘‘people reading newspaper” and ‘‘helicopter or ship/boat”. Only top 4 concept-threads are listed for each component here due to
space limitations.

Topic Query components

Office setting, desks, tables, computers Office [0.8,1.0] Office [0.6,0.8] Computers [0.6, 0.8] Computers [0.8,1.0]
Office [0.8,1.0] Office [0.6,0.8] Computer-Or-TV-Screens [0.6,0.8] Reporters [0.6,0.8]
Male-Reporter [0.8,1.0] Male-Anchor [0.8, 1.0] Lawyer [0.6,0.8] Male-Anchor [0.6,0.8]

People reading newspaper Newspapers [0.6,0.8] Newspapers [0.8,1.0] Newspapers [0.4,0.6] Host [0.8,1.0]
Newspapers [0.6,0.8] Newspapers [0.8,1.0] Newspapers [0.4,0.6] Host [0.8,1.0]
Newspapers [0.6,0.8] Interview [0.8,1.0] Newspapers [0.8,1.0] Newspapers [0.4,0.6]

Helicopter or ship/boat Lakes [0.8,1.0] Waterways [0.8, 1.0] Airplane-Takeoff [0.8,1.0] Waterways [0.6,0.8]
Lakes [0.8,1.0] Waterways [0.8, 1.0] Airplane-Takeoff [0.8,1.0] Waterways [0.6,0.8]
Helicopter-Hovering [0.8,1.0] Helicopter-Hovering [0.6, 0.8] Smoke-Stack [0.8,1.0] Factory [0.8,1.0]
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Fig. 10. Per query comparison of different concept based feedback approaches.

Table 3
Sample queries and their respective representation by concepts/threads. Queries are listed in the descending order of relevant items found in the top 200 shots. For concept based
representation, the top 3 selected concepts and their respective c-tf-idf score is shown. For thread based representation, the top 3 selected threads and their respective rel-ratio
weights are shown.

Topics Feedback statistics Concept representation Thread representation

Top 3 concepts c-tf-idf Top 3 threads rel-ratio

Soccer goalposts Relevant: 94 Soccer 1.42 Soccer [0.8,1.0] 0.94
Irrelevant: 106 Sports 1.19 Sports [0.8,1.0] 0.93

Lawn 1.16 Lawn [0.4, 0.6] 0.9

Natural scene Relevant: 39 Landscape 0.58 Landscape [0.8,1.0] 0.67
Irrelevant: 161 Valleys 0.57 Hill [0.4, 0.6] 0.6

Hill 0.56 Mountain [0.4,0.6] 0.48

Group people, dressed in suits, seated, with flag Relevant: 20 Protesters 0.4 Meeting [0.8,1.0] 0.33
Irrelevant: 180 Bus 0.3 Interview [0.4, 0.6] 0.18

Interview 0.29 Meeting [0.4,0.6] 0.14

People reading newspaper Relevant: 5 Newspapers 0.61 Newspapers [0.4,0.6] 0.5
Irrelevant: 195 Host 0.57 Host [0.4,0.6] 0.07

News-Studio 0.5 Guest [0.2,0.4] 0.05
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different. For ‘‘group people, dressed in suits, seated, with flag”, the
implicitly relevant concept thread of Interview [0.4,0.6] is identi-
fied by SemanFeed while c-tf-idf can only search at the top of the
rank list of Interview. This again shows that relevant results do
not always cluster at the top of a albeit relevant concept rank list.

5.4.2. SemanFeed vs. ordinal reranking
Though SemanFeed clearly outperforms c-tf-idf, it is necessary

to compare it with other reranking algorithms. Here we choose
the recently proposed ordinal reranking [12] approach since it
shows state-of-the-art performance in AVR and is superior to
SVM with pseudo-bagging in the concept subspace [26]. The exper-
iments are conducted on both concept311 and concept374. Follow-
ing [12], we implement the linear ListNet algorithm [27]. The
learning rate g is set as g = 0.5 since larger value leads to no con-
vergence for some queries on concept311. We also enumerate
the number of concepts selected by c-tf-idf from 5 to 100 concepts
with increment 5 (including 75 concepts in [26]). We select the
number of concepts with the best performance for fair comparison
across approaches. The results are shown in Table 4.

From Table 4, we observe that SemanFeed consistently outper-
forms ordinal reranking on both datasets across these two concept
lexicons. This is reasonable since ordinal reranking shares the same
top ranking assumption with c-tf-idf. Actually it assigns different
weights to the concept lists selected by c-tf-idf. In contrast, Seman-
Feed relaxes such assumption. To our surprise, ordinal reranking
does not always outperform c-tf-idf. We conjecture that the abso-
lute relevant/irrelevant judgements provided in IVR are harder to
regress than normalized rank scores appeared in AVR [12] where
ordinal reranking is initially applied.

5.4.3. SemanFeed across different concept detectors
Now we analyze the influence of different concept detectors on

SemanFeed. This experiment is helpful for determining whether
SemanFeed takes advantage of some detector specific characteris-
tics or relies on more general cues to gain over c-tf-idf. If Seman-
Feed leverages on some particularity of the indexing mechanism
of concept311, we should observe that its performance is similar
to or even worse than that of c-tf-idf on concept374. Shown in Ta-
ble 4, SemanFeed significantly outperforms c-tf-idf on both con-
cept374 and concept 311, and with a large margin on 3 of 4
times. Though preliminary, this evidence is against that Seman-
Feed is concept-detector dependent. Rather, it is quite possible that
SemanFeed utilizes some concept hierarchy and/or identifies query
restricted concept thread through feedback information. However,
given current limited query and associated groundtruth, we cannot
Table 4
Performance comparison of SemanFeed, c-tf-idf and ordinal reranking (denoted as ordinal i
parentheses is the improvement over the respective baseline. Note MP1 is MAP excluding

MP1 Baseline Concept311 detector

c-tf-idf Ordinal

TV05 0.326 0.461(41%) 0.474(45%)
TV06 0.256 0.323(27%) 0.319(25%)

Table 5
SemanFeed with two initial rank lists on TV05/06 of different performance. The good ra
improvement over the respective baseline. Note MP1 is MAP excluding nearly perfect que

MP1 Best rank list

Baseline c-tf-idf SF-Full

TV05 0.326 0.461(41%) 0.564(73%)
TV06 0.256 0.323(27%) 0.393(54%)
draw definite conclusion beyond this. It is noticeable that the per-
formance gain of SemanFeed over the baseline is smaller on con-
cept374. However, we observe the same phenomenon on both c-
tf-idf and ordinal reranking. We attribute this to the relative lower
quality of concept374.

5.4.4. SemanFeed across different initial lists
Similarly, it is interesting to see how the initial rank list af-

fects SemanFeed’s performance. Thus besides the best lists, we
incorporate two different initial rank lists from TV05/06 Tsing-
hua automatic runs which are only of better-than-average qual-
ity. Following the same feedback protocol, we obtain the results
in Table 5. From Table 5, we have the following observations: (1)
Over both initial rank lists, SemanFeed achieves significant per-
formance gain over the simply browsing baseline and c-tf-idf.
So SemanFeed is not very sensitive to initial result performance
variations. (2) For the Tsinghua runs with only moderate initial
performance, the performance gain is more impressive (99% on
TV05 and 86% on TV06). Thus SemanFeed effectively utilizes
the feedback information to reduce the performance gap be-
tween different initial rank lists.

5.5. Error tolerance and efficiency

5.5.1. Feedback dynamics
The feedback dynamics tell us more than the final MAP score.

Three approaches of SF-Full, c-tf-idf and baseline are again com-
pared. We fix the feedback round to 100 documents here for illus-
tration purpose. The MAP for each round is shown in Fig. 11. We
can see that SF-Full examines only 500 documents to achieve the
full performance of the baseline in TV05, and some 900 documents
in TV06. So inferring the latent user information need through con-
cept feedback really helps alleviate the user burden. Consequently,
this concept based feedback approach has great potential for IVR.
The gap between SF-Full and c-tf-idf is evident, especially after a
few rounds of feedback. The initial small gap in TV06 is because
SemanFeed need more examples to estimate its additional param-
eters. The best submitted interactive runs in TRECVID are also plot-
ted, but only for reference. Rather, we would like to emphasize that
real interactive systems are hard to compare due to the complex
factors involved such as user, interface and indexing mechanism.
It is also important to point out that our simulated experiments
are too optimistic in failing to recognize the human factors in re-
trieval and overlooking the errors users made. We simulate such
labeling error subsequently. But rigorous user study is beyond
the scope of this paper.
n the table) on TV05/06 with two different sets of concept detectors. Percentage in the
nearly perfect query 171 (195) on TV05 (TV06).

Concept374 detector

SF-Full c-tf-idf Ordinal SF-Full

0.564(73%) 0.434(33%) 0.449(38%) 0.470(44%)
0.393(54%) 0.283(11%) 0.335(31%) 0.350(37%)

nklists are only of better-than-average quality. Percentage in the parentheses is the
ry 171 (195) on TV05 (TV06).

Good rank list

Baseline c-tf-idf SF-Full

0.253 0.434(73%) 0.505(99%)
0.170 0.273(61%) 0.316(86%)



Fig. 11. Feedback dynamics for different approaches, the x-axis is the number of examples examined.
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5.5.2. Mislabeling tolerance
To inspect the capability of mislabeling tolerance, we allow

some labeling noise. Analysis of previous real user log shows
that users on average have 20% false alarm rate (irrelevant
examples to be mistakenly labeled as relevant examples) and
3% miss rate (relevant examples to be mistakenly labeled as
irrelevant examples). This is reasonable in the TRECVID scenario
since users usually tend to submit all plausible result in the lim-
ited inspection time. Thus we perform simulative experiments
on TV05 to allow for r% false alarm error in the feedback. For
each r, the experiment is repeated 10 times. With those noisy
feedbacks, we mine the concept-threads with the SF-Full model
and retrieve the corpus with the threads. The performance is
shown in Table 6. Considering that the falsely incorporated irrel-
evant examples will bring the MAP down to 0.190, the 0.175
MAP averaged on the noise contaminated 10 runs does not dete-
riorate the performance much beyond that point. So this ap-
proach is rather insensitive to relevant example labeling errors.
The reason for this robustness comes from the average and
smoothed counting operation in each query component and
thread.
Table 6
Simulated IVR results with different mislabeling noise level.

Noise rate r (%) 0 10 15 20 25

MAP estimation 0.236 0.218 0.201 0.190 0.180
Average MAP – 0.187 0.177 0.175 0.174
5.5.3. Time efficiency
Procedures of both mining structured concept-threads and

reranking are efficient since only partial data are involved. It costs
100ms on average to return the fused search result from feedback.
This processing time is tolerable for users in an interactive retrieval
scenario. The experiments are all conducted on a standard laptop
with 2.0 GHz Intel Core 2 Duo CPU and 2 GB memory. Note that
the performances are obtained via an unoptimzied prototype sys-
tem. Efficient inverted-list will proven to be a great speed-up for
our application. This advantage makes our approach competitive
for practical search engines where real-time execution is a must.

6. Conclusions

In this paper, we attempt to provide a preliminary investigation
into the problem of alleviate the limited concept lexicon for
expressing possible complex query needs. This problem is neither
trivial nor ephemeral. To be concrete, we provide a new formula-
tion for video query as structured combination of concept threads,
contributing to the general query-by-concept paradigm. The pro-
posed representation incorporates the previous concept based c-
tf-idf formulation as a special case and extends the restricted
AND concept combination logic to a two-level concept inference
network. We apply this new formulation to interactive video re-
trieval on the TRECVID 2005 and 2006 data sets. As evidenced by
simulative experiments, the proposed query formulation offers
some 60% improvements over the simple browsing search baseline
in nearly real time. It also has clear advantage over the c-tf-idf ap-
proach within 100 ms of unoptimized feedback execution and
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achieves better result than the state-of-the-art online ordinal
reranking approach. It not only alleviates user’s workload signifi-
cantly but also is robust to mislabeling errors.

Although the size of queries is too small to be definite in conclu-
sion, our results suggest a promising new line of research to mine
absent specific concepts from the readily available indexed general
concepts. We are currently investigating the following directions:
improving the multi-concept thread generating algorithm; incor-
porating other possible query operations in the structured formu-
lation and even automatic concept combination structure
determination; exploring advanced user interface with user study
experiments for further evaluation; last but not least, mining ab-
sent specific concepts from the already indexed concepts.

References

[1] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, Content-based
image retrieval at the end of the early years, IEEE Transactions on Pattern
Analysis and Machine Intelligence 22 (12) (2000) 1349–1380.

[2] M. Naphade, J.R. Smith, J. Tesic, S.-F. Chang, W. Hsu, L. Kennedy, A. Hauptmann,
J. Curtis, Large-scale concept ontology for multimedia, IEEE Multimedia
Magazine 13 (3) (2006) 86–91.

[3] C.G. Snoek, B. Huurnink, L. Hollink, M. de Rijke, G. Schreiber, M. Worring,
Adding semantics to detectors for video retrieval, IEEE Transactions on
Multimedia 9 (5) (2007) 975–986.

[4] S.-F. Chang, W. Hsu, W. Jiang, L. Kennedy, D. Xu, A. Yanagawa, E. Zavesky,
Columbia university trecvid-2006 video search and high-level feature
extraction, in: Proceedings of TRECVID workshop, 2007.

[5] X. Li, D. Wang, J. Li, B. Zhang, Video search in concept subspace: a text-like
paradigm, in: Proceedings of CIVR, 2007, pp. 603–610.

[6] M. Campbell, A. Haubold, S. Ebadollahi, M.R. Naphade, A. Natsev, J.R. Smith, J.
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