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Abstract—Social image analysis and retrieval is important
for helping people organize and access the increasing amount
of user-tagged multimedia. Since user tagging is known to be
uncontrolled, ambiguous, and overly personalized, a fundamental
problem is how to interpret the relevance of a user-contributed
tag with respect to the visual content the tag is describing.
Intuitively, if different persons label visually similar images using
the same tags, these tags are likely to reflect objective aspects
of the visual content. Starting from this intuition, we propose
in this paper a neighbor voting algorithm which accurately and
efficiently learns tag relevance by accumulating votes from visual
neighbors. Under a set of well defined and realistic assumptions,
we prove that our algorithm is a good tag relevance measurement
for both image ranking and tag ranking. Three experiments on
3.5 million Flickr photos demonstrate the general applicability
of our algorithm in both social image retrieval and image tag
suggestion. Our tag relevance learning algorithm substantially
improves upon baselines for all the experiments. The results
suggest that the proposed algorithm is promising for real-world
applications.

Index Terms—Social tagging, tag relevance learning, neighbor
voting, multimedia indexing and retrieval

I. INTRODUCTION

THE advent of social multimedia tagging – assigning tags

or keywords to images, music, or video clips by common

users – is significantly reshaping the way people generate,

manage, and search multimedia resources. Good examples are

Flickr, which hosts more than 2 billion images with around

3 million new uploaded photos per day [1], and YouTube,

which serves 100 million videos and 65,000 uploads daily [2].

Apart from their usage for general-purpose search, these rich

multimedia databases are triggering many innovative research

scenarios in areas as diverse as personalized information

delivery [3], landmark recognition [4], concept similarity mea-

surement [5], tag recommendation [6], and automatic image

tagging [7], [8]. One would expect user-contributed tags to be

a good starting point for all these applications.

Despite the success of social tagging, however, tags con-

tributed by common users are known to be ambiguous, limited

in terms of completeness, and overly personalized [9], [10].

This is not surprising because of the uncontrolled nature of

social tagging and the diversity of knowledge and cultural

background of its users. Although the relevance of a tag given

the visual content can be subjective for a specific user, an

objective criterion is desirable for general-purpose search and

visual content understanding. We consider a tag relevant to

an image if the tag accurately describes objective aspects of
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Fig. 1. Dataflow of user tagging. According to whether a tag is relevant
with respect to a given image, we divide user-contributed tags into two types,
namely objective and subjective tags. The objective tags are marked by an
italic font. In this example, tag bridge is objective, while the other three tags
are subjective. We aim for automated approaches to learning tag relevance.

the visual content, or in other words, users with common

knowledge relate the tag to the visual content easily and

consistently. Other tags are subjective or overly personalized

and thus we consider those irrelevant, as illustrated in Figure 1.

Apart from the fact that tags can be subjective, individual tags

are mostly used once per image. This tagging behavior implies

that given an image, relevant tags and irrelevant ones are not

distinguishable by their occurrence frequency [11]. Hence, a

fundamental problem in social image analysis and retrieval is

how to accurately and efficiently learn the relevance of a tag

with respect to the visual content the tag is describing.

Existing methods to automatically predict tag relevance

with respect to the visual content often heavily rely on

supervised machine learning methods [12]–[14]. In general,

the methods boil down to learning a mapping between low-

level visual features, e.g., color and local descriptors, and

high-level semantic concepts, e.g., airplane and classroom.

Since the number of training examples are limited for the

supervised methods, the methods are not scalable to cover

the potentially unlimited array of concepts existing in social

tagging. Moreover, uncontrolled visual content contributed by

users creates a broad domain environment having significant

diversity in visual appearance, even for the same concept

[15]. The scarcity of training examples and the significant

diversity in visual appearance might make the learned models

unreliable and difficult to generalize. Therefore, in a social

tagging environment with large and diverse visual content, a

lightweight or unsupervised learning method which effectively

and efficiently estimates tag relevance is required.

Intuitively, if different persons label visually similar images

using the same tags, these tags are likely to reflect objective

aspects of the visual content. The intuition implies that the

relevance of a tag with respect to an image might be inferred

from tagging behavior of visual neighbors of that image.

Starting from this intuition, we propose a novel neighbor

voting algorithm for tag relevance learning. The key idea is,

by propagating common tags through visual links introduced
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by visual similarity, each tag accumulates its relevance credit

by receiving neighbor votes. Under a set of well defined

and realistic assumptions, we prove that our tag relevance

learning algorithm is a good measure for both image ranking

and tag ranking. To demonstrate the viability of the proposed

algorithm, we provide a systematic evaluation on 3.5 million

Flickr images for both social image retrieval and image tag

suggestion.

The rest of the paper is organized as follows. We review

related work in Section II. We then describe in detail tag

relevance learning in Section III. We setup experiments in

Section IV. Experimental results are presented in Section V.

We conclude the paper in Section VI.

II. RELATED WORK

We review work closely related to our motivation for tag

relevance learning in the following two directions, that is,

improving image tagging and improving image retrieval.

A. Improving Image Tagging

Depending on whether a target image is labeled, we cat-

egorize existing methods into two main scenarios, namely

improving image tagging for labeled images and automated

image tagging for unlabeled images.

In the first scenario, given an image labeled with some tags,

one tries to improve image tagging by removing noisy tags

[16], recommending new tags relevant to existing ones [6], or

reducing tag ambiguity [17]. In [16] for instance, the authors

assume that the majority of existing tags are relevant with

respect to the image. They then measure the relevance of a

tag by computing word similarity between the tag and other

tags. While in [6], the authors find new tags relevant with

respect to the original ones by exploiting tag co-occurrence in

a large user-tagged image database. To be precise, by using

each of the original tags as a seed, they find a list of candidate

tags having the largest co-occurrence with the seed tag. These

lists are later aggregated into a single list and the top ranked

tags are selected as the final recommendation. Since new tags

are suggested purely using the initial tags, images with the

same starting tags will end with the same new tags, regardless

of the visual content. Hence, methods addressing both textual

and visual clues are required.

Methods in the second scenario try to predict relevant tags

for unlabeled images. We divide these methods according

to their model-dependence into model-based and model-free

approaches. The model-based approaches, often conducted in

a supervised learning framework, focus on learning a mapping

or projection between low-level visual features and high-level

semantic concepts given a number of training examples [12]–

[14], [18], [19]. Due to the expense of manual labeling,

however, currently only a limited number of visual concepts

can be modeled effectively. Besides, the approaches are often

computationally expensive, making them difficult to scale

up. Furthermore, the rapid growth of new multimedia data

makes the trained models outdated quickly. To tackle these

difficulties, a lightweight meta-learning algorithm is proposed

in [20]. The gist of the algorithm is to progressively improve

tagging accuracy by taking into account both the tags automat-

ically predicted by an existing model and the tags provided

by a user as implicit relevance feedback. In contrast to the

model-based approaches, the model-free approaches attempt

to predict relevant tags for an image by utilizing images on

the Internet [7], [8], [21], [22]. These approaches assume there

exists a large well-labeled database such that one can find

a visual duplicate for the unlabeled image. Then, automatic

tagging is done by simply propagating tags from the duplicate

to that image. In reality, however, the database is of limited-

scale with noisy annotations. Hence, neighbor search is first

conducted to find visual neighbors. Disambiguation methods

are then used to select relevant tags out of the raw annotations

of the neighbors. In [7], for instance, the authors rank tags in

terms of their frequency in the neighbor set. However, tags

occurring frequently in the entire collection may dominate the

results. To restrain such effects, the authors in [8] re-weight

the frequency of a tag by multiplying this frequency by its

inverse document frequency (idf). The idf value of a tag is

inversely and logarithmically proportional to the occurrence

frequency of the tag in the entire collection. Nonetheless, the

idf scheme tends to over-weight rare tags.

To summarize, the existing methods for image tagging try to

rank relevant tags ahead of irrelevant ones in terms of the tags’

relevance value with respect to an image. However, since the

tag ranking criterion is not directly related to the performance

of image retrieval using the tagging results, optimizing image

tagging does not necessarily yield good image rankings [23].

B. Improving Image Retrieval

Given unsatisfactory image tagging results, one might ex-

pect to improve image retrieval directly. Quite a few methods

follow this research line, either by reranking search results

in light of visual consistency [24]–[29] or by expanding the

original queries [30]–[33]. We briefly review these methods

in the following two paragraphs. For a more comprehensive

survey, we refer to [15], [34].

Reranking methods assume that the majority of search

results are relevant with respect to the query and relevant

examples tend to have similar visual patterns such as color

and texture. To find the dominant visual patterns, density

estimation methods are often used, typically in the form

of clustering [25], [26] and random walk [28]. In [28] for

instance, the authors leverage a random walk model to find

visually representative images in a search result list obtained

by text-based retrieval. To be precise, first an adjacent graph

is constructed wherein each node corresponds to a result

image and the edge between two nodes are weighted in

terms of the visual similarity between the two corresponding

images. A random walk is then simulated on the graph to

estimate the probability that each node is visited. Since images

in dense regions are more likely to be visited, the above

probability is used to measure the representativeness of an

image in the visual feature space and accordingly rerank the

search results. However, density estimation is inaccurate when

feature dimensionality is high and samples are insufficient

for computing the density [35]. Besides, density estimation
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Fig. 2. Learning tag relevance by neighbor voting. The tag relevance value of each tag is estimated by accumulating the neighbor votes it receives from
visually similar images of the seed image. In this example, since four neighbor images are labeled with bridge, the tag relevance value of bridge with respect
to the seed image is 4. Hence, we update the tag frequency of bridge from 1 to 4.

is computationally expensive. In [26] for example, the authors

report an execution time of 18 seconds per search round, while

a study on web users [36] shows the tolerable waiting time

for web information retrieval is only 2 seconds, approximately.

The difficulty in density estimation and the associated compu-

tational expense put the utility of reranking methods for social

image retrieval into question.

Query expansion methods augment the original query by

automatically adding relevant terms [30]–[32]. In [31], for

instance, the authors use synonyms from a dictionary, whereas

in [30] the authors select strongly related terms from text

snippets returned by web search engines. Another example

is [32], where the authors use clustering methods to find

correlated tags. Though adding more query terms may retrieve

more relevant results, how to choose appropriate expansion

terms requires further research [37].

In summary, the reranking and query expansion methods

try to rank images relevant with respect to a query ahead of

irrelevant images. However, the methods leave the fundamental

problem of subjective user tagging unaddressed.

Though we have witnessed great efforts devoted into im-

proving both image tagging and image retrieval, the efforts

are almost disconnected. Recent research, e.g., [38]–[41], in-

vestigates the potential of leveraging automatic tagging results

for image and video retrieval. To the best of our knowledge,

however, up till now the solutions to the two problems are

still separated, including our previous work [11], [22] which

deal with social image tagging and social image retrieval,

respectively. This work is an attempt to solve image ranking

and tag ranking in a unified tag relevance learning framework.

In contrast to approaches for image ranking which are query-

dependent, e.g., [25], [28], our algorithm is query-independent.

This advantage allows us to run the algorithm offline without

imposing extra waiting time on users. Further, by updating

tag frequency with the learned tag frequency, we seamlessly

embed visual information into current tag-based social image

retrieval paradigms. For automatic image tagging, our algo-

rithm shares similarities with the model-free approaches, e.g.,

[7], [8], [21], since they can be regarded as propagating tags

between neighbor images. Note however that our algorithm

is more general as it is applicable to both image retrieval

and tagging. Moreover, we provide a formal analysis which is

missing in previous studies.

III. LEARNING TAG RELEVANCE BY NEIGHBOR VOTING

In order to fulfill image retrieval, we seek a tag relevance

measurement such that images relevant with respect to a tag

are ranked ahead of images irrelevant with respect to the tag.

Meanwhile, to fulfill image tagging, the measurement should

rank tags relevant with respect to an image ahead of tags

irrelevant with respect to the image. Recall the intuition that if

different persons label visually similar images using the same

tags, these tags are likely to reflect objective aspects of the vi-

sual content. This intuition suggests that the relevance of a tag

given an image might be inferred from how visual neighbors

of that image are tagged: the more frequent the tag occurs in

the neighbor set, the more relevant it might be, as illustrated

in Figure 2. However, some frequently occurring tags, such as
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‘2007’ and ‘2008’, are unlikely to be relevant to the majority of

images. Hence, a good tag relevance measurement should take

into account the distribution of a tag in the neighbor set and in

the entire collection, simultaneously. Motivated by the infor-

mal analysis above, we propose a neighbor voting algorithm

for learning tag relevance, as depicted in Figure 2. Though the

proposed algorithm is simple, we deem it important to gain

insight into the rationale for the algorithm. The following two

subsections serve for this purpose. Concretely, we first define

in Section III-A two criteria to describe the general objective

of tag relevance learning. Then, in Section III-B we provide

a formal analysis of user tagging and content-based nearest

neighbor search. We see how our algorithm is naturally derived

from the analysis. Finally, we describe in detail the algorithm

in Section III-C.

A. The Objective of Tag Relevance Learning

We first introduce some notation for the ease of explanation.

We denote a collection of user-tagged images as Φ and a

vocabulary of tags used in Φ as W . For an image I ∈ Φ and

a tag w ∈ W , let r∗(w, I) : {W,Φ} 7→ R be a tag relevance

measurement. We call r∗(w, I) an ideal measurement for

image and tag ranking if it satisfies the following two criteria:

Criterion 1: Image ranking. Given two images

I1, I2 ∈ Φ and tag w ∈ W , if w is relevant to

I1 but irrelevant to I2, then

r∗(w, I1) > r∗(w, I2) (1)

Criterion 2: Tag ranking. Given two tags w1, w2 ∈
W and image I ∈ Φ, if I is relevant to w1 but

irrelevant to w2, then

r∗(w1, I) > r∗(w2, I) (2)

Our goal is to find a tag relevance measurement satisfying

the two criteria.

B. Learning Tag Relevance from Visual Neighbors

As aforementioned, given an image I labeled with a tag

w, the occurrence frequency of w in visual neighbors of I to

some extent reflects the relevance of w with respect to I . Note
that the neighbors can be decomposed into two parts according

to their relevance to w, i.e., images relevant and irrelevant to

w. If we know how relevant and irrelevant images are labeled

with w and how they are distributed in the neighbor set, we

can estimate the tag’s distribution in the neighbors.

To formalize the above notions, we first define a few

notations as listed in Table I. We now study how images

relevant and irrelevant to a tag are labeled with that tag. In

a large user-tagged image database, it is plausible that for a

specific tag w, the number of images irrelevant to the tag is

significantly larger than the number of relevant images, i.e.,

|Rc
w| ≫ |Rw|, where | • | is the cardinality operator on image

sets. Moreover, one might expect that user tagging is better

than tagging at random such that relevant images are more

likely to be labeled, meaning |Lw ∩ Rw| > |Lw ∩ Rc
w|.

TABLE I

MAIN NOTATIONS DEFINED IN THIS WORK.

Notation Definition

Φ a collection of user-tagged images.

Lw

Lw ⊂ Φ, all images labeled with tag w in the
collection.

Rw

Rw ⊂ Φ, all images relevant with respect to tag w
in the collection.

Rc
w

Rc
w = Φ\Rw , all images irrelevant with respect to

tag w in the collection.

P (w|Rw)
probability of correct tagging, i.e., an image randomly
selected from Rw is labeled with tag w.

P (w|Rc
w)

probability of incorrect tagging, i.e., an image ran-
domly selected from Rc

w is labeled with tag w.

P (Rw)
probability that an image randomly selected from the
entire collection is relevant to tag w.

P (Rc
w)

probability that an image randomly selected from the
entire collection is irrelevant to tag w.

f
a similarity function between two images, measured
on low-level visual features.

Nf (I, k)
Nf (I, k) ⊂ Φ, k nearest neighbors (k-nn) of an
image I found in the collection by f .

Nrand(k)
Nrand(k) ⊂ Φ, k images randomly selected from
the collection.

nw[•]
an operator counting the number of tag w in any
subset of the collection.

By approximating the probability of correct tagging

P (w|Rw) using |Lw ∩ Rw|/|Rw| and the the probability of

incorrect tagging P (w|Rc
w) using |Lw ∩ Rc

w|/|R
c
w|, we have

P (w|Rw) > P (w|Rc
w). Hence, we make an assumption on

user tagging behavior, that is,

Assumption 1: User tagging. In a large user-tagged

image database, the probability of correct tagging is

larger than the probability of incorrect tagging.

Next, we analyze the distribution of images relevant and

irrelevant with respect to tag w in the k nearest neighbor set

of image I . Compared to random sampling, a content-based

visual search defined by a similarity function f can be viewed

as a sampling process biased by the query image. We consider

two situations with respect to the visual search accuracy, that

is, equal to and better than random sampling. In the first

situation where the visual search is equal to random sampling,

the number of relevant images in the neighbor set is the same

as the number of relevant images in a set of k images randomly

selected from the collection. While in the second situation

where the visual search is better than random sampling, given

two images I1 relevant to tag w and I2 irrelevant to w, we

expect to have

|Nf (I1, k) ∩ Rw| > |Nrand(k) ∩ Rw| > |Nf (I2, k) ∩ Rw|.

For instance, consider w to be ‘bridge’, I1 a bridge image

and I2 a non-bridge image. In this example, Nf (I1, k) should
contain more bridge images than Nrand(k), while Nf (I2, k)
should contain less bridge images than Nrand(k). Viewing
random sampling as a baseline, we introduce an offset variable

εI,w to indicate the visual search accuracy. In particular,
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we use (P (Rw) + εI,w) to represent the probability that an

image randomly selected from the neighbor set NNf (I, k) is

relevant with respect to w. Since an image is either relevant

or irrelevant to w, we use (1 − (P (Rw) + εI,w)), namely

(P (Rc
w) − εI,w), to represent the probability that an image

randomly selected from NNf (I, k) is irrelevant with respect

to w. Then, the number of relevant images in the neighbor set

is expressed as

|Nf (I, k) ∩ Rw| = k · (P (Rw) + εI,w), (3)

and the number of irrelevant images in the neighbor set as

|Nf (I, k) ∩ Rc
w| = k · (P (Rc

w) − εI,w). (4)

It is worth mentioning that the variable εI,w is introduced to

help us derive important properties of the proposed algorithm.

We do not rely on εI,w for implementing the algorithm.

Based on the above discussion, if the visual search is equal

to random sampling, we have εI,w = 0. If the visual is better

than random sampling, we have

εI1,w > 0 > εI2,w, for I1 ∈ Rw and I2 ∈ Rc
w. (5)

We then make our second assumption as

Assumption 2: Visual search. A content-based

visual search is better than random sampling.

Bearing the analysis of user tagging and visual search in

mind, we now consider the distribution of tag w within the

neighbor set of image I . Since we can divide the neighbor set

into two distinct subsets Nf (I, k) ∩ Rw and Nf (I, k) ∩ Rc
w,

we count the number of w in the two subsets, separately. That

is,

nw[Nf (I, k)] = nw[Nf (I, k) ∩ Rw] + nw[Nf (I, k) ∩ Rc
w]

= k · (P (Rw) + εI,w)P (w|Rw)+
k · (P (Rc

w) − εI,w)P (w|Rc
w).

(6)

In a similar fashion we derive

nw[Nrand(k)] = k · (P (Rw)P (w|Rw) + P (Rc
w)P (w|Rc

w)) .
(7)

Since nw[Nrand(k)] reflects the occurrence frequency of w
in the entire collection, we denote it as Prior(w, k). By

substituting Eq. 7 into Eq. 6, we obtain

nw[Nf (I, k)]−Prior(w, k) = k·(P (w|Rw) − P (w|Rc
w)) εI,w.

(8)

Further, by defining

tagRelevance(w, I, k) := nw[Nf (I, k)] − Prior(w, k), (9)

we arrive at the following two theorems:

Theorem 1: Image ranking. Given assumption 1

and assumption 2, tagRelevance yields an ideal

image ranking for tag w, that is, for I1 ∈ Rw

and I2 ∈ Rc
w, we have tagRelevance(w, I1) >

tagRelevance(w, I2).

Theorem 2: Tag ranking. Given assumption 1

and assumption 2, tagRelevance yields an ideal

tag ranking for image I , that is, for two tags w1

and w2, if I ∈ Rw1
and I ∈ R̄w2

, we have

tagRelevance(w1, I) > tagRelevance(w2, I).

We refer to the appendix for detailed proofs of the two

theorems. Note that in the proof of theorem 1, assumption

2 (Eq. 5) can be relaxed as (εI1,w > εI2,w) which we call

relaxed assumption 2. Since the relaxed assumption is more

likely to hold than its origin, this observation indicates that

image ranking is relatively easier than tag ranking.

Our tag relevance function in Eq. 9 consists of two compo-

nents which represents the distribution of the tag in the local

neighborhood and in the entire collection, respectively. This

observation confirms our conjecture made in the beginning of

Section III that a good tag relevance measurement should take

both distribution into account.

C. A Neighbor Voting Algorithm

We have argued in Section III-B that learning tag relevance

boils down to computing (nw[Nf (I, k)] − Prior(w, k)), i.e.,
the count of tag w in the k nearest neighbors of image I minus

the prior frequency of w. Consider that each neighbor votes on

w if it is labeled with w itself, nw[Nf (I, k)] is then the count

of neighbor votes on w. Thereby, we introduce a neighbor

voting algorithm: given a user-tagged image, we first perform

content-based k-nn search to find its visual neighbors, and then
for each neighbor image, we use its tags to vote on tags of

the given image. We approximate the prior frequency of tag

w as

Prior(w, k) ≈ k
|Lw|

|Φ|
, (10)

where k is the number of visual neighbors, |Lw| the number

of images labeled with w, and |Φ| the size of the entire

collection. Note that the function tagRelevance in Eq. 9 does

not necessarily obtain positive results. We set the minimum

value of tagRelevance to 1. In other words, if the learned

tag relevance value of a user-contriubted tag is less than its

original frequency in an image, we reject the tag relevance

learning result for that image. In addition, we observe that the

voting result might be biased by individual users who have a

number of visually similar images, as shown in Figure 3(a).

In order to make the voting decision more objective (which

we target at), we introduce a unique-user constraint on the

neighbor set. That is, each user has at most one image in the

neighbor set per voting round. As shown in Figure 3(b), with

the unique-user constraint we effectively reduce the voting

bias. We finally summarize the procedure for learning tag

relevance by neighbor voting in Algorithm 1.

IV. EXPERIMENTAL SETUP

A. Experiments

We evaluate our tag relevance learning algorithm in both an

image ranking scenario and a tag ranking scenario. For image

ranking, we compare three tag-based image retrieval methods

with and without tag relevance learning. For tag ranking, we

demonstrate the potential of our algorithm in helping user

tagging in two settings, namely, tag suggestion for labeled
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(a) (b)

Fig. 3. Tag relevance learning with the unique-user constraint. The query example is the biggest image in the center of (a) and (b). The query is labeled
with tag ‘tiger’ by a user. Figure (a) shows visual neighbors without the unique-user constraint, namely standard content-based search. Since the neighbor
set is dominated by images from few users, the tag relevance value of ‘tiger’ voted by 1000 neighbors is 557. While in Figure (b), with the unique-user
constraint, each user has at most one image in the neighbor set per voting round. The tag relevance value of ‘tiger’ voted by 1000 neighbors is thus reduced
to 6. The unique-user constraint makes the voting result more objective.

Algorithm 1 Learning tag relevance by neighbor voting

Input: A user-tagged image I .
Output: tagRelevance(w, I, k), i.e., the tag relevance value of
each tag w in I .

Find k nearest visual neighbors of I from the collection with the
unique-user constraint, i.e., a user has at most one image in the
neighbor set.
for tag w in tags of I do

tagRelevance(w, I, k) = 0
end for
for image J in the neighbor set of I do
for tag w in (tags of J ∩ tags of I) do

tagRelevance(w, I, k) = tagRelevance(w, I, k) + 1
end for

end for
tagRelevance(w, I, k) = tagRelevance(w, I, k)−Prior(w, k)
tagRelevance(w, I, k) = max(tagRelevance(w, I, k), 1)

images and tag suggestion for unlabeled images. Specifically,

we design the following three experiments.

• Experiment 1: Tag-based image retrieval. We employ a

general tag-based retrieval framework widely used in existing

systems such as Flickr and YouTube. We adopt OKAPI-BM25,

a well founded ranking function for text retrieval [42] as a

baseline. Given a query q containing keywords {w1, . . . , wn},
the relevance score of an image I is computed as

score(q, I) =
∑

w∈q

qtf(w)idf(w)
tf(w) · (k1 + 1)

tf(w) + k1 · (1 − b + b lI
lavg

)
,

(11)

where qtf(w) is the frequency of tag w in q, tf(w) the

frequency of w in the tags of I , lI the total number of tags of I ,
and lavg the average value of lI over the entire collection. The

function idf(w) is calculated as log N−|Lw|+0.5

|Lw|+0.5
, where N is

the number of images in the collection and |Lw| is the number

of images labeled with w. By using learned tag relevance

value as updated tag frequency in the ranking function, namely

substituting tagRelevance(w, I, k) for tf(w) in Eq. 11, we

investigate how our algorithm improves upon the baseline.

We study the performance of the baseline method and our

method, given various combinations of parameters. In total,

there are three parameters to optimize. One is k, the number

of neighbors for learning tag relevance. We choose k from

{100; 200; 500; 1000; 2000; 5000; 10,000; 15,000; 20,000}.
The other two are b and k1 in OKAPI-BM25. The parameter

b (0 ≤ b ≤ 1) controls the normalization effect of document

length. Here, document length is the number of tags in a

labeled image. We let b range from 0 to 1 with interval 0.1.

The variable k1 is a positive parameter for regularizing the

impact of tag frequency. Since k1 does not affect ranking for

single-word queries, we set k1 to 2, a common choice in text

retrieval [42].

Considering that the OKAPI-BM25 ranking function origi-

nally aims for text retrieval and hence might not be optimal for

tag-based image retrieval, we further compare with a recent

achievement in web image retrieval by Jing and Baluja [28]

(see details in Section II-B). As depicted in [28], there are two

parameters to optimize: a dump factor d (d > 0.8) controlling
the restart probability of random walk and m the number of top

ranked results in an initial list to calculate the prior probability.

We try various parameter combinations, i.e., d ∈ {0.85; 0.90;
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0.95} and m ∈ {5; 10; 20; 100; 1000}.
• Experiment 2: Tag suggestion for labeled images.

Given an image labeled with some tags, we aim for automated

methods that accurately suggest new tags relevant to the image.

We investigate how our algorithm improves upon a recent

method by Sigurbjörnsson and Van Zwol [6] by introducing

visual content information into the tag suggestion process.

Similar to [6], we first find x candidate tags having the highest

co-occurrence with the initial tags. For each candidate tag, we

then compute its relevance score with respect to the image as

follows,

score(c, I) = score(c,wI) ·
λ

λ + (rankc − 1)
, (12)

where c is the candidate tag, I the image, and wI the set of

initial tags. The function score(c,wI) computes a relevance

score between the candidate tag and the initial tags. We

adopt V ote+, the best method in [6], as an implementation

of the score function. The input rankc is the position of

tag c in the candidate tag list ranked by tagRelevance in

descending order. The variable λ is a positive parameter for

regularizing the effect of tag relevance learning. By optimizing

the algorithm on the same training set as used in [6], we

determine the optimized setting of the two parameters x and

λ as 17 and 20, respectively.

• Experiment 3: Tag suggestion for unlabeled images.

We compare with two model-free approaches: a tag frequency

(tf) approach by Torralba et al. [7] and an approach by Wang

et al. [8] which re-weights the frequency of a tag by its

inverse document frequency (tf-idf). For our algorithm, since

no user-defined tags are available, we consider all tags in the

vocabulary as candidates. We estimate tagRelevance for each

candidate tag with respect to the unlabeled image, and then

rank the tags in descending order by tagRelevance. We take

care to make the comparison fair. First, since the baselines

do not consider user information, we remove the unique-user

constraint from our algorithm. Second, for all methods we fix

the number of the visual neighbors to 500, as suggested in [8].

Finally, for each method, we select the top 5 tags as a final

suggestion for each test image.

In all the three experiments, we use baseline to represent

the baseline methods, and tagRelevance for our method.

B. Data Collections

We choose Flickr as a test case of user tagging. We

downloaded images from Flickr by randomly generating photo

ids as query seeds. By removing images having no tags and

those failed to extract visual features, we obtain 3.5 million

labeled images in total. The images are of medium size with

maximum width or height fixed to 500 pixels. After Porter

stemming, the number of distinct tags per image varies from

1 to 1230, with an average value of 5.4. The collection has

573,115 unique tags and 272,368 user ids.

Note that the image retrieval experiment studies how well

images are ranked, while the two tag suggestion experiments

focus on how well tags are ranked. Different targets result in

two different evaluation sets, one for image retrieval and the

other for tag suggestion.

TABLE II

GROUND TRUTH STATISTICS FOR OUR IMAGE RETRIEVAL

EXPERIMENT. EACH QUERY HAS 1000 MANUALLY LABELED EXAMPLES.

USER TAGGING ACCURACY IS THE NUMBER OF RELEVANT IMAGES

DIVIDED BY 1000.

3.5 million user-tagged images

Query Tag frequency User tagging accuracy

airplane 15,231 0.447
beach 64,348 0.331
boat 25,385 0.424
bridge 25,197 0.762
bus 14,296 0.641
butterfly 8,476 0.701
car 37,614 0.548
cityscape 11,063 0.657
classroom 7,763 0.388
dog 52,981 0.764
flower 71,699 0.829
harbor 8,420 0.503
horse 27,008 0.736
kitchen 11,464 0.389
lion 8,509 0.326
mountain 36,844 0.502
rhino 4,929 0.346
sheep 3,603 0.525
street 40,772 0.426
tiger 8,214 0.224

• Evaluation set for image retrieval. We create a ground

truth set as follows. We select 20 diverse visual concepts as

queries. The queries are listed in Table II with visual examples

in Figure 4. As defined earlier, we consider a query concept

and an image relevant if the concept is clearly visible in the

image and we shall relate the concept to the visual content eas-

ily and consistently with common knowledge. Therefore, toys,

cartoons, painting, and statues of the concept are treated as

irrelevant. For each query, we randomly select 1000 examples

from images labeled with the query in our 3.5 million Flickr

collection, and relabel them according to our labeling criterion.

We report user tagging accuracy of all 20 queries in Table II.

For each query, we score its 1000 test images with the two

baseline methods and the proposed algorithm, respectively.

The images are then ranked in light of their relevance scores.

If two images have the same score, they are ranked according

to photo ids in descending order so that latest uploaded images

are ranked ahead.

• Evaluation set for tag suggestion. To evaluate the perfor-

mance of tag suggestion for labeled and unlabeled images, we

adopt a ground truth set from [6], which is created by manually

assessing the relevance of tags with respect to images. The set

consists of 331 Flickr images, having no overlap with the 3.5

million collection. Since the relevance of tags ‘2005’, ‘2006’,

and ‘2007’ with respect to an image is quite subjective, we

remove the three tags from the ground truth beforehand. Note

that these tags might be predicted by tag suggestion methods.

In that case, we consider the tags irrelevant. The number of

tags per image in the evaluation set varies from 1 to 14, with

an average value of 5.5. Examples of the ground truth are

shown in Figure 5. For experiment 2, we follow the same

data partition as [6], that is, 131 images for training and the

remaining 200 for testing. Since no training is required for all
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Fig. 4. Visual examples of 20 queries in our image retrieval experiment.

Fig. 5. Multimedia examples of the ground truth for our tag suggestion
experiments.

the three methods in experiment 3, we take the entire ground

truth set (331 images in total) for testing.

C. Evaluation Criteria

For image retrieval, images relevant with respect to user

queries should be ranked as high as possible. Meanwhile,

ranking quality of the whole list is important not only for user

browsing, but also for applications using search results as a

starting point. For tag suggestion, tags relevant with respect to

user images should be ranked as high as possible. Moreover,

the candidate tag list should be short such that users pick

out relevant tags easily and efficiently. Therefore, we adopt

the following two standard criteria to measure the different

aspects of the performance. Given a ranked list of l instances
where an instance is an image for image retrieval and a tag

for tag suggestion, we measure

• precision at n (P@n): The proportion of relevant in-

stances in the top n retrieved results, where n ≤ l. For image

retrieval, we report P@10, P@20, and P@100 for each query.

For tag suggestion, we report P@1 and P@5, averaged over

all test images, as used in [6]. We consider a predicted tag

relevant with respect to a test image if the tag is from the

ground truth tags of the image. The Porter stemming is done

before tag matching. Since we always predict 5 tags for each

image, for those images having less than 5 ground truth tags,

their P@5 will be smaller than 1.

• average precision (AP): AP measures ranking quality of

the whole list. Since it is an approximation of the area under

the precision-recall curve [43], AP is commonly considered as

a good combination of precision and recall, e.g., [23], [26],

[33]. The AP value is calculated as 1

R

∑l

i=1

Ri

i
δi, where R

is the number of relevant instances in the list, Ri the number

of relevant instances in the top i ranked instances, δi=1 if

the i-th instance is relevant and 0 otherwise. To evaluate the

overall performance, we use mean average precision (MAP),

a common measurement in information retrieval. MAP is

the mean value of the AP over all queries in the image

retrieval experiment and all test images in the tag suggestion

experiments.

D. Large-scale Content-based Visual Search

To implement the neighbor voting algorithm, we need to

define visual similarity between images and then search visual

neighbors in our 3.5 million Flickr photo database. Visual

similarity between two images is measured using correspond-

ing visual features. Since we need features relatively stable

for search and efficient to compute to cope with millions of

images, we adopt a combined 64-dimensional global feature

as a tradeoff between effectiveness and efficiency. The feature

is calculated as follows. For each image, we extract 44-

d color correlgoram [44], 14-d color texture moment [45],

and 6-d RGB color moment. We separately normalize the

three features into unit length and concatenate them into a

single vector. We use the Euclidean distance as a dissimilarity

measurement. The feature is used throughout all the three

experiments.

To search millions of images by content, efficient indexing

methods are imperative for speed up. We adopt a K-means

clustering based method for its empirical success in large-

scale content-based image retrieval [46]. First for indexing, we

divide the whole dataset into smaller subsets by the K-means

clustering. Each subset is indexed by a cluster center. Then

for a query image, we find neighbors within fewer subsets

whose centers are the closest to the query. The search space is

thus reduced. Since the search operation in individual subsets

can be executed in parallel, we execute neighbor search in a

distributed super computer.

V. RESULTS

A. Experiment 1: Tag-based Image Retrieval

As shown in Figure 6, our tagRelevance substantially out-

performs the tag baseline for all parameter settings. Recall

that the OKAPI-BM25 parameter b controls the impact of

normalizing scores by the total number of tags within an

image. Hence, we observe different behavior of b in the

two methods: the tag baseline tends to perform well when

b approaches 1; in contrast, the tagRelevance improves as b
approaches 0. Since tag frequency is not discriminative in

original tagging, the baseline method heavily relies on the

normalization factor. While in the new method, tag frequency

becomes more discriminative after tag relevance learning.

The proposed algorithm is also robust to the number of

neighbors used for voting. To show this property, we first run
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Fig. 6. Experiment 1: An overall comparison between image retrieval
methods with and without tag relevance learning. The tag baseline method
uses original tags, while our tagRelevance method uses learned tag relevance
as updated tag frequency. We study the retrieval performance given various
combinations of the OKAPI-BM25 parameter b and the number of neigh-
bors for tag relevance learning. We measure the overall performance using
mean average precision of the 20 queries from Figure 4. The tagRelevance

consistently outperforms the tag baseline for all parameter settings.
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Fig. 7. Experiment 1: Relative improvement in terms of mean average
precision (MAP) over the best tag baseline with respect to the number

of neighbors for learning tag relevance. The best baseline is reached at
b=0.8 with MAP 0.605. By using learned tag relevance value as updated tag
frequency for retrieval, we obtain at least 20% relative improvement in terms
of MAP when the number of neighbors is between 200 and 20,000.

leave-one-out cross validation on the 20 queries to determine

the optimized OKAPI-BM25 parameter b for tag baseline and

our method, which is 0.8 and 0.3, respectively. As shown in

Figure 7, tagRelevance consistently outperforms tag baseline.

More precisely, we reach at least 20% relative improvement

in terms of MAP when the number of neighbors is between

200 and 20,000.

We conclude experiment 1 with a per-query comparison

between three methods, namely tag baseline, baseline [28],

and our tagRelevance. We again use the optimized parameters

for tag baseline and tagRelevance. The number of neighbors is

1000. For baseline [28], we take the best output of tag baseline

as initial search results and run leave-one-out cross validation

to obtain an optimized parameter setting, i.e., d=0.85 and

m=100. As shown in Table III, for some queries baseline

TABLE IV

EXPERIMENT 2: TAG SUGGESTION FOR LABELED IMAGES. FOR EACH

IMAGE, WE CHOOSE THE TOP 5 RANKED TAGS. BOLD NUMBERS INDICATE

THE TOP PERFORMERS.

Tag suggestion methods

Evaluation criteria baseline [6] tagRelevance

Precision at 1 0.522 0.555
Precision at 5 0.359 0.375
Mean average precision 0.622 0.663

TABLE V

EXPERIMENT 2: EXAMPLES OF TAG SUGGESTION FOR LABELED

IMAGES BY DIFFERENT METHODS. THE italic FONT INDICATES

RELEVANT TAGS AND THE BOLD FONT INDICATES UNIQUE RELEVANT

TAGS PRODUCED BY OUR METHOD. WE IMPROVE UPON THE baseline BY

ADDRESSING TAG RELEVANCE WITH RESPECT TO THE VISUAL CONTENT.

COMPARED TO THE baseline, OUR METHOD FINDS MORE RELEVANT TAGS

WHICH DESCRIBE VISUAL ASPECTS OF THE IMAGES.

User-labeled images New suggested tags

Image Tags baseline [6] tagRelevance

beach sea
sea beach

lighthouse ocean ocean
harbor harbor
2005 sunset

loch water water

scotland castle mountain
lake beach beach

waves katrine castle
edinburgh sea

d40 england england
london sister sister
stonehenge nikon water
uk nikond40 street
bath stone stone

2006 2006
vacation vacation

mexico new beach
oaxaca new
honeymoon honeymoon

[28] is on a par with our tagRelevance, especially for the top

ranked results. Nevertheless, for the majority of the queries

and the evaluation metrics, the proposed algorithm compares

favorably with the two baselines. On average, compared with

the tag baseline, we obtain a relative improvement in terms of

P@20 by 28.8% and 24.3% in terms of MAP. Compared with

the baseline [28], we obtain a relative improvement in terms

of P@20 by 15.3% and 19.9% in terms of MAP.

B. Experiment 2: Tag Suggestion for Labeled Images

We report the performance of the two tag suggestion meth-

ods in Table IV. For all evaluation metrics, the tagRelevance

improves upon the baseline. More precisely, we obtain an

improvement of 6.3% in terms of P@1 and 6.6% in terms

of MAP. While the improvement in terms of P@5 is 4.5%,

which is relatively small. The reasons are two-fold. First, by
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TABLE III

EXPERIMENT 1: PER-QUERY COMPARISON BETWEEN IMAGE RETRIEVAL METHODS WITH AND WITHOUT TAG RELEVANCE LEARNING. BOLD

NUMBERS INDICATE THE TOP PERFORMERS. FOR MOST OF THE 20 QUERIES, WE IMPROVE UPON THE BASELINE METHODS BY USING LEARNED TAG

FREQUENCY AS UPDATED TAG FREQUENCY. ON AVERAGE, COMPARED WITH THE TAG BASELINE, WE OBTAIN A RELATIVE IMPROVEMENT IN TERMS OF

P@20 BY 28.8% AND 24.3% IN TERMS OF MAP. COMPARED WITH THE BASELINE [28], WE OBTAIN A RELATIVE IMPROVEMENT IN TERMS OF P@20 BY

15.3% AND 19.9% IN TERMS OF MAP..

Precision at 5 Precision at 20 Precision at 100 Average precision

Query tag baseline baseline [28] tagRelevance tag baseline baseline [28] tagRelevance tag baseline baseline [28] tagRelevance tag baseline baseline [28] tagRelevance

airplane 0.400 0.800 0.600 0.500 0.750 0.400 0.520 0.520 0.510 0.446 0.513 0.531
beach 0.400 0.400 1.000 0.500 0.350 0.900 0.370 0.370 0.710 0.383 0.356 0.666

boat 0.400 0.200 1.000 0.600 0.550 0.950 0.520 0.520 0.720 0.477 0.487 0.619
bridge 1.000 0.800 0.800 0.950 0.900 0.900 0.880 0.880 0.900 0.802 0.806 0.830
bus 1.000 1.000 0.600 0.700 0.850 0.850 0.740 0.740 0.870 0.684 0.792 0.836
butterfly 0.800 0.800 1.000 0.800 0.900 0.950 0.940 0.940 0.990 0.816 0.838 0.932

car 1.000 1.000 0.800 0.650 0.800 0.900 0.660 0.660 0.800 0.610 0.674 0.730
cityscape 0.000 1.000 1.000 0.500 0.950 0.950 0.690 0.690 0.980 0.698 0.683 0.907
classroom 0.800 1.000 0.600 0.500 0.900 0.750 0.500 0.500 0.600 0.482 0.551 0.532
dog 1.000 0.800 1.000 0.950 0.950 0.950 0.830 0.830 0.930 0.806 0.820 0.869

flower 1.000 1.000 1.000 0.900 0.950 1.000 0.910 0.910 0.980 0.889 0.891 0.963
harbor 0.800 0.600 0.800 0.700 0.650 0.950 0.600 0.600 0.900 0.582 0.614 0.768
horse 0.800 1.000 1.000 0.550 0.950 1.000 0.700 0.700 0.890 0.718 0.774 0.829
kitchen 0.800 1.000 1.000 0.800 0.900 0.900 0.600 0.600 0.900 0.518 0.642 0.742

lion 0.800 0.800 1.000 0.950 0.450 1.000 0.420 0.420 0.930 0.476 0.393 0.774
mountain 0.600 0.400 1.000 0.500 0.650 0.900 0.500 0.500 0.840 0.517 0.550 0.769
rhino 1.000 1.000 1.000 0.950 1.000 0.950 0.820 0.820 0.860 0.697 0.659 0.746
sheep 1.000 1.000 0.800 0.850 0.900 0.950 0.790 0.790 0.890 0.638 0.677 0.748

street 0.400 0.400 0.600 0.300 0.500 0.600 0.390 0.390 0.680 0.412 0.477 0.578
tiger 0.400 0.800 1.000 0.550 0.450 0.900 0.610 0.610 0.780 0.442 0.338 0.673

average 0.720 0.790 0.880 0.685 0.765 0.882 0.649 0.649 0.833 0.605 0.627 0.752

TABLE VI

EXPERIMENT 3: TAG SUGGESTION FOR UNLABELED IMAGES. FOR

EACH IMAGE, WE CHOOSE THE TOP 5 RANKED TAGS. BOLD NUMBERS

INDICATE THE TOP PERFORMERS.

Tag suggestion methods

Evaluation criteria baseline [7] baseline [8] tagRelevance

Precision at 1 0.061 0.068 0.097
Precision at 5 0.068 0.059 0.074

Mean average precision 0.126 0.120 0.153

measuring the relevance of a candidate tag with respect to

an image at both textual and visual aspects, the tagRelevance

is more likely to rank relevant tags ahead of irrelevant ones.

Second, since we use the baseline as a starting point, if the

method fails to retrieve relevant tags, it is unlikely to create

a better ranked list. As shown in Table V, compared to the

baseline, our method finds more relevant tags which describe

visual aspects of an image.

C. Experiment 3: Tag Suggestion for Unlabeled Images

As shown in Table VI, our tagRelevance method outper-

forms the two baseline methods for all evaluation criteria.

Since the tf baseline [7] ranks tags in terms of tag frequency,

it tends to suggest tags occurring frequently in the entire

collection such as ‘2006’. By re-weighting tag frequency using

the idf value, the tf-idf baseline [8] may restrain such effects

to some extent. However, it risks over-weighting rare tags

like ‘campcourtney’. By contrast, our tagRelevance uses the

frequency of a tag minus its prior frequency to restrain high

frequent tags. Meanwhile, since the prior frequency of the rare

tags are small, these tags are not over-weighted. Hence, our

TABLE VII

EXPERIMENT 3: EXAMPLES OF TAG SUGGESTION FOR UNLABELED

IMAGES BY DIFFERENT METHODS. THE italic FONT INDICATES

RELEVANT TAGS AND THE BOLD FONT INDICATES UNIQUE RELEVANT

TAGS PRODUCED BY OUR METHOD. WE ILLUSTRATE HOW THE THREE

METHODS PERFORM WHEN THE ACCURACY OF THE VISUAL SEARCH IS

HIGH (FOR THE IMAGE AT THE TOP), LOW (FOR THE IMAGE IN THE

MIDDLE), OR MEDIUM (FOR THE IMAGE AT THE BOTTOM). COMPARED TO

THE TWO BASELINE METHODS, OUR METHOD PREDICTS MORE RELEVANT

TAGS EVEN WHEN THE VISUAL SEARCH IS UNSATISFACTORY.

Visual Search Suggested tags by different methods

Image Accuracy baseline [7] baseline [8] tagRelevance

flower flower flower

red red red

0.77 macro macro macro
nature rose rose

garden garden garden

2006 2006 icehockety
family cat hockey

0.00 japan family family
beach campcourtney hurricane
vacation august12006 cat

2006 2006 japan
wedding pepperell bike

0.10 japan wedding hiking
park japan park
vacation park texas

method is more effective and robust.

Since all the three methods rely on the effectiveness of the

visual search, we further study how the methods behave when

the accuracy of the visual search is low (P@n< 0.05), medium

(0.05≤P@n≤0.20), and high (P@n>0.20). As illustrated in

Table VII, we select three test images, where the manually

assessed accuracy of the 30 nearest neighbors is 0.77, 0.00, and
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Fig. 8. Experiment 3: The effect of content-based visual search on tag
suggestion for unlabeled images. We categorize the accuracy of a content-
based visual search into three levels, that is, low (precision<0.05), medium
(0.05≤precision≤0.20), and high (precision>0.20). The proposed algorithm
outperforms the baselines, given different levels of visual search accuracy. In
particular, our algorithm performs especially better when the visual search
accuracy is medium or low.

0.10, respectively. We observe that all methods succeed when

the visual search is good. Obviously, all methods fail when no

relevant images exist in the neighbor set. Interestingly, in an

intermediate situation when the visual search is unsatisfactory

with only a few relevant examples in the neighbor set, our

method predicts more relevant tags than the two baseline

methods. We make a further investigation on the entire test

set. Since manually assessing the visual search accuracy for

the test set is laborious, we estimate the accuracy as follows.

For each test image with a number of ground truth tags, we

consider a neighbor image relevant if the tags of the neighbor

image and the tags of the test image have at least one tag in

common. It is in this way that we count relevant neighbors and

subsequently compute the visual search accuracy. As shown

in Figure 8, our algorithm outperforms the baselines, given

different visual search accuracy. In particular, our algorithm

performs especially better when the visual search accuracy is

medium or low. The evidence from both Table VII and Figure

8 demonstrates the potential of our tag relevance learning

algorithm. In addition, note that the majority of the test

images have unsatisfactory visual search results (61.9% low

and 35.5% medium), resulting in a relatively low performance

for automatic image tagging. This observation implies that tag

suggestion for unlabeled images can be improved further by

including more advanced visual features.

D. Discussion

So far, we have verified the effectiveness of the proposed

algorithm for tag-based image retrieval and automatic tag

suggestion for labeled and unlabeled images. As discussed

in Section III-B, since image ranking imposes a relatively

looser requirement on content-based visual search than tag

ranking, the former is easier than the latter. The empirical
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Assumption on content−based visual search

Fig. 9. Validation of the two assumptions on content-based visual search.
We refer to Section III-B for the definitions of assumption 2 and relaxed
assumption 2. For each of the 20 queries used in the image retrieval experi-
ment, we count the proportion of < relevant image, irrelevant image >
pairs that satisfy assumption 2 and relaxed assumption 2, respectively. We use
boxplot to visualize the results. On average, 37.8% pairs satisfy assumption
2 and 73.4% pairs satisfy relaxed assumption 2.

evidences from the three experiments confirm this conclu-

sion. To better understand how our assumptions on visual

search hold in practice, we introduce a validation experi-

ment as follows. For each of the 20 queries used in the

image retrieval experiment, we count the proportion of <
relevant image, irrelevant image > pairs that satisfy

assumption 2 and relaxed assumption 2, respectively. Note that

for other visual similarity functions in the literature, we can

use this method to estimate how a particular visual similarity

measurement meets the assumptions and consequently select

proper features based on the estimation. As shown in the box-

plot in Figure 9, on average, 37.8% pairs satisfy assumption

2 and 73.4% pairs satisfy relaxed assumption 2. The results

again verify our conclusions that learned tag relevance is a

good criterion for image ranking and it can be improved

further for tag ranking by leveraging more advanced visual

features.

Up to now, we have successfully managed 3.5 million

user-tagged images by executing our algorithm in parallel.

Considering the heavy computation effort, however, it would

be interesting to investigate in the future how to regularize

the learning process, say from a Hill-climbing set, to ease

the computation for new user-submitted images. Though our

evaluations are conducted on Flickr, the proposed algorithm

is general. Hence, it is also applicable to other social photo

sharing websites. Finally, we present in Figure 10 some of the

tag relevance learning results with updated tag frequency.

VI. CONCLUSIONS

Since user tagging is known to be subjective and overly

personalized, a fundamental problem in social image analysis

and retrieval is how to accurately interpret the relevance of a

tag with respect to the visual content the tag is describing.

In this paper, we propose a neighbor voting algorithm as
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an initial step towards conquering the problem. Our key

idea is to learn the relevance of a tag with respect to an

image from tagging behaviors of visual neighbors of that

image. In particular, our algorithm estimates tag relevance by

counting neighbor votes on tags. We show that when 1) the

probability of correct user tagging is larger than the probability

of incorrect user tagging and 2) content-based visual search

is better than random sampling, our algorithm produces a

good tag relevance measurement for both image ranking and

tag ranking. Moreover, since the proposed algorithm does not

require any model training for any visual concept, it is efficient

in handling large-scale image data sets.

To verify our algorithm, we conduct three experiments on

3.5 million Flickr photos: one image ranking experiment and

two tag ranking experiments. For the image ranking exper-

iment, we improve social image retrieval by using learned

tag relevance as updated tag frequency in a general tag-based

retrieval framework. Retrieval with tag relevance learning ob-

tains a 24.3% relative improvement in terms of mean average

precision, when compared to a tag-based retrieval baseline. For

the tag ranking experiments, we consider two settings, i.e., tag

suggestion for labeled images and tag suggestion for unlabeled

images. In the tag suggestion experiment for labeled images,

our algorithm finds more tags which describe visual aspects of

an image, leading to a relative improvement of 6.3% in terms

of mean average precision when compared to a text baseline.

In the tag suggestion experiment for unlabeled images, our

algorithm compares favorably against two baselines. Specifi-

cally, we effectively restrain high frequency tags without over-

weighting rare tags. Our study demonstrates that the proposed

algorithm predicts more relevant tags even when the visual

search is unsatisfactory. In summary, all the three experiments

show the general applicability of tag relevance learning for

both image ranking and tag ranking. The results suggest a

large potential of our algorithm for real-world applications.
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APPENDIX

In this section, we proof the two theorems introduced in

Section III.

Theorem 1: Image ranking. Given assumption 1 and

assumption 2, tagRelevance yields an ideal image ranking

for tag w, that is, for I1 ∈ Rw and I2 ∈ Rc
w, we have

tagRelevance(w, I1) > tagRelevance(w, I2).

Proof. Recall Eq. 8 and Eq. 9 that

tagRelevance(w, I1) = k · (P (w|Rw) − P (w|Rc
w)) εI1,w,

tagRelevance(w, I2) = k · (P (w|Rw) − P (w|Rc
w)) εI2,w,

we have

tagRelevance(w, I1) − tagRelevance(w, I2)
= k · (P (w|Rw) − P (w|Rc

w)) (εI1,w − εI2,w).

Given assumption 1, we have

P (w|Rw) − P (w|R̄w) > 0,

and given assumption 2, we get

εI1,w − εI2,w > 0.

Hence, tagRelevance(w, I1) > tagRelevance(w, I2). Note
that we only require εI1,w−εI2,w > 0, thereby the assumption

2, namely εI1,w > 0 > εI2,w, can be relaxed as εI1,w > εI2,w.

We call the latter relaxed assumption 2. �

Theorem 2: Tag ranking. Given assumption 1 and assump-

tion 2, tagRelevance yields an ideal tag ranking for image

I , that is, for two tags w1 and w2, if I ∈ Rw1
and I ∈ Rc

w2
,

we have tagRelevance(w1, I) > tagRelevance(w2, I).

Proof. Recall Eq. 8 and Eq. 9 that

tagRelevance(w1, I) = k ·
(

P (w1|Rw1
) − P (w1|R

c
w1

)
)

εI,w1
,

tagRelevance(w2, I) = k ·
(

P (w2|Rw2
) − P (w2|R

c
w2

)
)

εI,w2
.

Given assumption 1, we have

P (w1|Rw1
) − P (w1|R

c
w1

) > 0,
P (w2|Rw2

) − P (w2|R
c
w2

) > 0.

and given assumption 2, we get

εI,w1
> 0 > εI,w2

.

Note that multiplying positive factors does not

change the direction of an inequation. Therefore, by

multiplying the left side and the right side of the

above inequation by k
(

P (w1|Rw1
) − P (w1|R

c
w1

)
)

and

k
(

P (w2|Rw2
) − P (w2|R

c
w2

)
)

respectively, we obtain

k ·
(

P (w1|Rw1
) − P (w1|R

c
w1

)
)

εI,w1
> 0 >

k ·
(

P (w2|Rw2
) − P (w2|R

c
w2

)
)

εI,w2
.

Hence, tagRelevance(w1, I) > tagRelevance(w2, I). �
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