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Abstract pixel values are exploited to estimate the illuminant. Exam
ples of such methods include approaches based on low-level
The aim of color constancy is to remove the effect of the features [3], gamut-based algorithms [8], and other method
color of the light source. As color constancy is inherently that use knowledge acquired in a learning phase [7]. Only
an ill-posed problem, most of the existing color constancy recently, methods that use derivatives.(edges) and even
algorithms are based on speci ¢ imaging assumptions such higher-order statistics have been proposed [19].
as the grey-world and white patch assumptions. All of the above color constancy algorithms are based on
In this paper, 3D geometry models are used to determinespeci ¢ assumptions about the illumination or the property
which color constancy method to use for the different geo- of object re ectance. As a consequence, none of them can
metrical regions found in images. To this end, images are be considered as universal. Therefore, how to combine or
rst classi ed into stages (rough 3D geometry models). Ac- select a proper color constancy for a given imaging con g-
cording to the stage models, images are divided into differ- uration is an important research direction [12].
ent regions using hard and soft segmentation. After that, th To cope with this problem, higher level visual informa-
best color constancy algorithm is selected for each geome-tion is taken into account recently [1, 9, 20]. In [20], the
try segment. As a result, light source estimation is tuned toimage is modeled as a mixture of semantic classes, such
the global scene geometry. Our algorithm opens the pos-as sky, grass, road and buildings. llluminant estimation is
sibility to estimate the remote scene illumination color, b  steered by different classes by evaluating the likelihobd o
distinguishing nearby light source from distant illuminan  the semantic content. Similarly, indoor-outdoor image in-
Experiments on large scale image datasets show thatformation is used in [1]. Alternatively, image statistiag a
the proposed algorithm outperforms state-of-the-art Eng used in [9] to improve color constancy. It is shown that im-
color constancy algorithms with an improvement of almost ages with similar image statistics probably will select the
14% of median angular error. When using an ideal classi- same color constancy algorithms. Hence, this indicatds tha
er (i.e, all of the test images are correctly classi ed into there is a correlation between image statistics, scenetype
stages), the performance of the proposed method achieveand color constancy algorithms. Knowing the correspond-
an improvement of 31% of median angular error compared ing class of an image a priori leads to improved color con-
to the best-performing single color constancy algorithm.  stancy algorithms [1, 9, 20]. However, the more general
case of unconstrained color constancy can not be solved if
the classi cation of the input images is not directly incor-
1. Introduction porated in the algorithm.
Therefore, in this paper, we deduce 3D scene geome-
The color of objects is largely dependent on the color of try for a wide range of scene categories. It is known that
the light source [7]. Therefore, the same object, taken byimage statistics are in uenced by depth patterns [15], e.g.
the same camera but under different illumination, may vary the signal-to-noise ratio generally decreases as the depth
in its measured color appearance. This color variation maycreases [10] while the scale changes when viewing scenes
negatively affect the result of image and video processingfrom different depths [17]. Attributes like signal-to-sei
methods for different applications such as object recogni- and scale are not inherently correlated with color constanc
tion, tracking and surveillance. The aim of color constancy methods, but it has been shown that they can strongly in u-
is to remove the effect of the color of the light source. ence the accuracy of the illuminant estimates [9]. Conse-
A considerable number of color constancy algorithms quently, in this paper, the relationship between localsstat
have been proposed, see [7, 12] for reviews. Traditionally, tics and color constancy algorithms is investigated. Te thi



end, 3D scene geometry models are used to divide images 2. whenn=1, color constancy algorithms are obtained us-

into different geometrical regions. These models will be ing rst-order derivative informationi.e. image edges

used to select appropriate color constancy algorithms per information. The Minkowski-nornp and smoothing

depth layer or geometrical section of the model. parameter depend on speci ¢ dataset. The instantia-
This paper is organized as follows. First, in section 2, we tion eX1'8 is applied in the paper;

brie y outline the color constancy framework, and discuss 3. whenn=2, the framework provides color constancy

how to infer 3D scene geometry estimation from a single methods based on second-order statistics. Similarly,

image. Then, the proposed method is described in section 3.  the other two parametepsand vary with the dataset.
After that, the experimental setup and results are predente We usee?1® in our experiments.

in section 4. Finally, section 5 concludes this paper.
Y pap Although other color constancy methods can be used, we

focus on the above instantiations which include pixel and
derivative-based methods.

In this section, color constancy and 3D scene geometry )
estimation is discussed in more detail. 2.2. Stage models and segmentation

2. Preliminaries

A number of methods have been proposed to estimate
the geometry from single images [6, 16], where the work
Assuming Lambertian re ection, the image colbr= of Hoiemet al. [11] is the most in uential. However, these
(R;G;B)T recorded by electronic devices is dependent on methods are restricted to a number of classes restricténg th
the color of the light source( ), the surface re ection  applicability of the method. More general classes might be

2.1. Color constancy

s(x; ) and the camera sensitivity functiof ): more useful instead of particular scene instantiations. To
Z this end, we introduce an image classi cation scheme which
fx)= e )e( )s(x; )d ; 1) derives scene information for a wider range of scene cate-
! gories by using scene geometries.
where! is the visible spectrum, is the wavelength of the Typical 3D scene geometries, called stages, are proposed

light andx is the spatial coordinate. Under the assump- IN [15]. The authors infer 3D geometry for a wide range
tion that the observed color of the light souscdependson  Of stages. Image stages are considered as 3D geometrical
the color of the light source( ) and the camera sensitivity Models of the scene. A number of stage models, together

functionc( ), the color of the light source is estimated by ~ With corresponding examples are shown in Figure 1. Each
7 stage has a certain depth layout. These models are depen-
o= e )e( )d : ) dent on the inherent structure of natural images, resulting
! from image statistics and viewpoint constraints. In this pa
per, 13 different stages proposed by [15] are studied exclud
ing noDepthor tab+pers+bkgas these stages are speci cal
characteristics for the dataset used in [15], but not avksla
the dataset under consideration.
As shown in Figure 1, the 3D depth structures of the
stage models are demonstrated in different colors. Each
stage has a unique depth pattern. The stage moidels,
3D geometry structures, are used to determine how the
image should be divided. For instance, images of the

Color constancy is an under-constrained problem, since
bothe( ) andc( ) are generally unknown. Therefore, in
order to solve the color constancy problem, a number of as-
sumptions are proposed such as the Grey-World assumptior’]n
(i.e. the average pixel value is grey) [7] and the White-Patch
assumptioni(e. the maximum pixel value is white) [7].

Recently, color constancy is addressed by exploiting
higher order derivative information [19],

z @f (x) ° 5 stagesky+background+groundhould be divided into three
——= dx = ke" ; (3) parts: sky (in blue), background (in yellow) and ground (in
@ brown). By contrast, if the image structure should be trbate
wheren is the order of the derivativg is the Minkowski- ~ as & whole, no segmentation is applied. For instance, there

normand (x) = f G is the convolution of the image is no need to segment images of stageund diagonal-
with a Gaussian lter with scale parameter Using Equa-  BackgroundLRdiagonalBackgroundRLbecause they are
tion 3, different color constancy algorithms can be derived geometrically composed of only one plane.

by varying one or more of parameter values. For example,

. _ 3. Color constancy using 3D scene geometr
1. whenn=0, pixel-based color constancy algorithms are y 9 9 y

obtained, such as the Grey-World algorithae? °), The proposed method using 3D scene geometry for color
the White-Patch algorithmef® ) and the general  constancy consists of the following steps: rst, images are
Grey-World €%:13:2); classi ed into stages; then, according to the stage models,
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Figure 2. QOutline of color constancy using 3D scene geom@toge that the codebook models and the stage models araettaif-line.
Stage segmentation and best color constancy algorithroteieare trained on the dataset beforehand.

Figure 1. Stage models and their corresponding examplgs: to
two rows, from left to right: sky+background+ground, back-
ground+ground, sky+ground, ground+diagalBackgroundht;
tom two rows: diagalBackgroundLR, box, 1side-wallLR, aarn

images are partitioned into segments. Each segment cor
responds to a speci ¢ geometrical structure in the image.
Consecutively, for each segment, the most suitable color
constancy algorithm is used. The nal result for the whole
image is the combinatiore(g weighted average) of the es-
timations for each segmentation. In the case of a single
segmenti(e. whole image), illumination estimation will be
computed using the best color constancy algorithm for that
stage type. The whole process is demonstrated by the bloc
diagram shown in Figure 2.

3.1. Stage classi cation

Bag-of-words representations have become a well estab-

lished approach for scene classi cation. The basic idea is

tor space is used for classi cation. For stage classi catio
we closely follow the scene classi cation system as pro-
posed by Van de Sande et al. [18]. The method is based on
a color modi cation [2] of the SIFT descriptor [14]. Specif-
ically, for our experiments, we use a color constant RGB
SIFT descriptor, evaluated in [18] as a good candidate for
scene categorization. Furthermoreystall SVM classi ers

with precomputed 2 kernel are used, see [4, 18] for more
details.

3.2. Segmentation

Image stages are dependent on the inherent structure of
natural images, resulting from image statistics and view-
point constraints [15]. Each stage has a unique partit@gnin
re ecting the 3D geometry of the underlying image. Each
segment in the partitioning represents geometrical estiti
like walls, ground, and sky. We will use the segmentation
provided by the stage model to learn which color constancy
algorithm performs best for each segment. Both hard seg-
ments and soft segments is considered, the latter taking the
uncertainty due to the rough outline of the stage geometry
into account. Both of them are based on the occurrence
probability in the training set. Ground truth is obtained by
manually annotation, thereby dividing the training set ac-
cording to the stage patterns, and tting the parameters of
each stage model (horizon, vanishing points) such as to vi-
sually best t the underlying data.

K Suppose that an image belongs to Stagehich is com-

posed ofN parts, correspondingly there will B¢ mask
maps. The mask map for th# partition MP; is obtained
by taking an average of the mask maps for each image:
P

jn:1 Mj;i(x) |

MP;(x) = . ;

4

to treat images as loose collections of independent patcheswheren is the total number of images in the training dataset,

First, a representative set of patches is sampled from the im
age. Then, a visual descriptor for each patch is generated
Finally, the resulting distribution of samples in the dgscr

andM;.i(x) is the mask map of thg" image for thei®"
partition. Note thaM;;i(x) is an indicator functionMj.; (x)
=1, if x belongs to thé" partition and 0 otherwise.



3.2.3 llluminant estimation

- . Without segmentation. After stage classi cation, the

most suitable color constancy algorithm is selected foheac

(b) Hard segmentation mask stage by considering the angular errors of the ve different
color constancy algorithms. Algorithms are applied on the
training images of a speci c stage. The algorithm with the

. lowest angular error is assigned to the stage under consid-
(a) Original image eration. In this way, for each stage, the most proper color
(c) Soft segmentation mask constancy algorithm is assigned. Note that this step is pro-

Figure 3. An example of hard and soft segmentation mask maps.ces.Sed off-line. Then, the gn-l|ne processing IS to predlct
The original image (a) belongs to stagky+ground The mask Wh,'Ch stage_an (upknown) image belongs to by _usmg the
maps are of the same size as the original image. The differenc trained classi er. Finally, the color constancy algoritkimat
between hard Segmentation mask map, shown in gure (b)7 and haS been a.SSigned to that Stage W|” be Used to eStimate the

the soft segmentation mask map, shown in gure (c), is thiates light source to correct the image.
in gure (b) are eithei0 or 1 while values in gure (c) betweef With segmentation. After the mask map has been ob-
andl. tained by hard or soft segmentation, images in the training

dataset will be divided into several parts. The most suitabl
color constancy algorithm will be selected from the exist-
ing color constancy algorithms for each segment. This is
Gijsenij et al. [9] show that images with different natural achieved by analyzing the angular errors for all color con-
statistical distributions may prefer different color ctary stancy algorithms on images of this stage in the training
algorithms. Therefore, mask maps are used to automaticallydataset (see section 4.2 for details). The color constdncy a
divide the images. Assuming that the images of a stage cargorithm with the lowest angular error is assigned to this seg
be partitioned intdN parts, there exi?d mask maps corre- ment of the stage. In other words, the stage model is labeled
sponding to the partitions in the training dataset. Them, th with the segments and their corresponding color constancy

3.2.1 Hard segmentation

binary mask map is de ned as follows: algorithms which provide highest color constancy accuracy
8 (i.e. lowest angular error). The weight of each segment is
. < 1. MP;(x) = max MP; (x); inverse to its angular error.
MP5(x) = A (5) For each unseen image in the test dataset, the on-line pro-
0, otherwise: cess is as follows: rst, it is classi ed into a speci ¢ stage

) S; then it is divided according to the mask maps of stage
As a consequence, the values in the hard mask map are eig \yhich have been obtained in the training dataset before-
ther 0 or 1, as shown in Figure 3(b). . hand. Further, the color of the light source is estimated in
After the maximum mask map is obtained, the color of each segment using its selected color constancy algorithm.
the light source is estimated using pixels from one areaFinally, the illuminant estimation is obtained by combigin
while other pixels are ignored. the results of each segment by weighted average.

3.2.2 Soft segmentation 4. Experiments

As the scene geometry per stage category is only roughly | this section, the proposed method is evaluated on a

outlined, some pixels are more reliable than others t0 be-re).world dataset and compared with the state-of-the-art
long to a certain segment. Therefore, different con dence .|or constancy algorithms on a large-scale dataset.
values are assigned to them. We set the con dence values

of pixels to MP;(x), which indicates the occurrence fre- 4.1. Data set

quency of pixels appearing in the training dataset. For ex-

ample, given 100 training images, for a speci ¢ position Two independent datasets are used in the experiments.
80 training images indicate that this position belongs & th In order to obtain a classi er with good generalization ca-
areaA, thenMP;(x) = 0:8. Hence, the value df1P;(x) pabilities, a large datas&; with more than 3,500 images
corresponds to a weight for pixels at this position in images is used to train the stage classi ers [15]. The other dataset
of that stage. In particular, given a position, the larger th D, collected by Ciureat al. [5] is used for testing. Note
con dence value, the more probable it belongs to that par- thatD, contains the ground truth for color constancy while
tition. Note that the values of the soft segmentation mask no ground truth is available fdp;. Therefore, color con-
map are between 0 and 1, as shown in Figure 3(c). stancy is evaluated on,. D; is used to provide an inde-



pendent dataset for stage classi cation ensuring gerzerali Name % in dataset AP

tion of the proposed method. skyBkgGnd 9:1% 065
DatasetD, consists of more than 11,000 images, ex- bkgGnd 9:9% 0:34
tracted from 2 hours video for a wide variety of settings skyGnd 2:7% 0:34
such as indoor, outdoor, desert, cityscape, etc. There are ' .
X ) : . gnd 12:1% 0:67
totally 15 different video clips taken under different pac . 6% 016
and hence lighting conditions. As there exists high corre- gndD!agBkgLR 6:6% '
lation among images of the same video clip, we test the gndDiagBkgRL 4:6% 0:16
color constancy algorithms on a subset of uncorrelated im- diagBkgLR 4:6% 0:12
ages composed of 711 images. These images are manually diagBkgRL 3:8% 0:15
selected and annotated. A few examples of the dataset are box 8:0% 0:37
shown in Figure 1. In each image, there is a grey ball at the 1side-wallLR 12:9% 0:46
right bottom, which is used to capture the ground truth of 1side-wallRL 15:6% 0:41
Fhe Iight source. Note that the grey ball is masked when the corner 6:5% 0:15
illuminant is estimated. persBkg 3:50% 0:19
MAP 0.320

4 .2. Performance measure

. ) Table 1. Stage classi cation results for each stage usiadriGB-
Two performance measures are used in this paper: stage|F feature, as well as relative occurrence witbin. Note that

classi cation is evaluated using the average precisionlevh  the |ast row gives the mean average precision over all stages
the angular error is used to validate the performance of the

color constancy algorithms.

Average precision. The average precision is equivalent &
to the area under a precision-recall curve. It combinedlreca ==
and precision in a single number. Mean average precision =
MAP is used to evaluate the performance of the features
over all the stages, which is obtained by averaging the aver-
age precisions over all stages.

Angular error. In order to evaluate the performance of
the color constancy algorithms, the angular efr@arused,

" = cos 1(é| 8e) (6) Figure 4. Examples of misclassi ed images.

whereé, is the normalized ground truth of the illuminant, 4 4. Single color constancy methods
whileé. is the normalized estimation. Both mean and me-

dian angular errors [13] are taken as performance indicator 1€ algorithms that are evaluated here are the ve in-

stantiations discussed in Section 2. The results for single
algorithms are shown in Table 2. These methods are ap-
plied to each image iD,. Table 2 shows that the edge-

For the purpose of stage classi cation, we use generic 1 based methodsi.¢. 1 -order Grey-Edge a”‘?nd -order
vs-alkbased classi ers. Each classi er uses the RGB-SIFT CGrey-Edge) outperform the pixel-based methads Grey-
feature vectors which are quantized by codebooks and out-Vorld, White-Patch, and general Grey-World). Differences
puts a single stage label, as this feature is shown to outper-betWeeriLSt -order Grey-Edge ang -order Grey-Edge are
form other variants of the SIFT-feature [18]. There is altota SMall, but the median angular error of thié-order Grey-
of 13 classi ers corresponding to 13 stages concerned.  Edge is slightly lower, so thés'-order Grey-Edge is con-

The performance of stage classi cation on each stage iSS|dered as oubpaselinen the remainder of this section.
shown in Table 1. From this table, it can be derived that
for some stages, such slsy+bkg+gndandgnd, the results
are satisfying. For other stages, lid@gBkgLRanddiag- In addition to the single algorithms, two combination
BkgRL, the results still leave room for improvement. This algorithms are evaluated that using combination strasegie
is due to occlusions appearing in these categories, makingo obtain a more accurate illuminant estimate. The rst
it hard to classify them correctly. A few examples of mis- method is proposed by Bianco et al. [1] and distinguishes
classi ed images are given in Figure 4. between indoor and outdoor images. An indoor-outdoor

4.3. Stage classi cation

4.5. Combination algorithms



Method Mean Median

Grey-World 74 7.0
White-Patch 7:3 6:1
general Grey-World 6:4 58
18t-order Grey-Edge 6:0 5:2
2"d_order Grey-Edge 6:0 5:4

Combination using indoor-outdoor classi catign7:0  (+17%) | 6:5  (+25%)
Combination using natural image statistics 5:7 ( 5%) | 47 ( 10%)

Proposed (auto): without segmentation 5.7 ( 5%) | 48 ( 8%)
Proposed (auto): hard segmentation 54 ( 10%) | 45 ( 14%)
Proposed (auto): soft segmentation 54 ( 10%) | 46 ( 12%)
Proposed (manual): without segmentation 5:5 ( 8%) | 46 ( 12%)
Proposed (manual): hard segmentation 47  ( 22%) | 37  ( 29%)
Proposed (manual): soft segmentation 47  ( 22%) | 3:6 ( 31%)

Table 2. Performance of color constancy algorithms &verProposed (auto) means that the proposed methods arechjopdietomatically
classi ed images while proposed (manual) indicates thatnoethods are evaluated on manually classi ed images.

T T T
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Figure 5. Median angular errors of color constancy algoriitior each stage iD,. The stage models are shown on the horizontal axis:
sky+background+ground, background+ground, sky+grogmdund, ground+diaganalBackgroundLR, ground+diagaametBroundRL,
diaganalBackgroundLR, diaganalBackgroundRL, box, IgidieR, 1sidewallRL, corner, person+Background.

classi er is proposed that is used to apply different color ci c, they propose to use the shades-of-grey method for in-
constancy algorithms to indoor and outdoor images. In spe-door images and th2™ -order Grey-Edge method for out-



door images. For convenience, we used manual annotatior Segmentation|  Estimation | Groundtruth

of indoor and outdoor images instead of the indoor-outdoor sky (0.60,0.59,0.54
classi er proposed in [1]. As can be seen in table 2, the background | (0.48, 0.56, 0.67) (0.55,0.57,0.60

accuracy of the illuminant estimates does not improve with ground (0.58,0.58, 0.58

respect to the single color constancy algorithms LsidewallLR | (0.61,0.56,0.57
Ao _ L ceil (0.62,0.45, 0.64) (0.59,0.59, 0.54

Another combination method that is evaluated in this pa- oor (0.68, 0.58, 0.45

per is proposed by Gijsenij and Gevers [9], and use global
image statistics for selection of the most appropriatercolo Figure 6. Examples of the proposed method using hard segment
constancy algorithm. Results indicate that the performanc tion. The red lines in images are the boundaries of rough eegm
indeed improves with respect to the best-performing singletation. llluminant estimation of each region is obtained15y-
algorithm, see table 2. However, as this method uses globaprder Grey-Edge, which is the best among the consideredesing
selection of the most appropriate color constancy algarjth ~ @gorithms orD.

the scene geometry is not taken into account, so there is lit-
tle room for further improvement of the results using this

approach panding from this, a trivial extension is the estimation of

the light source color at various depth layers as indicayed b
the 3D stage model. This allows the estimation of a distant
light source, and to distinguish a nearby illuminant (indoo

Evaluation of the proposed methods is performed using shadow) from a far away illuminant (outdoor, sunlight). As
the leave-one-out cross validation method. In order to ob-such ground truth is not yet available in current color con-
tain the mask map, all images in the training dataset arestancy datasets, we did not pursue evaluation of these ex-
manually annotated and segmented. tensions.

Without segmentation llluminant estimation is com- Soft segmentation. The performance of the proposed
puted using the entire image. The median angular error ofmethod using soft segmentation on each stage is demon-
the proposed method without segmentatioh® as shown  strated in Figure 5 while the result over the whole dataset is
in Table 2. Compared with the best-performing algorithm, shown in Table 2: the median angular errofi8 , which is
i.e., the1st-order Grey-Edge, an increase of alm8%b on quite similar to the proposed method using hard segmenta-
the median angular error is reached. Results on individualtion. The proposed method using soft segmentation makes
stages reveal that most color constancy algorithms have an improvement2%in median angular error over thase-
preference for speci ¢ stages. For instan@®;order meth- line.
ods like the White-Patch and the general Grey-World prefer  Discussion.In addition to automatic classi cation, man-
stages where the depth can become quite high, like the stageal classi cation is used to determine how the stage clas-
sky+background+ground Such stages with a large depth si cation performance in uences the nal results. Results
can contain haze, which causes a relatively low signal-to-are shown in Table 2. Using this perfect classi ee(the
noise ratio, and it is known from [9] that methods that are mean average precision is 1), the median angular errors of
based on higher-order statistics like tB¥ -order Grey- the method without segmentation is reducedH® . Us-
Edge do not perform well on such images. On the othering hard segmentation, the best-performance that can be
hand, the2"? -order Grey-Edge algorithm performs better obtained is3:7 for the median angular error, while the me-
on images with a high amount of information, e.g. many dian angular error can be further reduce®i6 by using
edges. This is re ected in a preference for stages dilegy- soft segmentation. In conclusion, improving stage classi
onal BackgroundLRinddiagonal BackgroundRthat gen- cation will further improve the color constancy results-sig
erally contain images with much contrast and many edges. ni cantly.

Hard segmentation. The performance of the proposed Figure 7 presents three images, two of which are cor-
method using hard segmentation on each stage is shown imectly classi ed while the other is misclassi ed due to the
Figure 5. The performance of the proposed method on theocclusion. The proposed method using soft segmentation is
entire dataseD; is given in Table 2: the median angular more effective in the presence of shadow or shading edges.
error equalgl:5 . Compared with théaseling the median
angular error is .reduced by almdst% Speci c examples 5. Conclusions
are shown in Figure 6. Note that, due to the stage clas-
si cation, we not only improve upon o overall illuminant In this paper, 3D geometry models have been used to de-
estimation accuracy, but we are also in a position to assessermine which color constancy method to use for different
the illuminant color of the various geometrical constella- scene geometry settings. To achieve this, rstimages have
tions in the scene. This is outlined in Figure 5, where each been classi ed into stages. Then images have been divided
stage “wall” is assigned its best illuminant (algorithm¥-E into different regions using hard or soft segmentation. Af-

4.6. Color constancy using stage classi cation



(a) Original image (b) Ground truth

hard mask

(c) Correction using(d) Correction using (e) Correction using (f) Correction using
soft mask

15Lorder Grey-edge grey-world

Figure 7. Results of color constancy. The angular erroniergon the gray ball, which is masked during illuminant estion.

ter that the best color constancy algorithm has been sdlecte [5] F. Ciurea and B. Funt. A large image database for color con

for each geometry segment. Besides improving color con-
stancy algorithms by exploiting the 3D geometry structure [6]
of the scene, we have opened up the possibility to access il-
luminant color over the depth eld in asingle image. Hence,
estimating which illuminant is directly in front of the cam-
era, and the one that is illuminating the more distant scene. (8l
Experiments on large scale image datasets show that
the proposed algorithm outperforms state-of-the-artlsing
color constancy algorithms with an improvement of almost
14% of median angular error. When using an ideal classi- [10

er (i.e, all of the test images are correctly (manually)szla

si ed into stages), the performance of the proposed method
improves the median angular error as much as 31%. This

stancy research. I8IC, pages 160-164, 2003.

E. Delage, H. Lee, and A. Y. Ng. A dynamic bayesian net-
work model for autonomous 3d reconstruction from a single
indoor image. IrCVPR pages 2418-2428, 2006.

M. Ebner. Color constancy Wiley, 2007.

G. Finlayson, S. Hordley, and C. Lu. On the removal of
shadows from imaged.PAMI, 28(1):59-68, 2006.

9] A. Gijsenij and T. Gevers. Color constancy using natural

image statistics. I€VPR 2007.

] R. Henry, S. Mahadeyv, S. Urquijo, and D. Chitwood. Color

perception through atmospheric hazé. Opt. Soc. Am. A
17(5):831-835, 2000.

D. Hoiem, A. A. Efros, and M. Hebert. Geometric context
from a single image. IMCCV, pages 654-661, 2005.

gain in performance can largely be explained by the fact [12] G. Hordley. Scene illuminant estimation:past, présand

that most color constancy algorithms are speci cally siiite
for images with certain image statistics, like a high (or)ow
signal-to-noise ratio. Further, it is shown that extragtin
local geometry features is more ef cient than applying a

global selection or combination algorithm.
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