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The visual appearance of natural scenes is governed by a surprisingly simple hidden structure. The distributions of contrast
values in natural images generally follow a Weibull distribution, with beta and gamma as free parameters. Beta and gamma
seem to structure the space of natural images in an ecologically meaningful way, in particular with respect to the
fragmentation and texture similarity within an image. Since it is often assumed that the brain exploits structural regularities in
natural image statistics to efficiently encode and analyze visual input, we here ask ourselves whether the brain
approximates the beta and gamma values underlying the contrast distributions of natural images. We present a model that
shows that beta and gamma can be easily estimated from the outputs of X-cells and Y-cells. In addition, we covaried the
EEG responses of subjects viewing natural images with the beta and gamma values of those images. We show that beta
and gamma explain up to 71% of the variance of the early ERP signal, substantially outperforming other tested contrast
measurements. This suggests that the brain is strongly tuned to the image’s beta and gamma values, potentially providing
the visual system with an efficient way to rapidly classify incoming images on the basis of omnipresent low-level natural
image statistics.
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Introduction

Natural scenes are inherently complex, containing a
wide variety of structural combinations. Still, the lumi-
nance, contrast, frequencies, and orientation of an arbi-
trary natural scene adhere to certain (statistical)
regularities (Brumswik & Kamiya, 1953; Daugman,
1989). Upon closer inspection, our visual world therefore
seems to be governed by simpler hidden structures. For

instance, it has long been known that contrast histograms
for natural images tend to be unimodal and skewed in
the direction of lower absolute contrasts (Field, 1987;
Ruderman & Bialek, 1994).
The distribution of contrasts in an image may be of

particular importance for visual perception. Contrasts in
an image carry key information, as they frequently
coincide with the 2D silhouette projected off a 3D object.
Moreover, contrast almost always reveals folds in the
surface geometry and changes in the surface albedo. In
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addition, what is more, contrast does so independent of the
accidental recording conditions.

This shows the importance of contrast per se, but the
distribution of contrast may provide additional informa-
tion. It has been shown that the more the geometry and the
surface structure of a scene are coherent in space, the
higher the correlation will be among the corresponding
image contrast values (Rousselet, Pernet, Bennett, &
Sekuler, 2008; Thomson, 2001). Contrast values in
coherent scenes will therefore generally be highly corre-
lated, and any device that records contrasts over a patch of
the visual field (such as the receptive fields of neurons in
the visual system) thus produces a sum over correlated
values. As sums over correlated values follow a Weibull
distribution (Meeker & Escobar, 1998), it can be predicted
that the distribution of contrasts in natural images of
coherent surface structures should follow a Weibull
distribution when recorded with receptive fields of a given
extent. Indeed, it has been observed (Geusebroek &
Smeulders, 2002, 2005; Simoncelli, 1999) that the
distributions of contrast values in natural images follow
a Weibull function of the following form:

p fð Þ ¼ c e
fj2
"ð Þ+ ; ð1Þ

where c is a normalization constant that transforms the
frequency distribution into a probability distribution. The
parameter 2, denoting the origin of the contrast distribu-
tion, is generally close to zero for natural images. We
normalize out this parameter by subtracting the smallest
contrast value from the contrast data, leaving two free
parameters per image, " (beta) and + (gamma).

Observations (Geusebroek & Smeulders, 2002) on
45,000 stock photos of natural images, covering a wide
variety of topics, revealed that 60% of all images have
strict Weibull-shaped contrast distributions. The remain-
ing percentage of images has a distribution close to
Weibull or is highly regular. These images are typically
composed of two (or more) parts in the image, each
having a distinct Weibull contrast distribution.

Examples of natural images, and their Weibull-fitted
distributions of contrasts, are shown in Figure 1, together
with an artificial image whose contrast distribution does
not adhere to the Weibull function. When correlation in
the contrast values is low, gamma of theWeibull distribution
approaches 2 and the distribution becomes a Gaussian
distribution. This is known as the central limit theorem
(Meerschaert & Scheffler, 2001). This condition occurs
when the scene has limited coherence with many variations
in geometrical depths and surface structures. In contrast,
when the coherence in the scene is high, gamma approaches
1 and the distribution of contrasts conforms to a power law
distribution. This is known as the law of fractals
(Mandelbrot, 1983). The condition occurs when the stat-
istical regularities of the scene are stochastic yet homoge-
neous in geometry and surface structure. For the majority of

natural images, the contrast distribution will neither be
Gaussian nor power law but will have beta and gamma
values in between (Geusebroek & Smeulders, 2002).
If Weibull-shaped contrast distributions are so omni-

present, two questions arise: first, is the visual system
adapted to it? Second, does the visual system exploit the
parameters of the Weibull distribution (i.e., beta and
gamma) to analyze image content? It is generally believed
that, as a consequence of the hidden structures occurring
in natural scenes, the visual system has adapted itself to
these recurring patterns, which have been imprinted into
the brain to achieve a more efficient encoding of
ecologically relevant images (Daugman, 1989; Field,
1987). However, even if the brain is sensitive to environ-
mental regularities, it does not necessarily follow that the
brain exploits image statistics to characterize, categorize,
or otherwise analyze incoming information. Some pro-
posals have been made as to how the brain would employ
the inherent statistical regularities of natural scenes, for
example, to calculate the reflectance properties of objects
from the distribution of luminance values (Motoyoshi,
Nishida, Sharan, & Adelson, 2007). Likewise, the spatial
frequency content (Field, 1987; Hsiao & Millane, 2005;
Parraga, Troscianko, & Tolhurst, 2000; Torralba & Oliva,
2003), the luminance distribution (Fleming & Bulthoff,
2005; Victor, Chubb, & Conte, 2005), and the distribution
of contrasts (Geisler, 2008; Ruderman & Bialek, 1994;
Turiel, Mato, Parga, & Nadal, 1998) in complex scenes
have been analyzed and shown to capture some aspect of
the content of the scene. We propose that, because beta
and gamma reflect the correlation hidden in the Weibull-
shaped contrast distribution, these parameters could
provide a very efficient encoding for the degree of
coherence in the scene.
We first show how the beta and gamma values of an

image can be closely approximated by combining the
output of linear (X-cell-like) and non-linear (Y-cell-like)
filtering systems, in order to show that the visual system is
capable of computing these values. To address the idea
that the human visual system is tuned to the parameters of
the Weibull distribution, we test whether the evoked EEG
responses of human subjects viewing natural images
correlate with the beta and gamma values of the images.
We conclude that indeed beta and gamma of the Weibull
distribution could inform the brain about the spatial
coherence in the perceived scene. We speculate that beta
and gamma are ecologically relevant dimensions helping
the brain to rapidly classify images.

Methods

Images

For the experiments, we used a total of 1600 images
with a resolution of 217 � 345 or 345 � 217 pixels
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Figure 1. (a) Three distinct natural images with profoundly different visual appearance as reflected in their beta and gamma values and an
example of an artificial image. The images have contrast distributions that deform from power law (eagle, first row), through Weibull
(street, middle row) to Gaussian (grass, third row; but note that power law and Gaussian are special instances of the Weibull distribution).
The artificial image (fourth row) has a contrast distribution that deviates from the Weibull distribution. (b) The beta and gamma values are
estimated from the gradient magnitudes of each of these images. The gradient images are derived by filtering the images twice with
differently oriented (90- difference) first-order directional Gaussian derivative filters and combining in the following way: ¾(dx2 + dy2).
(c) An edge histogram is generated on the basis of the gradient magnitude image. (d) A Weibull function is fitted to the contrast histogram
(maximum likelihood) to approximate the beta and gamma parameters with a maximum likelihood fit.
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(4.2- � 6.4-) and a bit depth of 24. Of these, 400 were
pictures of animals in their natural habitat, and 400 were
pictures of natural landscapes. These images were taken
from Fabre-Thorpe, Delorme, Marlot, and Thorpe (2001).
The other 800 images consisted of 400 indoor and
400 outdoor scenes that were completely uncontrolled
with respect to factors such as illumination, occlusion,
motion, and pose. These images are part of the National
Institute of Standards and Technology news video corpus
(Over, Leung, Ip, & Grubinger, 2004). One of the images
was not used because its marker was lost during EEG
acquisition.

Determining the beta and gamma parameters
of the fitted Weibull function

The 1599 color images were converted to grayscale
images I(x, y) and subsequently convolved (denoted with
`) with first-order directional Gaussian derivative filters.
These filters were designed to respond maximally to edges
running vertically and horizontally relative to the image
grid, one filter for each of the two perpendicular directions
x and y. The filters were applied separately to the input
images, producing separate measurements of the gradient
component in each direction. The directional image
derivatives were combined in the following way to obtain
a gradient magnitude per image:

l1I x; y;Að Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x; yð Þ` ¯Gðx; y;AÞ

¯x

� �2

þ I x; yð Þ` ¯Gðx; y;AÞ
¯y

� �2
s

;

ð2Þ

where G(x, y) is the two-dimensional Gaussian distribu-
tion function

G x; y;Að Þ ¼ 1

2:A2
e
jðx2þy2Þ

2A2 : ð3Þ

The standard deviation of the Gaussian filters was set to
2 pixels (0.03-) for the estimation of the beta parameter
and 5 pixels (0.075-) for the estimation of the gamma
parameter.
Each of the 1599 gradient magnitude images was

subsequently represented in a 256-bin histogram, summa-
rizing the contrast distribution of the image. For each
image, the parameters of the underlying Weibull distribu-
tion were estimated from the histogram. A three-parameter
Weibull distribution was used:

p fð Þ ¼ c e
fj2
"ð Þ+ ; ð4Þ

where parameters 2, " (beta), and + (gamma) represent the
origin, scale, and shape of the distribution, respectively,
and c is a normalization constant. We estimated 2 and
normalized it out to achieve illumination invariance,
leaving only parameters beta and gamma.
The beta and gamma parameters were estimated using a

maximum likelihood estimator (MLE) via the histogram
to reduce computational load. Note that parameter
estimation is only marginally sensitive to the effects of
histogram quantization.

Estimating X- and Y-cell outputs

To estimate X-cell outputs, we convolved each gray-
scale image with a difference of Gaussian (DoG) filter.
The DoG filter was defined by two Gaussian functions
with standard deviations sigma = 1.2 and sigma = 7.2,
yielding a spatial profile (center sigma = 0.03-, surround
sigma = 0.18-) that corresponds to that of parvocellular
X-cells for the primate visual system (Hubel & Wiesel,
1962). The convolution of the grayscale image I(x, y),
with this DoG filter resulted in the filtered images

l2Iðx; y;A1;A2Þ ¼ Iðx; yÞ`ðGðx; y;A1Þj Gðx; y;A2ÞÞ:
ð5Þ

The filtered images were rectified and fed into a contrast
sensitivity profile (Out = C / (1.038 + C)) corresponding to
that of parvocellular X-cells (Croner & Kaplan, 1995).
Summation of the resulting intensity values yielded the
“X-output.”
To calculate the Y-output, we used a computation that

is often used in models of the Y-system, where a signal
from linear subunits is rectified and smoothed over space
(Enrothcugell & Freeman, 1987). The size of the linear
difference of Gaussian subunits was identical to that of the
X-system specified above. Outputs were rectified and
smoothed with a Gaussian window with a size (sigma =
0.1-) that corresponds to the receptive field size of
magnocellular Y-cells of the primate visual system
(Croner & Kaplan, 1995). The result was subsequently
fed into a contrast sensitivity profile (Out = In / (0.169 +
In)) corresponding to that of magnocellular cells. The
“Y-output” was taken as the summed value of all filter
outputs.

Visual stimulation, ERP data acquisition, and
data analysis

Stimuli were presented on a 19W Ilyama monitor
with a resolution of 1024 * 768 pixels and a frame rate of
100 Hz. Subjects were seated 90 cm from the monitor.
During EEG acquisition, a stimulus was presented on
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average every 1500 ms (range 1000–2000 ms) for 100 ms.
Each stimulus was presented 2 times for a total of 3200
presentations per subject. Stimuli from the first data set
(scenes with and without animals) were shown in
alternating blocks with images from the second data set
(indoor and outdoor scenes). Subjects had to indicate
whether (a) the images contained an animal or not or
whether (b) the image depicted an indoor or outdoor
scene, depending on which block was being presented.
Recordings were made with a Biosemi 52-channel Active
Two EEG system (Biosemi Instrumentation BV, Amster-
dam, The Netherlands). Data were sampled at 256 Hz.
Data analysis was identical to Scholte, Witteveen,
Spekreijse, and Lamme (2006) with the exception that
the high-pass filter was placed at 0.1 Hz (12 db/octave)
and the pre-stimulus baseline activity was taken between
j100 and 0 ms with regard to stimulus onset. Trials were
averaged over subjects per individual stimulus resulting in
1599 averages (one marker was lost in recording),
consisting of 20 to 32 averages per individual image
(median of 30 averages per image) since some ERP trials
were rejected on the basis of amplitude (when amplitude
exceeded 75 or j75 2V) or gradient (a larger voltage step
than 50 2V/sample). The average responses (ERPs) were
converted to a Current Source Density (CSD) response.
The CSD conversion gives a signal that is more localized
in space than a regular ERP and therefore has the
advantage of reflecting more reliably the activity of neural
tissue directly underlying the recording electrode (Nunez
& Srinivasan, 2006).
To test whether the evoked EEG responses of human

subjects viewing natural images correlate with the beta
and gamma values of the Weibull distribution of the
images, the 1599 averaged responses per image were
covaried with the beta and gamma values of the images as
estimated from their contrast histograms.
We also correlated the EEG responses with other

frequently used image statistical parameters. The max-
imum, mean, and median contrasts were computed from
the contrast histograms. Gaussian and logarithmic distri-
butions were fit to the contrast histograms, and their
parameter values were covaried with the ERPs. The ERPs
were additionally covaried with the spatial frequency
characteristics of each image, computed from the power
spectrum of its largest concentric square portion: the
analysis involved transformation of the cropped image
into the frequency domain using Fast Fourier Transform,
derivation of the Fourier power spectrum, and rotational
averaging of this power spectrum over orientation. On
log–log paper, the average power spectrum as a function
of spatial frequency approximated a line. A line was fit to
the one-dimensional summary of the power spectrum
using least squares and estimated the intercept and slope.
These two parameters were covaried with the ERP data.
Finally, to compare the contrast values represented by

the Weibull distribution with other measures of contrast,

we calculated two standard contrast measures for each
grayscale image: Michelson and Root Mean Square
(RMS). Michelson contrast was based on the highest and
lowest intensity values in the image, (Lmax j Lmin) /
(Lmax + Lmin). The RMS contrast was taken to be the
standard deviation of the intensity values of all pixels in
the image divided by the mean intensity.

Modeling the maximum amount of explainable
data

The EEG data are relatively noisy given the fact that
each of the 1599 used images was presented only twice to
each subject, in addition to the individual differences
between subjects themselves. To address this issue, the
maximum amount of explainable data (signal) was
calculated per subject, and then averaged over all subjects.
A subspace model was used to determine the maximum
amount of explainable variance in the EEG data, inde-
pendent of beta and gamma. See Appendix A for a
complete description of this method.

Results

Neural computation of Weibull parameters

We are interested in testing our neural model for the
brain, which approximates the beta and gamma values of
the Weibull distribution of an image. Originally, the
parameters, beta and gamma, of the fitted Weibull
function to the contrast distribution were determined by
maximum likelihood estimation (MLE, see Methods
section) for each of the 1599 images. This mathematical
method is biologically hardly plausible (see Figure 1).
Here, we show how the beta and gamma parameters
underlying the contrast distribution of a natural image can
be closely approximated using biologically plausible filters
(Figure 2). We tested the accuracy of approximating beta
using the X-output of each image by first calculating beta
using Weibull curve fitting, and then calculating X-output,
for 1599 natural images (for image databases, see Methods
section). The correlation between the X-output and the
actual value of beta, estimated from the contrast distribu-
tion of each individual image by fitting a Weibull
distribution, was remarkably high (r = 0.95; p(1598) =
3.69e j 237; see Figure 2b).
To arrive at a biologically plausible estimate for gamma,

we tested the accuracy of approximating gamma using the
Y-output of each image in the same way as the X-output.
The value of the Y-output correlated strongly with
the actual value of gamma estimated for each image
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individually (r = 0.70; p(1598) = 3.69e j 237; see
Figure 2d). An even better approximation of gamma could
be obtained by combining the outputs of both the X- and
Y-systems. Figure 2e shows how gamma is defined by a
combination of X- and Y-outputs. Stepwise regression of
gamma versus X- and Y-outputs yielded a combined
correlation of r(1597) = 0.82.
We used biologically plausible receptive field sizes of

X- and Y-type filters to estimate beta and gamma.
However, it could be that these are not optimally suited
for this goal, which would weaken our claim that beta and
gamma are relevant to the brain. To examine to what
degree the response properties of X- and Y-cells are
optimal in extracting the beta and gamma parameters, we
calculated the correlation between X-output and beta for a
wide range of potential center and surround values of the
first stage of filtering. Figure 2f shows a series of contour
plots of the landscape indicating the correlation for each
combination of center and surround sizes. Results indicate
that the physiological center and surround sizes of the
X-cells as reported in Croner and Kaplan (1995); and
that we used) fall within the optimal range, but also that
this optimal space is relatively wide (the area between the
two r = 0.94 contour lines in Figure 2f). We examined the
same for the size of the Gaussian smoothing, suggested
here to be executed by the Y-cells (see Figure 2g). Results
indicate that the physiological sizes of the Y-cells are
close to the optimum needed to estimate gamma.
Our results show how the brain may calculate good

approximations to the beta and gamma parameters under-
lying an image’s contrast distribution on the basis of filters
that are biologically realistic in shape, sensitivity, and
size. Our results also show that a wider range of filters are
capable of doing this, but that the receptive field sizes
reported for the macaque visual system are close to
optimally suited for this goal.

Neural sensitivity to Weibull parameters

That the brain is able to compute the contrast distribution
parameters does not necessarily imply that it actually
performs this computation. To test whether the brain may
compute these parameters, we presented the 1600 images
used in our calculations to human subjects (n = 16) while
EEG was recorded and calculated a grand-average per
image. Next, the Weibull parameters, estimated from the
individual stimuli, were correlated with the ERP
responses.
The results of this correlation show that beta and

gamma explain up to 50% of the variance of (i.e.,
correlate up to r = j0.71 with) the measured ERP signal
recorded between 80 and 200 ms at electrode Iz, which is
overlying the early visual cortex. Beta explained the most
variance at 113 ms after stimulus onset (r = j0.71;
p(1598) = 3.0e j 245; r2 = 0.504) while gamma explained
most variance at 133 ms (r = j0.481; p(1598) = 3.6e j
234; r2 = 0.231). Figure 3a shows the correlations of beta
and gamma with the ERP signal over time. Figure 3b
shows scatter plots of these correlations.
The variance that is explained by both beta and gamma

(blue line in Figure 3a) is only slightly larger than the
variance explained by beta alone (red line). Formal testing
reveals that gamma explains a significant, albeit little,
amount of additional activity at 113 ms (for beta F(1,
1596) = 910,289, p = 1.3e j 158, for gamma F(1, 1596) =
10.9, p = 0.001, r2 = 0.51) and 133 ms (for beta
F(1, 1596) = 419.8, p = 7.5e j 083 and gamma F(1,
1596) = 7.6, p = 0.006, r2 = 0.41).
This is partially due to the fact that, in natural images,

beta and gamma correlate significantly (see Figure 5 and
below), which reduces the amount of variance that gamma
can explain independent of beta.
We performed a factor analysis (covariance matrix,

Varimax rotation) on the beta and gamma parameters
calculated from each image to see to what degrees they
constitute 2 factors. The first factor explained 83% of the
variance in beta and gamma and correlates mainly with
beta (r = 0.928), the second factor explained 16% of the
variance and correlated mainly with gamma (r = 0.928).
We subsequently correlated these factors with the EEG
signal. This revealed that the “beta”-like factor peaks at
121 ms, in channel Iz (beta like F(1, 1596) = 1504.891,
p = 1.9e j 232, gamma like F(1, 1596) = 2.7e j 31, p =
1.1e j 33, r2 = 0.507) and that the “gamma”-like factor
peaks at 145 ms in channel Oz (beta like F(1, 1596) =
1002.726, p = 3.5e j 171, gamma like F(1, 1596) =
214.611, p = 1.1e j 45, r2 = 0.41). This confirms that beta
and gamma independently explain a substantial amount of
variance (see Figure 3c).
Furthermore, it appears that there is additional

explained variance in the ERP signal when we consider
non-linear interactions between beta and gamma. For
example, the strength and sign of the correlation of beta
with the ERP depends on the value of gamma (Figure 3d).

Figure 2. Model to calculate X- and Y-cell outputs for the stimuli
used in this study. The images are converted from color to gray
scale, filtered with a difference of Gaussians (DoG) then rectified.
(a) To simulate the X-cells, the pixel values of the resulting images
are transformed with a contrast gain function adequate for P-cells.
Finally, pixel values are summated to yield the X-estimates.
(b) The output of the X-cells correlates strongly (r = 0.95, p(1598)
= 3.69e j 237) with beta. (c) To simulate the Y-cells, the rectified
images are passed through a Gaussian smoothing function and
pixel values are subsequently transformed with a contrast gain
function adequate for M-cells. The resulting values are summated
to yield the Y-estimate. (d) The output of the Y-cells correlates
strongly (r = 0.70, p(1598) = 3.69e j 237) with gamma. (e) A
combination of X- and Y-outputs correlates even better with
gamma (r(1597) = 0.82). (f) Overview of the correlation of different
combinations of different center and surround sizes for the
estimation of the beta parameter via neurons. (g) Overview of
different sizes of Gaussian smoothing in combination with the
output of simulated Y-cells to estimate gamma.
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The brain could utilize these non-linear interactions by
interpreting the beta values differently for different values
of gamma.
Several other features of the results are remarkable.

ERP responses toward individual stimuli consist of just
one or two per subject. This will have induced a large
amount of variability between the ERPs to each image
that cannot be explained by stimulus variations but instead
should be attributed to inter-individual differences,
ongoing brain processes, and other sources of “noise.”
Therefore, there is a theoretical upper bound to the
amount of ERP variability that can be explained by the
variations in stimulus content, i.e., by beta and gamma.
We calculated this upper bound (see Appendix A) and it is
given in Figure 3a (dotted line). This is an important
observation as the maximum explainable signal is neither
small nor constant over time. Compared to this upper
bound, beta and gamma explained 71% of the ERP
variance recorded at 113 ms at electrode Iz. In other
words, the two Weibull parameters together account for
almost the entire stimulus-driven variance in the early
ERP signal.
Where the ERP has several peaks and troughs well into

the 500-ms epoch, which is typical of visual ERPs to
meaningful stimuli, beta and gamma only explain the
earliest components of this response up to about 200 ms.
This suggests that beta and gamma are probably only
relevant to the brain in the early phases of visual
processing. Later on, other (probably higher level)
features of the image take over.

Our data set consisted of 2 relatively different image
sets. The first set consisted of images of natural scenes
without motion artifacts. The second set consisted of
images that were entirely captured from television. Both
sets show very similar correlations of ERPs with beta and
gamma (see Figure 3e). The explained ERP variance with
relation to the animal/non-animal images is slightly larger
(7.5%) at their maximum than the explained variance with
relation to the television-captured images. This minor
quantitative difference is most likely due to the “noise”
edges present in the second data set, a result of the capture
process. In addition, the two data sets may have been
captured using different color gamma encoding (to
increase dynamic range). In our experiments, we did not
explicitly correct for these, potentially creating artificial
differences between the contrast distributions of the two
data sets. We applied color gamma correction (which
influenced the color encoding, not related to the gamma
value from the Weibull function) to each of the 1599
images with correction values ranging from 0.25 to 4 to
assess to what extent the differences between real-world,
modeled, and displayed luminance values affect our
results. For the animal/non-animal data set, the maximum
of the explained variance peaks when the correction value
is 1.25, whereas for the indoor/outdoor data, a correction
value of 1.5 yields the highest explained variance. The
peak of the maximum explained variances near correction
value 1 (no correction) and the shallow decay with
correction values larger than 1 suggest that our data sets
have a natural appearance and that our results are robust
for effects of luminance compression and expansion.

Beta versus other contrast values

There are many other measures of contrast formulated
over the years. If indeed the Weibull parameters are
relevant to the brain, the ERP should correlate more
strongly with beta than with any other parameters of the
contrast distribution. Beta reflects a specific summary of
the distribution of local contrast values. A Weibull
distribution with high beta will have its median shifted
to the right, i.e., have a greater number of high contrast
values. Likewise, from its proposed neural approximation
(see Neural computation of Weibull parameters section), it
follows that beta reflects the presence of many high
contrast edges (see also Figure 1).
In Figure 4a and Table 1, we explore the correlation of

beta with the ERP at all electrodes and at all time samples.
The explorations of parameters of other distributions that
could be fitted to the contrast values are also shown in
Figure 4a: a half-sided Gaussian (free parameter: sigma)
and a simple exponential (free parameter: mean). These
functions are special cases of the Weibull distribution
(with gamma fixed at 1 and 2, respectively) and could thus
provide a simpler one-parameter model for the brain to
summarize the contrast distribution. Figure 4b shows

Figure 3. (a) Data explained in channel Iz by beta (red), gamma
(green), and both (yellow) parameters. The dotted lines show the
maximum percentage of the data that can be explained. Notice
that the ERP (black) continues to show a signal after beta and
gamma stop explaining data, which is also shown by the dotted
line. (b) Scatter plot of the beta parameter and the ERP at the
moment of maximum correlation with beta (113 ms) and the
maximum correlation with gamma (133 ms). (c) Explained ERP
variance in channel Iz by first and second factors obtained from
factor analysis. The first factor behaves similarly as (and is
strongly correlated with) beta. The second factor behaves
similarly as (and is strongly correlated with) gamma. (d) Explained
ERP data for the beta parameter within a range of gamma values.
Notice that the correlation of the ERP with beta is positive for low
values of gamma (for instance the correlation of beta with ERP for
images with gamma values lower than 0.7) and negative for high
values of gamma (for instance higher than 1.3) at 113 ms. This
pattern changes at 133 ms, where beta does not correlate with the
ERP for low values of gamma and correlates negatively with the
ERP with high values of gamma. (e) Explained ERP variance in
channel Iz for the two subsets of images used. The explained
variance for the animal/non-animal data is higher than the
explained variance for indoor/outdoor scenes. (f) Total explained
variance in the ERP for channel Iz with different gamma correction
values applied to the images. Notice that even for very extreme
gamma corrections the explained variance remains rather high.
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correlations between ERP signals and other simple
parameters of the contrast distribution: the mean, median,
and maximum. Finally, in Figure 4c, we show correlations
between ERP and traditional contrast measurements like
RMS contrast, Michelson contrast, Fourier intercept, and
Fourier slope. The moment in time and channel of the
maximum amount of variance each of these correlations
explain is given in Table 1. It is obvious from these results
that neither of the alternative parameters explains as much
variance of the ERP as beta does, by far. In sum, all
evidence leads us to conclude that the brain is particularly
sensitive to the parameters of the Weibull distribution
underlying the image it perceives.
Finally, we propose that calculating beta and gamma

opens the possibility to reliably balance natural image
sets. Apparently, the beta and gamma values of images
provide an excellent model of the way low-level visual

Figure 4. Explained variance for all channels displayed over time in the same plot for the (a) Weibull beta parameter, the exponential and
Gaussian distribution, (b) the maximum, mean, and median of the edge histogram, and (c) the Fourier slope, the Fourier intercept, the
Michelson contrast, and Root Mean Square contrast. Notice that beta outperforms all other measures significantly. (d) Spatial distribution
of beta explained variance at t = 113 ms.

r2 ms Channel

Beta 0.50 113 Iz
Gamma 0.23 129 Iz
Exp 0.04 133 Iz
Gaussian 0.15 102 Oz
Max 0.16 133 Iz
Median 0.31 109 Oz
Mean 0.17 102 POz
Michelson 0.07 305 Oz
RMS 0.06 223 Oz
Slope 0.24 98 Oz
Intercept 0.14 102 POz

Table 1. The maximum explained variance of different statistics
from the contrast histogram, Fourier intercept and slope, and
some contrast measures, in combination with the channel and
time at which this maximum occurs.
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areas respond to natural images. When sets of images are
balanced with respect to beta and gamma, one can be very
certain that low-level features and early visual cortical
responses are reasonably balanced as well, which is
important when studying higher level aspects of visual
processing.

Discussion

Origin of the Weibull parameters sensitivity

We have shown that the brain is capable of approximat-
ing the beta and gamma underlying the contrast distribu-
tion in natural images. This can be achieved in a
biologically plausible way, by filtering the image with a
combination of linear and non-linear receptive fields. We
used published sizes of difference of Gaussians receptive
field profiles and published contrast sensitivities of
primate LGN cells (Croner & Kaplan, 1995) to approx-
imate beta and gamma of a set of 1599 natural images.
Given these restrictions, we obtained remarkably high
correlations between our estimates and the actual values
of beta and gamma of each image. Next, we showed that
beta and gamma of each image explain up to 71% of the
stimulus-driven variance of ERPs evoked in human
subjects viewing natural images. Furthermore, the Weibull
parameters explain more variance of the ERP than any
other measurement of contrast or any other parameter
fitted to the contrast histogram. These findings together
make it a distinct possibility that the brain actually uses
the Weibull parameters in the evaluation of images. This
begs the question why this would be the case.
There are several reasons that the contrast histogram of

natural images can be approximated by a Weibull
function. The first comes from the tendency of nature to
increase entropy so that small details are occurring more
often in an image than large structures (Koenderink,
1984). Causality furthermore implies that large structures
are made up of many smaller ones, a property of natural
objects that occurs at a wide range of resolving powers
(Mandelbrot, 1983). An image of a single, sufficiently
complex, object against a highly uniform background, as
the picture of the eagle in Figure 1, will therefore have a
power law distribution of contrasts (many zero contrasts,
few high contrasts). Viewing such an object with fixed
sets of finite receptive fields will yield a Weibull contrast
distribution, in this case with a low value of gamma.
When many objects or object parts are present (some
large, many small), the distribution will arise from
summing over correlated contrast values, which yields a
Weibull distribution with a high value of gamma (as in the
picture of grass in Figure 1). Here, very low contrast
values are rare and the peak number of contrasts has
shifted toward intermediate levels of contrast. Under

constant lighting conditions, and at a fixed power of
resolution, that is with the same receptive field sizes,
going from one to many objects will increase the value of
beta (Geusebroek & Smeulders, 2005).

Are the Weibull parameters ecologically
relevant?

From their dependence on the number of objects in the
image, a potentially powerful ecological relevance of the
Weibull parameters arises. It implies that a difference in
object distribution or difference in perceptual grouping
results in a different shape of the Weibull distribution and,
hence, in different values of beta and gamma. This is all
the more apparent when we look at the beta and gamma
parameters of our set of natural images. In Figure 5a, we
plot a thumbnail of each image at its respective beta and
gamma values, of a random subset of our 1599 images
(for the sake of clarity; see Supplementary Figure 1 for a
high-resolution complete version of this image space).
Two observations can be made. The first is that gamma

and beta are not fully independent yet correlate in the
sense that low gamma values coincide with low beta
values and high gamma with high beta (r = 0.71, for all
1599 images). This strong correlation is not a statistical
necessity, but a property of natural images, borne out from
the originating mechanism of the contrast distribution
discussed above. Scrambled versions of the same images
yield a substantial lower correlation (r = 0.33). So, the
correlation between beta and gamma is the result of
spatial coherence.
Second, it appears that images in beta–gamma space go

from isolated objects in the lower left to scenes with
multiple objects, or almost texture-like scenes, with many
similar objects, in the upper right corner. This axis seems
to represent image complexity. We estimated perceptual
image complexity by converting the images to JPEG
format. High compressibility (resulting in small JPEG file
sizes) typically occurs when scenes are simple, while
complex scenes (or very noisy ones) are typically difficult
to compress (resulting in high JPEG file sizes). Figure 5b
shows the same as Figure 5a, i.e., beta and gamma on the
orthogonal axes, with the difference that we now plot the
JPEG file size in color code for all images. High beta (and
gamma) correlate with high JPEG file size, i.e., high
complexity of the scene (stepwise regression of JPEG file
size vs. Beta and Gamma yields r = 0.828; Beta only vs.
JPEG size yields r = 0.819).
Orthogonal to this “complexity” axis, the images seem

to separate along the dimension of texture similarity, in
the sense that images with similar textures are found in the
lower right, while images with substantial difference in
texture (resulting in more perceived depth) are found in
the upper left side.
The full potential of sorting images according to beta

and gamma of their contrast distribution remains to be
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Figure 5. (a) A mapping of a subset of our 1599 images onto the beta–gamma space. An image’s position in this space is fixed by beta
and gamma values. The axis going from bottom left to top right shows an increase in image cluttering and a decrease in figure-ground
segmentation. The axis going from top left to bottom right shows a change from images with dissimilar textures to images with similar
textures (see Supplementary Figure 1 for a version of this space with all animal/non-animal images). (b) The values of beta and gamma
with their corresponding JPEG compression factor. Both beta and gamma capture different parts of the complexity of an image as
encoded by the JPEG algorithm.
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resolved. Previously, it was shown that in the case of
natural homogeneous yet stochastic texture (e.g., grains of
rice), beta and gamma inform the viewer about aspects
such as texture coarseness and roughness, and illumina-
tion intensity and angle (Geusebroek & Smeulders, 2002,
2005). We have shown that beta and gamma are accurate
descriptions of the clutter, spatial coherence, and com-
plexity of an image. Furthermore, the present research
suggests (Figure 5) that other ecologically relevant
categorization on the basis of beta and gamma will be
possible, for example, in scene segmentation, determining
to what extent objects are close or far away, and even in
the detection of (elements of) the perceptual gist. In this
way, the brain could efficiently shift between modes, and
the scale of analysis required for rapid visual processing
(Oliva & Schyns, 1997; Schyns & Oliva, 1994). Given
that the brain is highly sensitive to the Weibull parame-
ters, further investigation into the computational potential
of exploiting this omnipresent natural image statistic
seems warranted.

Appendix A

Modeling the maximum explainable data

In order to see what could maximally be explained for
each sample in the data for all subjects simultaneously, an
independent method from the Weibull model to estimate
the R-squared value is required. The algorithm we used is
a variation on the subspace methods used in, for example,
Stoica and Nehorai (1989). Such algorithms assume a
model for the data in which the signal and noise are
uncorrelated and the noise is uncorrelated in time. They
then use an eigenvalue decomposition of the second-order
moment matrix to estimate the signal and noise space. We
can use this decomposition to project the data into the
noise space, thus creating residuals based on a minimal
model. These residuals are then transformed to R-squared
values to be compared with the R-squared values obtained
from the data.
Three problems of this method, which are particular to

our situation, need to be addressed:

i. The noise is correlated in time,
ii. the amount of signal in the data should not be

underestimated, and
iii. multiple subjects should be combined.

Splitting up the data into two parts of single trials solves
the first problem: one part is used to estimate the noise
correlations. Then, these correlations from the first part are
removed from the second part of the data. The second
problem is more difficult but equally important. If we are to
indicate the maximum of signal to be explained in terms of
R-squared, then we must never underestimate the amount

of signal in the data, so that our maximum would end up
lower than it should. We have used a hypothesis testing
method applied to the eigenvalues of the second-order
moment matrix to deal with this issue. To tackle the third
problem, we chose to detect the noise space for each subject
separately because there are individual differences. Then,
the R-squared values for all 16 subjects were averaged.

The method

Let y denote the vector containing the t time samples, A
be a gain matrix of the signal space, and � be the
covariance matrix of the noise with scaling factor, A2.
Then, the population model for the second-order moment
matrix containing all time samples is the t by t matrix

EfyyVg ¼ AAV þ A2�: ðA1Þ

For our purpose, it is irrelevant what A exactly is, only
the assumption that A is uncorrelated to the noise is
important. From this second-order moment matrix, the
noise subspace can be determined by considering the
number of multiplicities of eigenvalues. If the noise is
uncorrelated, then the eigenvalues equal to the scaling
factor A2 of the noise correspond to the noise subspace.
For this to work, we need to make � the identity matrix
(with ones on the diagonal and zeros elsewhere). If �
were known, then we would simply use the inverse of �
and decorrelate

EfyyVg�j1 ¼ AAV�j1 þ A2I: ðA2Þ

A very good estimate of � can be obtained from the
data because we have many trials available. By splitting
up the data in two sets of trials of size t1 and t2, we can use
the first set to estimate �. An unbiased estimate of � is

Se ¼ 1

t1j1
~
t1

j¼1

yj j y�� �
yj j y�ÞV;
�

ðA3Þ

where y� is the average over trials. On the sample level,
we now have SySe

j1, where

Sy ¼ 1

t2 j 1
~
t2

j¼1

yjy
V
j ; ðA4Þ

with the data y from the second batch of trials. Next, we
compute the eigenvalues l1, l2, I, ln of SySe

j1 to
determine the noise space by considering which of these
eigenvalues are equal to the noise scaling factor, A2. If we
use a sufficiently large number t1 of trials for Se, then we
can treat this matrix as fixed and assume that the
distribution of the eigenvalues of SySe

j1 is the same as
the distribution of the eigenvalues of Sy. We used 65% of
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the total number of trials for estimation of Se and 35% for
estimation of Sy. With 1599 trials in this experiment, this
amounts to t1 = 1039 and t2 = 560. We can sequentially
test for k eigenvalues of the signal space, or equivalently,
we can test for q = n j k eigenvalues equal to the noise
scaling factor. We begin with q = 0 (all noise) and
continue to test the null hypothesis Hq: lk + 1 = lk + 2 = I
= lq = A2 until the test says that there is no difference
between the eigenvalues anymore. At this point, we have
found that the noise space can be constructed by q
eigenvectors. We use the Bartlett corrected test of the
likelihood ratio test for equality of likelihood (Muirhead,
1982):

j t2 j k j
ðqþ 2Þðq j 1Þ

6q

� �
ln

 Yn
i¼kþ1

li

1

q

Xn
i¼kþ1

ll

!
: ðA5Þ

The null distribution is #(q + 2)(q j 1) / 2
2 with (q + 2)

(q j 1) / 2 degrees of freedom. In order to cover the signal
space as best as possible (so as not to underestimate the
maximum value in R-squared), we used a significance
level of 0.05 for each test.
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