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Abstract

The aim of color constancy is to remove the effect of the

color of the light source. As color constancy is inherently

an ill-posed problem, most of the existing color constancy

algorithms are based on specific imaging assumptions such

as the grey-world and white patch assumptions.

In this paper, 3D geometry models are used to determine

which color constancy method to use for the different geo-

metrical regions found in images. To this end, images are

first classified into stages (rough 3D geometry models). Ac-

cording to the stage models, images are divided into differ-

ent regions using hard and soft segmentation. After that, the

best color constancy algorithm is selected for each geome-

try segment. As a result, light source estimation is tuned to

the global scene geometry. Our algorithm opens the pos-

sibility to estimate the remote scene illumination color, by

distinguishing nearby light source from distant illuminants.

Experiments on large scale image datasets show that

the proposed algorithm outperforms state-of-the-art single

color constancy algorithms with an improvement of almost

14% of median angular error. When using an ideal classi-

fier (i.e, all of the test images are correctly classified into

stages), the performance of the proposed method achieves

an improvement of 31% of median angular error compared

to the best-performing single color constancy algorithm.

1. Introduction

The color of objects is largely dependent on the color of

the light source [7]. Therefore, the same object, taken by

the same camera but under different illumination, may vary

in its measured color appearance. This color variation may

negatively affect the result of image and video processing

methods for different applications such as object recogni-

tion, tracking and surveillance. The aim of color constancy

is to remove the effect of the color of the light source.

A considerable number of color constancy algorithms

have been proposed, see [7, 12] for reviews. Traditionally,

pixel values are exploited to estimate the illuminant. Exam-

ples of such methods include approaches based on low-level

features [3], gamut-based algorithms [8], and other methods

that use knowledge acquired in a learning phase [7]. Only

recently, methods that use derivatives (i.e. edges) and even

higher-order statistics have been proposed [19].

All of the above color constancy algorithms are based on

specific assumptions about the illumination or the property

of object reflectance. As a consequence, none of them can

be considered as universal. Therefore, how to combine or

select a proper color constancy for a given imaging config-

uration is an important research direction [12].

To cope with this problem, higher level visual informa-

tion is taken into account recently [1, 9, 20]. In [20], the

image is modeled as a mixture of semantic classes, such

as sky, grass, road and buildings. Illuminant estimation is

steered by different classes by evaluating the likelihood of

the semantic content. Similarly, indoor-outdoor image in-

formation is used in [1]. Alternatively, image statistics are

used in [9] to improve color constancy. It is shown that im-

ages with similar image statistics probably will select the

same color constancy algorithms. Hence, this indicates that

there is a correlation between image statistics, scene types

and color constancy algorithms. Knowing the correspond-

ing class of an image a priori leads to improved color con-

stancy algorithms [1, 9, 20]. However, the more general

case of unconstrained color constancy can not be solved if

the classification of the input images is not directly incor-

porated in the algorithm.

Therefore, in this paper, we deduce 3D scene geome-

try for a wide range of scene categories. It is known that

image statistics are influenced by depth patterns [15], e.g.

the signal-to-noise ratio generally decreases as the depth in-

creases [10] while the scale changes when viewing scenes

from different depths [17]. Attributes like signal-to-noise

and scale are not inherently correlated with color constancy

methods, but it has been shown that they can strongly influ-

ence the accuracy of the illuminant estimates [9]. Conse-

quently, in this paper, the relationship between local statis-

tics and color constancy algorithms is investigated. To this
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end, 3D scene geometry models are used to divide images

into different geometrical regions. These models will be

used to select appropriate color constancy algorithms per

depth layer or geometrical section of the model.

This paper is organized as follows. First, in section 2, we

briefly outline the color constancy framework, and discuss

how to infer 3D scene geometry estimation from a single

image. Then, the proposed method is described in section 3.

After that, the experimental setup and results are presented

in section 4. Finally, section 5 concludes this paper.

2. Preliminaries

In this section, color constancy and 3D scene geometry

estimation is discussed in more detail.

2.1. Color constancy

Assuming Lambertian reflection, the image color f =
(R, G, B)T recorded by electronic devices is dependent on

the color of the light source e(λ), the surface reflection

s(x, λ) and the camera sensitivity function c(λ):

f(x) =

∫

ω

e(λ)c(λ)s(x, λ)dλ , (1)

where ω is the visible spectrum, λ is the wavelength of the

light and x is the spatial coordinate. Under the assump-

tion that the observed color of the light source e depends on

the color of the light source e(λ) and the camera sensitivity

function c(λ), the color of the light source is estimated by

e =

∫

ω

e(λ) c(λ) dλ . (2)

Color constancy is an under-constrained problem, since

both e(λ) and c(λ) are generally unknown. Therefore, in

order to solve the color constancy problem, a number of as-

sumptions are proposed such as the Grey-World assumption

(i.e. the average pixel value is grey) [7] and the White-Patch

assumption (i.e. the maximum pixel value is white) [7].

Recently, color constancy is addressed by exploiting

higher order derivative information [19],

(
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= k e
n,p,σ, (3)

where n is the order of the derivative, p is the Minkowski-

norm and f
σ(x) = f ⊗ Gσ is the convolution of the image

with a Gaussian filter with scale parameter σ. Using Equa-

tion 3, different color constancy algorithms can be derived

by varying one or more of parameter values. For example,

1. when n=0, pixel-based color constancy algorithms are

obtained, such as the Grey-World algorithm (e0,1,0),

the White-Patch algorithm (e0,−1,0) and the general

Grey-World (e0,13,2);

2. when n=1, color constancy algorithms are obtained us-

ing first-order derivative information, i.e. image edges

information. The Minkowski-norm p and smoothing

parameter σ depend on specific dataset. The instantia-

tion e
1,1,6 is applied in the paper;

3. when n=2, the framework provides color constancy

methods based on second-order statistics. Similarly,

the other two parameters p and σ vary with the dataset.

We use e
2,1,5 in our experiments.

Although other color constancy methods can be used, we

focus on the above instantiations which include pixel and

derivative-based methods.

2.2. Stage models and segmentation

A number of methods have been proposed to estimate

the geometry from single images [6, 16], where the work

of Hoiem et al. [11] is the most influential. However, these

methods are restricted to a number of classes restricting the

applicability of the method. More general classes might be

more useful instead of particular scene instantiations. To

this end, we introduce an image classification scheme which

derives scene information for a wider range of scene cate-

gories by using scene geometries.

Typical 3D scene geometries, called stages, are proposed

in [15]. The authors infer 3D geometry for a wide range

of stages. Image stages are considered as 3D geometrical

models of the scene. A number of stage models, together

with corresponding examples are shown in Figure 1. Each

stage has a certain depth layout. These models are depen-

dent on the inherent structure of natural images, resulting

from image statistics and viewpoint constraints. In this pa-

per, 13 different stages proposed by [15] are studied exclud-

ing noDepth or tab+pers+bkg as these stages are specifical

characteristics for the dataset used in [15], but not available

in the dataset under consideration.

As shown in Figure 1, the 3D depth structures of the

stage models are demonstrated in different colors. Each

stage has a unique depth pattern. The stage models, i.e.,

3D geometry structures, are used to determine how the

image should be divided. For instance, images of the

stage sky+background+ground should be divided into three

parts: sky (in blue), background (in yellow) and ground (in

brown). By contrast, if the image structure should be treated

as a whole, no segmentation is applied. For instance, there

is no need to segment images of stage ground, diagonal-

BackgroundLR, diagonalBackgroundRL, because they are

geometrically composed of only one plane.

3. Color constancy using 3D scene geometry

The proposed method using 3D scene geometry for color

constancy consists of the following steps: first, images are

classified into stages; then, according to the stage models,
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Figure 2. Outline of color constancy using 3D scene geometry. Note that the codebook models and the stage models are obtained off-line.

Stage segmentation and best color constancy algorithm selection are trained on the dataset beforehand.

Figure 1. Stage models and their corresponding examples: top

two rows, from left to right: sky+background+ground, back-

ground+ground, sky+ground, ground+diagalBackgroundLR; bot-

tom two rows: diagalBackgroundLR, box, 1side-wallLR, corner.

images are partitioned into segments. Each segment cor-

responds to a specific geometrical structure in the image.

Consecutively, for each segment, the most suitable color

constancy algorithm is used. The final result for the whole

image is the combination (e.g. weighted average) of the es-

timations for each segmentation. In the case of a single

segment (i.e. whole image), illumination estimation will be

computed using the best color constancy algorithm for that

stage type. The whole process is demonstrated by the block

diagram shown in Figure 2.

3.1. Stage classification

Bag-of-words representations have become a well estab-

lished approach for scene classification. The basic idea is

to treat images as loose collections of independent patches.

First, a representative set of patches is sampled from the im-

age. Then, a visual descriptor for each patch is generated.

Finally, the resulting distribution of samples in the descrip-

tor space is used for classification. For stage classification,

we closely follow the scene classification system as pro-

posed by Van de Sande et al. [18]. The method is based on

a color modification [2] of the SIFT descriptor [14]. Specif-

ically, for our experiments, we use a color constant RGB

SIFT descriptor, evaluated in [18] as a good candidate for

scene categorization. Furthermore, 1-vs-all SVM classifiers

with precomputed χ2 kernel are used, see [4, 18] for more

details.

3.2. Segmentation

Image stages are dependent on the inherent structure of

natural images, resulting from image statistics and view-

point constraints [15]. Each stage has a unique partitioning,

reflecting the 3D geometry of the underlying image. Each

segment in the partitioning represents geometrical entities

like walls, ground, and sky. We will use the segmentation

provided by the stage model to learn which color constancy

algorithm performs best for each segment. Both hard seg-

ments and soft segments is considered, the latter taking the

uncertainty due to the rough outline of the stage geometry

into account. Both of them are based on the occurrence

probability in the training set. Ground truth is obtained by

manually annotation, thereby dividing the training set ac-

cording to the stage patterns, and fitting the parameters of

each stage model (horizon, vanishing points) such as to vi-

sually best fit the underlying data.

Suppose that an image belongs to Stage S, which is com-

posed of N parts, correspondingly there will be N mask

maps. The mask map for the ith partition MPi is obtained

by taking an average of the mask maps for each image:

MPi(x) =

∑n

j=1 Mj,i(x)

n
, (4)

where n is the total number of images in the training dataset,

and Mj,i(x) is the mask map of the jth image for the ith

partition. Note that Mj,i(x) is an indicator function: Mj,i(x)
=1, if x belongs to the ith partition and 0 otherwise.



(a) Original image

(b) Hard segmentation mask

(c) Soft segmentation mask

Figure 3. An example of hard and soft segmentation mask maps.

The original image (a) belongs to stage sky+ground. The mask

maps are of the same size as the original image. The difference

between hard segmentation mask map, shown in figure (b), and

the soft segmentation mask map, shown in figure (c), is that values

in figure (b) are either 0 or 1 while values in figure (c) between 0

and 1.

3.2.1 Hard segmentation

Gijsenij et al. [9] show that images with different natural

statistical distributions may prefer different color constancy

algorithms. Therefore, mask maps are used to automatically

divide the images. Assuming that the images of a stage can

be partitioned into N parts, there exist N mask maps corre-

sponding to the partitions in the training dataset. Then, the

binary mask map is defined as follows:

MP′

i(x) =







1, MPi(x) =
N

max
j=1

MPj(x),

0, otherwise.
(5)

As a consequence, the values in the hard mask map are ei-

ther 0 or 1, as shown in Figure 3(b).

After the maximum mask map is obtained, the color of

the light source is estimated using pixels from one area

while other pixels are ignored.

3.2.2 Soft segmentation

As the scene geometry per stage category is only roughly

outlined, some pixels are more reliable than others to be-

long to a certain segment. Therefore, different confidence

values are assigned to them. We set the confidence values

of pixels to MPi(x), which indicates the occurrence fre-

quency of pixels appearing in the training dataset. For ex-

ample, given 100 training images, for a specific position x,

80 training images indicate that this position belongs to the

area Ai, then MPi(x) = 0.8. Hence, the value of MPi(x)
corresponds to a weight for pixels at this position in images

of that stage. In particular, given a position, the larger the

confidence value, the more probable it belongs to that par-

tition. Note that the values of the soft segmentation mask

map are between 0 and 1, as shown in Figure 3(c).

3.2.3 Illuminant estimation

Without segmentation. After stage classification, the

most suitable color constancy algorithm is selected for each

stage by considering the angular errors of the five different

color constancy algorithms. Algorithms are applied on the

training images of a specific stage. The algorithm with the

lowest angular error is assigned to the stage under consid-

eration. In this way, for each stage, the most proper color

constancy algorithm is assigned. Note that this step is pro-

cessed off-line. Then, the on-line processing is to predict

which stage an (unknown) image belongs to by using the

trained classifier. Finally, the color constancy algorithm that

has been assigned to that stage will be used to estimate the

light source to correct the image.

With segmentation. After the mask map has been ob-

tained by hard or soft segmentation, images in the training

dataset will be divided into several parts. The most suitable

color constancy algorithm will be selected from the exist-

ing color constancy algorithms for each segment. This is

achieved by analyzing the angular errors for all color con-

stancy algorithms on images of this stage in the training

dataset (see section 4.2 for details). The color constancy al-

gorithm with the lowest angular error is assigned to this seg-

ment of the stage. In other words, the stage model is labeled

with the segments and their corresponding color constancy

algorithms which provide highest color constancy accuracy

(i.e. lowest angular error). The weight of each segment is

inverse to its angular error.

For each unseen image in the test dataset, the on-line pro-

cess is as follows: first, it is classified into a specific stage

S; then it is divided according to the mask maps of stage

S, which have been obtained in the training dataset before-

hand. Further, the color of the light source is estimated in

each segment using its selected color constancy algorithm.

Finally, the illuminant estimation is obtained by combining

the results of each segment by weighted average.

4. Experiments

In this section, the proposed method is evaluated on a

real-world dataset and compared with the state-of-the-art

color constancy algorithms on a large-scale dataset.

4.1. Data set

Two independent datasets are used in the experiments.

In order to obtain a classifier with good generalization ca-

pabilities, a large dataset D1 with more than 3,500 images

is used to train the stage classifiers [15]. The other dataset

D2, collected by Ciurea et al. [5] is used for testing. Note

that D2 contains the ground truth for color constancy while

no ground truth is available for D1. Therefore, color con-

stancy is evaluated on D2. D1 is used to provide an inde-



pendent dataset for stage classification ensuring generaliza-

tion of the proposed method.

Dataset D2 consists of more than 11,000 images, ex-

tracted from 2 hours video for a wide variety of settings

such as indoor, outdoor, desert, cityscape, etc. There are

totally 15 different video clips taken under different places

and hence lighting conditions. As there exists high corre-

lation among images of the same video clip, we test the

color constancy algorithms on a subset of uncorrelated im-

ages composed of 711 images. These images are manually

selected and annotated. A few examples of the dataset are

shown in Figure 1. In each image, there is a grey ball at the

right bottom, which is used to capture the ground truth of

the light source. Note that the grey ball is masked when the

illuminant is estimated.

4.2. Performance measure

Two performance measures are used in this paper: stage

classification is evaluated using the average precision, while

the angular error is used to validate the performance of the

color constancy algorithms.

Average precision. The average precision is equivalent

to the area under a precision-recall curve. It combines recall

and precision in a single number. Mean average precision

MAP is used to evaluate the performance of the features

over all the stages, which is obtained by averaging the aver-

age precisions over all stages.

Angular error. In order to evaluate the performance of

the color constancy algorithms, the angular error ε is used,

ε = cos−1(êl · êe) , (6)

where êl is the normalized ground truth of the illuminant,

while êe is the normalized estimation. Both mean and me-

dian angular errors [13] are taken as performance indicator.

4.3. Stage classification

For the purpose of stage classification, we use generic 1-

vs-all-based classifiers. Each classifier uses the RGB-SIFT

feature vectors which are quantized by codebooks and out-

puts a single stage label, as this feature is shown to outper-

form other variants of the SIFT-feature [18]. There is a total

of 13 classifiers corresponding to 13 stages concerned.

The performance of stage classification on each stage is

shown in Table 1. From this table, it can be derived that

for some stages, such as sky+bkg+gnd, and gnd, the results

are satisfying. For other stages, like diagBkgLR and diag-

BkgRL, the results still leave room for improvement. This

is due to occlusions appearing in these categories, making

it hard to classify them correctly. A few examples of mis-

classified images are given in Figure 4.

Name % in dataset AP

skyBkgGnd 9.1% 0.65

bkgGnd 9.9% 0.34

skyGnd 2.7% 0.34

gnd 12.1% 0.67

gndDiagBkgLR 6.6% 0.16

gndDiagBkgRL 4.6% 0.16

diagBkgLR 4.6% 0.12

diagBkgRL 3.8% 0.15

box 8.0% 0.37

1side-wallLR 12.9% 0.46

1side-wallRL 15.6% 0.41

corner 6.5% 0.15

persBkg 3.5% 0.19

MAP 0.320

Table 1. Stage classification results for each stage using the RGB-

SIFT feature, as well as relative occurrence within D2. Note that

the last row gives the mean average precision over all stages.

Figure 4. Examples of misclassified images.

4.4. Single color constancy methods

The algorithms that are evaluated here are the five in-

stantiations discussed in Section 2. The results for single

algorithms are shown in Table 2. These methods are ap-

plied to each image in D2. Table 2 shows that the edge-

based methods (i.e. 1st-order Grey-Edge and 2nd-order

Grey-Edge) outperform the pixel-based methods (i.e. Grey-

World, White-Patch, and general Grey-World). Differences

between 1st-order Grey-Edge and 2nd-order Grey-Edge are

small, but the median angular error of the 1st-order Grey-

Edge is slightly lower, so the 1st-order Grey-Edge is con-

sidered as our baseline in the remainder of this section.

4.5. Combination algorithms

In addition to the single algorithms, two combination

algorithms are evaluated that using combination strategies

to obtain a more accurate illuminant estimate. The first

method is proposed by Bianco et al. [1] and distinguishes

between indoor and outdoor images. An indoor-outdoor



Method Mean Median

Grey-World 7.4◦ 7.0◦

White-Patch 7.3◦ 6.1◦

general Grey-World 6.4◦ 5.8◦

1st-order Grey-Edge 6.0◦
5.2◦

2nd-order Grey-Edge 6.0◦ 5.4◦

Combination using indoor-outdoor classification 7.0◦ (+17%) 6.5◦ (+25%)

Combination using natural image statistics 5.7◦ (−5%) 4.7◦ (−10%)

Proposed (auto): without segmentation 5.7◦ (− 5%) 4.8◦ (− 8%)

Proposed (auto): hard segmentation 5.4◦ (−10%) 4.5◦ (−14%)

Proposed (auto): soft segmentation 5.4◦ (−10%) 4.6◦ (−12%)

Proposed (manual): without segmentation 5.5◦ (− 8%) 4.6◦ (−12%)

Proposed (manual): hard segmentation 4.7◦ (−22%) 3.7◦ (−29%)

Proposed (manual): soft segmentation 4.7◦ (−22%) 3.6◦ (−31%)

Table 2. Performance of color constancy algorithms over D2. Proposed (auto) means that the proposed methods are applied to automatically

classified images while proposed (manual) indicates that our methods are evaluated on manually classified images.
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Figure 5. Median angular errors of color constancy algorithms for each stage in D2. The stage models are shown on the horizontal axis:
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diaganalBackgroundLR, diaganalBackgroundRL, box, 1sidewallLR, 1sidewallRL, corner, person+Background.

classifier is proposed that is used to apply different color

constancy algorithms to indoor and outdoor images. In spe-

cific, they propose to use the shades-of-grey method for in-

door images and the 2nd-order Grey-Edge method for out-



door images. For convenience, we used manual annotation

of indoor and outdoor images instead of the indoor-outdoor

classifier proposed in [1]. As can be seen in table 2, the

accuracy of the illuminant estimates does not improve with

respect to the single color constancy algorithms.

Another combination method that is evaluated in this pa-

per is proposed by Gijsenij and Gevers [9], and use global

image statistics for selection of the most appropriate color

constancy algorithm. Results indicate that the performance

indeed improves with respect to the best-performing single

algorithm, see table 2. However, as this method uses global

selection of the most appropriate color constancy algorithm,

the scene geometry is not taken into account, so there is lit-

tle room for further improvement of the results using this

approach.

4.6. Color constancy using stage classification

Evaluation of the proposed methods is performed using

the leave-one-out cross validation method. In order to ob-

tain the mask map, all images in the training dataset are

manually annotated and segmented.

Without segmentation Illuminant estimation is com-

puted using the entire image. The median angular error of

the proposed method without segmentation is 4.8◦ as shown

in Table 2. Compared with the best-performing algorithm,

i.e., the 1st-order Grey-Edge, an increase of almost 8% on

the median angular error is reached. Results on individual

stages reveal that most color constancy algorithms have a

preference for specific stages. For instance, 0th-order meth-

ods like the White-Patch and the general Grey-World prefer

stages where the depth can become quite high, like the stage

sky+background+ground. Such stages with a large depth

can contain haze, which causes a relatively low signal-to-

noise ratio, and it is known from [9] that methods that are

based on higher-order statistics like the 2nd-order Grey-

Edge do not perform well on such images. On the other

hand, the 2nd-order Grey-Edge algorithm performs better

on images with a high amount of information, e.g. many

edges. This is reflected in a preference for stages like diag-

onal BackgroundLR and diagonal BackgroundRL that gen-

erally contain images with much contrast and many edges.

Hard segmentation. The performance of the proposed

method using hard segmentation on each stage is shown in

Figure 5. The performance of the proposed method on the

entire dataset D2 is given in Table 2: the median angular

error equals 4.5◦. Compared with the baseline, the median

angular error is reduced by almost 14%. Specific examples

are shown in Figure 6. Note that, due to the stage clas-

sification, we not only improve upon o overall illuminant

estimation accuracy, but we are also in a position to assess

the illuminant color of the various geometrical constella-

tions in the scene. This is outlined in Figure 5, where each

stage “wall” is assigned its best illuminant (algorithm). Ex-

Segmentation Estimation Groundtruth

sky (0.60, 0.59, 0.54)

(0.55, 0.57, 0.60)background (0.48, 0.56, 0.67)

ground (0.58, 0.58, 0.58)

1sidewallLR (0.61, 0.56, 0.57)

(0.59, 0.59, 0.54)ceil (0.62, 0.45, 0.64)

floor (0.68, 0.58, 0.45)

Figure 6. Examples of the proposed method using hard segmenta-

tion. The red lines in images are the boundaries of rough segmen-

tation. Illuminant estimation of each region is obtained by 1
st-

order Grey-Edge, which is the best among the considered single

algorithms on D2.

panding from this, a trivial extension is the estimation of

the light source color at various depth layers as indicated by

the 3D stage model. This allows the estimation of a distant

light source, and to distinguish a nearby illuminant (indoor,

shadow) from a far away illuminant (outdoor, sunlight). As

such ground truth is not yet available in current color con-

stancy datasets, we did not pursue evaluation of these ex-

tensions.

Soft segmentation. The performance of the proposed

method using soft segmentation on each stage is demon-

strated in Figure 5 while the result over the whole dataset is

shown in Table 2: the median angular error is 4.6◦, which is

quite similar to the proposed method using hard segmenta-

tion. The proposed method using soft segmentation makes

an improvement 12% in median angular error over the base-

line.

Discussion. In addition to automatic classification, man-

ual classification is used to determine how the stage clas-

sification performance influences the final results. Results

are shown in Table 2. Using this perfect classifier (i.e. the

mean average precision is 1), the median angular errors of

the method without segmentation is reduced to 4.6◦. Us-

ing hard segmentation, the best-performance that can be

obtained is 3.7◦ for the median angular error, while the me-

dian angular error can be further reduced to 3.6◦ by using

soft segmentation. In conclusion, improving stage classifi-

cation will further improve the color constancy results sig-

nificantly.

Figure 7 presents three images, two of which are cor-

rectly classified while the other is misclassified due to the

occlusion. The proposed method using soft segmentation is

more effective in the presence of shadow or shading edges.

5. Conclusions

In this paper, 3D geometry models have been used to de-

termine which color constancy method to use for different

scene geometry settings. To achieve this, first images have

been classified into stages. Then images have been divided

into different regions using hard or soft segmentation. Af-



(a) Original image (b) Ground truth (c) Correction using

hard mask

(d) Correction using

soft mask

(e) Correction using

1
st-order Grey-edge

(f) Correction using

grey-world

Figure 7. Results of color constancy. The angular error is given on the gray ball, which is masked during illuminant estimation.

ter that the best color constancy algorithm has been selected

for each geometry segment. Besides improving color con-

stancy algorithms by exploiting the 3D geometry structure

of the scene, we have opened up the possibility to access il-

luminant color over the depth field in a single image. Hence,

estimating which illuminant is directly in front of the cam-

era, and the one that is illuminating the more distant scene.

Experiments on large scale image datasets show that

the proposed algorithm outperforms state-of-the-art single

color constancy algorithms with an improvement of almost

14% of median angular error. When using an ideal classi-

fier (i.e, all of the test images are correctly (manually) clas-

sified into stages), the performance of the proposed method

improves the median angular error as much as 31%. This

gain in performance can largely be explained by the fact

that most color constancy algorithms are specifically suited

for images with certain image statistics, like a high (or low)

signal-to-noise ratio. Further, it is shown that extracting

local geometry features is more efficient than applying a

global selection or combination algorithm.
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