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Abstract. In this paper we combine a state of the art eye center lo-
cator and a new eye corner locator into a system which estimates the
visual gaze of a user in a controlled environment (e.g. sitting in front
of a screen). In order to reduce to a minimum the computational costs,
the eye corner locator is built upon the same technology of the eye cen-
ter locator, tweaked for the specific task. If high mapping precision is
not a priority of the application, we claim that the system can achieve
acceptable accuracy without the requirements of additional dedicated
hardware. We believe that this could bring new gaze based methodolo-
gies for human-computer interactions into the mainstream.

1 Introduction

Eye location and tracking and the related visual gaze estimation are impor-
tant tasks in many computer vision applications and research [1]. Some of the
most common examples are the application to user attention and gaze in driv-
ing and marketing scenarios, and control devices for disabled people. Eye loca-
tion/tracking techniques can be divided into three distinct modalities [2]: (1)
Electro oculography, which records the electric potential differences of the skin
surrounding the ocular cavity; (2) scleral contact lens/search coil, which uses a
mechanical reference mounted on a contact lens, and (3) photo/video oculog-
raphy, which uses image processing techniques to locate the center of the eye.
Unfortunately, the common problem of the above techniques is the use of in-
trusive and expensive sensors [3]. While photo/video oculography is considered
the least invasive of the modalities, commercially available trackers still require
the user to be either equipped with a head mounted device, or to use a high
resolution camera combined with a chinrest to limit the allowed head move-
ment. Furthermore, daylight applications are precluded due to the common use
of active infrared (IR) illumination, used to obtain accurate eye location through
corneal reflection. Non infrared appearance based eye locators [4–11] can suc-
cessfully locate eye regions, yet are unable to track eye movements accurately.

The goal of this paper is to present a way to map eye gaze patterns on
a screen. These patterns are detected based on a few ingredients: (1) an eye
tracker that can quickly and accurately locate and track eye centers and eye
corners in low resolution images and videos (i.e., coming from a simple web



cam); (2) a scale space framework that gives scale invariance to the eye center
and eye corners localization; and (3) a mapping mechanism that maps eye and
corner locations to screen coordinates.

2 Isocenters Estimation

The isophotes of an image are curves connecting points of equal intensity. Since
isophotes do not intersect each other, an image can be fully described by its
isophotes. Furthermore, the shape of the isophotes is independent to rotation
and linear lighting changes [12]. To better illustrate the well known isophote
framework, it is opportune to introduce the notion of intrinsic geometry, i.e.,
geometry with a locally defined coordinate system. In every point of the image,
a local coordinate frame is fixed in such a way that it points in the direction of
the maximal change of the intensity, which corresponds to the direction of the
gradient. This reference frame {v, w} is referred to as the gauge coordinates. Its
frame vectors ŵ and v̂ are defined as:
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; v̂ = ⊥ŵ; (1)

where Lx and Ly are the first-order derivatives of the luminance function L(x, y)
in the x and y dimension, respectively. In this setting, a derivative in the w di-
rection is the gradient itself, and the derivative in the v direction (perpendicular
to the gradient) is 0 (no intensity change along the isophote). In this coordinate
system, an isophote is defined as L(v, w(v)) = constant and its curvature κ is
defined as the change w′′ of the tangent vector w′ which in Cartesian coordinates
becomes [13–15]:
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Since the curvature is the reciprocal of the radius, we can reverse Eq. (2) to
obtain the radius of the circle that generated the curvature of the isophote. The
radius is meaningless if it is not combined with orientation and direction. The
orientation can be estimated from the gradient, but its direction will always
point towards the highest change in the luminance. However, the sign of the
isophote curvature depends on the intensity of the outer side of the curve (for a
brighter outer side the sign is positive). Thus, by multiplying the gradient with
the inverse of the isophote curvature, the duality of the isophote curvature helps
in disambiguating the direction of the center. Since the gradient can be written
as {Lx,Ly}

Lw
, we have:

D(x, y) =
{Lx, Ly}
Lw

(
− Lw

Lvv

)
= −{Lx, Ly}

Lvv

= −
{Lx, Ly}(L2

x + L2
y)

L2
yLxx − 2LxLxyLy + L2

xLyy
. (3)



where D(x, y) are the displacement vectors to the estimated position of the
centers, which can be mapped into an accumulator, hereinafter “centermap”.
Since every vector gives a rough estimate of the center, we can convolve the
accumulator with a Gaussian kernel so that each cluster of votes will form a single
center estimate. Furthermore, the contribution of each vector can be weighted
according to a relevance mechanism. The main idea is that by collecting and
averaging local evidence of curvature, the discretization problems in a digital
image could be lessened and accurate center estimation could be achieved.

In order to achieve this goal, only the parts of the isophotes which are mean-
ingful for our purposes should be used, that is, the ones that follow the edges of
an object. This selection can be performed by using the curvedness [16]:

curvedness =
√
L2

xx + 2L2
xy + L2

yy. (4)

We note that the curvedness has low response on flat surfaces and edges, whereas
it yields high response in places where the isophote density is maximal. As
observed before, the isophote density is maximal around the edges of an object,
meaning that by selecting the parts of the isophotes where the curvedness is
maximal, they will likely follow an object boundary and locally agree on the
same center. The advantage of this approach over a pure edge based method is
that, by using the curvedness as the voting scheme for the importance of the
vote, every pixel in the image may contribute to a decision. By summing the
votes, we obtain high response on isocentric isophotes patterns which respect
the constraint of being near edges. We call these high responses “isocenters”, or
ICs.

3 Eye Center Location

Recalling that the sign of the isophote curvature depends on the intensity of
the outer side of the curve, we observe that a negative sign indicates a change
in the direction of the gradient (i.e., from brighter to darker areas). Therefore,
it is possible to discriminate between dark and bright centers by analyzing the
sign of the curvature. Regarding the specific task of cornea and iris location,
it can be assumed that the sclera is brighter than the cornea and the iris, so
we should ignore the votes in which the curvature is positive, that is, where
it agrees with the direction of the gradient. As a consequence, the maximum
isocenter (MIC) obtained will represent the estimated center of the eye. The
result of this procedure on an eye image is shown in Figure 1. From the 3D plot
it is clear where the MIC is, but we can expect that certain lighting conditions
and occlusions from the eyelids to result in a wrong eye center estimate. To cope
with this problem, we use the mean shift algorithm for density estimation. Mean
shift (MS) usually operates on back-projected images in which probabilities are
assigned to pixels based on the color probability distribution of a target, weighted
by a spatial kernel over pixel locations. It then finds the local maximum of this
distribution by gradient ascent [17]. Here, the mean shift procedure is directly



Fig. 1. The source image, the obtained centermap and the 3D representation of the
latter

applied to the centermap resulting from our method, under the assumption that
the most relevant isocenter should have higher density of votes, and that wrong
MICs are not so distant from the correct one (e.g., on an eye corner). A mean shift
search window is initialized on the centermap, centered on the found MIC. The
algorithm then iterates to converge to a region with maximal votes distribution.
After some iteration, the isocenter closest to the center of the search window is
selected as the new eye center estimate.

An extensive evaluation of the eye locator was performed in [15], testing the
eye locator for robustness to illumination and pose changes, for accurate eye
location in low resolution images and for eye tracking in low resolution videos.
The comparison with the state of the art suggested that the method is able to
achieve highest accuracy, but this is somewhat bounded by the presence of a
symmetrical pattern in the image.

Figure 2 qualitatively shows some of the results obtained on different sub-
jects of the BioID database. The dataset consists of 1521 grayscale images of
23 different subjects and has been taken in different locations and at different
times of the day (i.e., uncontrolled illumination). We observe that the method
successfully deals with slight changes in pose, scale, and presence of glasses (sec-
ond row). By analyzing the failures (last row) it can be observed that the system
is prone to errors when presented with closed eyes, very bright eyes, or strong
highlights on the glasses. When these cases occur, the iris and cornea do not con-
tribute enough to the center voting, so the eyebrows or the eye corners assume
a position of maximum relevance.

4 Eye Corner Location

Unfortunately the eye center location is not enough for visual gaze estimation:
there is a need for an accurate fixed point (or anchor point) in order to be
able to measure successive displacements of the eye center independently of the
face position. The common approach is to locate the position of the eyelids and
the eye corners [18, 19]. A fast and inexpensive way to locate such an anchor
is to reuse the obtained centermap. As stated before, by analyzing the results



Fig. 2. Sample of success and failures (last row) on the BioID face database; a white
dot represents the estimated center.

Fig. 3. Eye centers and corner candidates

of the eye locator we note that the largest number of mistakes in eye-center
location are located on eye corners. This is due to the fact that the eye corners
have a somewhat symmetrical structure: in blurred low resolution imagery, the
junction between the eyelashes creates an almost circular dark structure which
is in contrast with the brighter skin and the sclera and therefore receives higher
response than the rest of the features. In this way we can exploit this problem
to our advantage. Figure 3 shows the highest ICs obtained. Once the eye center
is selected by the mean shift we can apply some geometrical constraints to find
the most stable anchor. Experimentally, the external eye corner turned out to
be the most stable isocenter. In order to find them we look for the furthest away
isocenter that lays closer to the line created by connecting the two eye centers
(shown in red in Figure 3). While this assumption is reasonable and showed
quite stable results (see Figure 4), the process is bound to fail every time that
the eye locator fails (last image in Figure 4). This problem could be solved by
enforcing additional constrains on the movement.



Fig. 4. Examples of combined eye center (green) and eye corner (red) detection

5 Scale Space Framework

Although the proposed approach is invariant to rotation and linear illumination
changes, it still suffers from changes in scale. While in the previous work [15]
the scale problem was solved by exhaustively searching for the scale value that
obtained the best overall results, here we want to gain scale independence in
order to avoid adjustments to the parameters for different situations. Firstly,
since the sampled eye region depends on the scale of the detected face and on
the camera resolution, to improve scale independency each eye region is scaled
to a reference window. While this technique is expected to slightly decrease the
accuracy with respect to the standard approach (due to interpolation artifacts),
once the correct scale values are found for the chosen reference window, the
algorithm can be applied at different scales without requiring an exhaustive
parameter search. Furthermore, to increase robustness and accuracy, a scale
space framework is used to select the isocenters that are stable across multiple
scales.

The algorithm is applied to an input image at different scales and the outcome
is analyzed for stable results. To this end, a Gaussian pyramid is constructed
from the original grayscale image. The image is convolved with different Gaus-
sians so that they are separated by a constant factor in scale space. In order to
save computation, the image is downsampled into octaves. In each octave the
isocenters are calculated at different intervals: for each of the image in the pyra-
mid, the proposed method is applied by using the appropriate σ as a parameter
for image derivatives. This procedure results in a isocenters pyramid (Figure 5).
The responses in each octave are combined linearly, then scaled to the original
reference size to obtain a scalespace stack. Every element of the scale space stack
is considered equally important therefore they are simply summed into a single



Fig. 5. The scale space framework applied to eye location: the grayscale image is down-
scaled to different octaves, each octave is divided into intervals. For each intervals, the
centermap is computed and upscaled to a reference size to obtain a scale space stack.
The combination of the obtained results gives the scale invariant isocenters.

centermap. The highest peaks in the resulting centermap will represent the most
scale invariant isocenters.

6 Visual Gaze Estimation

Now that we have the eye center and corner location available, in order to cor-
rectly estimate visual gaze it would be reasonable to consider the head position
and orientation to give a rough initialization of the visual gaze, and then use
the information about the eye centers and corners to fine tune the information.
Unfortunately, head pose estimators often involve many assumptions in order
to achieve a realistic modeling (i.e. the shape and size of the head, the possible
rotation angles of the eye, etc.). Furthermore, the high computational require-
ments of head pose estimators are not in line with the lightweight requirements
of our system. Finally small mistakes in pose estimation might introduce addi-
tional errors in the final visual gaze estimation. Other methods tend to simplify
the problem by assuming that the eye does not rotate but it just shifts. This as-
sumption is reflected in commercial eye trackers, which deal with high resolution
images of the eyes. This simplification comes from the assumption that the face
is always frontal to the screen so the head pose information can be discarded.
Therefore, we used the linear mapping method suggested by [19] and the user
needs to perform a calibration procedure by looking at several known points on
the screen. A 2D linear mapping is then constructed from the vector between the
eye corner and the iris center and recorded at the known position on the screen.
This vector is then used to interpolate between the known screen locations. For



Fig. 6. Mapped visual gaze on an internet page and the associated heat map

example, if we have two calibration points P1 and P2 with screen coordinates α
and β, and eye-center vector (taken with origin from the anchor point) x and y,
we can interpolate a new reading of the eye-center vector to obtain the screen
coordinates by using the following interpolant:

α = α1 +
x− x1

x2 − x1
(α2 − α1) (5)

β = β1 +
y − y1
y2 − y1

(β2 − β1) (6)

The advantage of this approach is its low computational cost and a decent accu-
racy with respect to more complex systems. In fact the reported error introduced
by this approximation is just 1.2◦. Unfortunately, this method does not allow
for large head movements, so the user will need to recalibrate in case of big hor-
izontal or vertical shifts. However, in our case the distance from the screen and
the camera parameters are known. So, we can compensate for this problem by
remapping the calibration points accordingly with the registered displacement
of the eyes. Therefore the final accuracy of the system is bounded just by the
number of pixels that the eye is allowed to move. This generates some kind of
grid effect on the recorded eye locations that can be seen in Figure 6.

While the final accuracy is bounded by the quality of the camera and the
distance from it, we still believe that the system can be used for specific ap-
plications that do not require high level of accuracy (like changing the focused
window or scrolling when looking outside the boundaries of the screen). The fi-
nal outcome of the system can be visualized as a heat map (see Figure 6) which
indicates the gaze patterns of the user. As can be seen from the figure our main
goal is to use the system for qualitative investigation of the user interest while
browsing a webpage and as such it is sufficient if we correctly identify the major
sections of the webpage.



In order to evaluate the performance of our system, we asked 20 subjects to
perform a simple task while looking at a webpage. The subjects were instructed
to look and fixate at all the images displayed on a YouTube webpage (an example
layout of such a page is displayed in Figure 6) starting from the higher left one
and continuing to the right and below. We recorded the coordinates of their
fixation and we checked if they fall within the corresponding image area. For
such a simple task we obtained 95% accuracy.

In order to give the reader an idea of how our system is really working and
its capabilities we have recorded two videos which can be accessed at:

http://www.science.uva.nl/∼rvalenti/downloads/tracker.wmv
http://www.science.uva.nl/∼rvalenti/downloads/tracking.avi

7 Conclusions

In this paper, we extended a method to infer eye center location to eye corner
detection. Both eye center and eye corner can be detected at same time, do
not require significant additional computation, and the detection can be scale
invariant. We used the estimated locations to estimate the visual gaze of a user
sitting in front of a screen. Although the accuracy of the system is bounded by the
quality of the used webcam, we believe that the approximate gaze information
can be useful for analyzing the gaze patterns of the subjects. The main advantage
of our method is that is does not require any dedicated equipment, it does not
use training which makes it very flexible, it is real-time, and it gives reasonable
accuracy.
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