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ABSTRACT
To help an officer to efficiently review many hours of surveil-
lance recordings, we develop a system of automated video
analysis. We introduce a multi-target tracking algorithm
that operates on recorded video. Apart from being robust
to visual challenges (like partial and full occlusion, variation
in illumination and camera view), our algorithm is also ro-
bust to temporal challenges, i.e., unknown variation in frame
rate. The complication with variation in frame rate is that it
invalidates motion estimation. As such, tracking algorithms
that are based on motion models will show decreased per-
formance. On the other hand, appearance based tracking
suffers from a plethora of false detections. Our tracking al-
gorithm, albeit relying on appearance based detection, deals
robustly with the caveats of both approaches. The solution
rests on the fact that we can make fully informed choices;
not only based on preceding, but also based on following
frames. It works as follows. We assume an object detection
algorithm that is able to detect all target objects that are
present in each frame. From this we build a graph struc-
ture. The detections form the graph’s nodes. The vertices
are formed by connecting each detection in one frame to all
detections in the following frame. Thus, each path through
the graph shows some particular selection of successive ob-
ject detections. Object tracking is then reformulated as a
heuristic search for optimal paths, where optimal means to
find all detections belonging to a single object and excluding
any other detection. We show that this approach, without
an explicit motion model, is robust to both the visual and
temporal challenges.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—motion, perceptual reasoning, representations, data
structures, and transforms, video analysis
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1. INTRODUCTION
The goal of this work is to aid a reviewer in the task of

processing large amounts of incriminating video in forensic
cases. In such cases, there is generally an overload of video
available of which only a fraction is of interest to the re-
viewer. The computer could help to speed up the tedious
process, if it could provide information on all the recorded
persons. Information like when they entered the scene and
with whom.

Because all of the available video is of potential inter-
est, we cannot set any conditions on the video to be pro-
cessed. The video may well be of poor quality, is hindered by
weather conditions, and the camera may have zoomed and
panned by an operator. Surveillance video is also mostly
time-lapse, meaning that the frame rate is dynamic (to save
bandwidth).

Currently, tracking algorithms ([2, 12, 7, 11] to name a
few), each focusing on specific attributes particular to their
application, assume that objects show limited movement be-
tween two successive frames. Although true in many situ-
ations, this assumption is particularly invalid in time-lapse
video where the interval between two successive frames can
be large.

The assumption of limited object movement is closely re-
lated to the fact that the algorithms process video in chrono-
logical order — tracking objects from one frame to the next.
In the domain of forensics, however, the video has previously
been recorded and can thus be processed in any desired or-
der. As long as this is faster than human reviewing, in fact,
we can exhaustively scan each frame for all present target
objects. Tracking is then inferred from matching any set of
detections, not limited to only directly connected frames.

In this paper we propose a tracking algorithm based on
graph searching. The graph is constructed from person de-
tections. A path through this graph connects detections
from multiple video frames and as such resembles a person
track. Two apparent advantages arise from this approach;
1. searching the graph is a matter of interpolation (in con-
trast with chronological processing) and is therefore by itself
more robust, and 2. it provides an elegant unified way to
deal with occlusion and poor person detections.

The paper is organized as follows. In section 2 we briefly
describe the used method for object detection. Then, in
section 3 we introduce the graph structure as a basis for
tracking, followed by an explanation of the actual tracking
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Figure 1: Tracking framework. Tracking is performed in two stages. First, coarse tracking runs a simple tracking algorithm
on only the best person detections, resulting in accurate but discontinuous tracks. Subsequently, the coarse tracks are refined
by searching the graph (which contains all person detections as nodes) for an optimal path.

methods. Section 4 describes the evaluation and the used
datasets, with expiremental results presented in section 5.
We conclude this paper with a summary in section 6.

2. PERSON DETECTION
We very briefly describe the method used for person de-

tection as it is basically an implementation of the work by
[3]. Roughly, the detection is subdivided into three stages;
object localization, object description, and person classifica-
tion.

Object localization is performed by simple frame differenc-
ing. Each pixel in the current frame, It

x, is compared to its
weighed average value over all previous frames Bt

x. That is,
‖It+1

x − Bt
x‖ > β, with β some noise suppressing threshold,

marks all ’object pixels’. Bounding boxes are exhaustively
fit over the resulting mask and accepted when containing a
sufficient fraction of object pixels.

The visual description of a bounding box is calculated us-
ing the Histogram of Oriented Gradients [10]. This method
models appearance by means of the spatial coherence of
gradient information. Patches are sampled and stored in
histograms, where the gradient orientation determines the
histogram bin and the gradient magnitude determines the
quantity that is added. After combining all the histograms
following a predefined hierarchical combination, the result
is a single vector that describes the object appearance.

Classification of the bounding boxes into human and not
human is performed using a SVM, which was trained on the
MIT pedestrian database [8] and the INRIA Person dataset
[3]. The classification assigns a likelihood value to each
bounding box.

Following [9] we set β = 0.05 and accept person detections
if their classification likelihood is above −2.

3. GRAPH-BASED TRACKING
In this section we describe a tracking algorithm that is ro-

bust against the challenges of time-lapse surveillance video.
To this end we organize the person detections in a graph

structure (explained in section 3.1). Step by step the al-
gorithm explores paths in this graph, constituting person
tracks. One advantage of this approach is that it is not
prone to drift (in the xy plane) because the set of detections
is fixed. Because the graph structure explicitly accomodates
for skipping frames, our method is particularly robust to oc-
clusion. This is explained in more detail in section 3.2.

Besides occlusion, another reason that a frame is skipped
may be simply because detections did not match sufficiently
well, or their likelihood value is simply too low. A refinement
procedure, with information of both preciding and following
frames, will therefore try to fill such gaps. As such, track-
ing is a matter of interpolation, in contrast to any other
current tracking method. Track refinement is described in
section 3.3.

3.1 From video to graph
The mapping from video to a graph is as follows. The

vertices represent person detections, edges define a directed
connection between them. Particularly, since each video
frame consists of a separate set of detections, the edges con-
nect exactly each detection from one frame to all detections
in the single next frame. Using this representation, a per-
son track, k = {bm, . . . , bn}, is simply a specific path in the
graph.

So, let G = (V,E) be the complete graph with vertices
V = {b1, . . .} and edges E = {(bti, bt+1

j ), . . .}, then a person
track, p = (k ∩ V,E), is an induced subgraph from G.

In case of coarse tracks we must be cautious because E
contains no edges to skip frames. We therefore extend V
with an empty vertex for each frame, εt. Selecting this node
in a path means skipping the particular frame (see figure 2).
Please notice that the term coarse thus means for a path to
hold at least one εt.

3.2 Coarse tracking
The main target for coarse tracking is to set start and end

points for graph searching in track refinement. Rather than
finding all detections within each track, the predominant
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Figure 2: A graph structure for tracking. The set of bounding boxes in a frame is represented by a set of vertices, where
each vertex is connected to all vertices in the next frame. Task for the tracker is to find the paths that maintain identity —a
path where all vertices are of the same person.
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criterion for coarse tracking is thus to find at least all person
tracks allowing (large) intermediate gaps. Provided that
the person detector correctly detects all persons at least a
few times, we can put stringent conditions on matching new
detections to tracks. At the same time, this also reduces the
susceptibility to false detections.

In short, our implementation boils down to a very basic
tracking strategy: Starting at frame 1 we iterate over all
frames, adding detections to tracks when they match. Only
detections with a likelihood score above θ are regarded. As-
signment is performed in a best-first fashion and bounded
by an upper bound λ, controlling the tightness of matching.
Unassigned detections are used to start new tracks.

To refrain from ensuing any bias from person detection, we
employ a different visual representation for matching bound-
ing boxes, i.e., not HOG. In this case we describe the appear-
ance using normalized color histograms and compare them
using the Bhattacharyya difference measure1, DB(ha, hb).
Matching is performed by comparing the histogram of a de-
tection to both the first and the last histogram in a track.
Doing so provides a controlled way of adapting to small ap-
pearance changes. Control is determined by a weighing fac-
tor, 0 ≤ w ≤ 1, which determines the relative importance of
matching to either the first or the last histogram.

Summarizing, a bounding box b with a likelihood ratio
above θ, is said to match a coarse track, k = [b1, . . . , bm], if

Dtrack(b, k) = wDB(H(b), H(b1)) +
(1− w)DB(H(b), H(bm)) ≤ λ (1)

with H(b) the histogram of b. Setting w = 0 disables any
adaptation while w = 1 allows to completely drift away from
the original object appearance.

3.3 Track refinement
Given some coarse track in the graph G, we define track

refinement as the process of searching an alternative, better,
path through G where ε’s are substituted for true person de-
tections in their respective frame. Assuming that for those
ε’s no detections have been found due to low likelihood val-
ues, and aided by the context of preceding and following
bounding boxes, we perform a heuristic graph search to ac-
curately find the optimal path bridging the gap.

More formally, given a path with some gap εi+1, . . . , εj−1,
spanned by two detections bi and bj , we perform a heuris-
tic search starting at bi and ending at goal node bj . The
heuristic estimates the distance to goal node bj , based on
their location and appearance. Provided that this heuristic
is admissible, the graph search algorithm A* is guaranteed
to find the optimal path [5].

A heuristic is admissible if the true cost of a path trough
the current node will be at least as large as the estimate. In
other words, it should never overestimate the true distance-
to-goal. In terms of the location, the Euclidean distance
does provide the minimal distance between two points. For
appearance, our implementation of the Bhattacharyya mea-
sure obeys the triangle inequality and hence is admissible as
well.

To assemble both distance measures into one heuristic es-
timate we assume independence and take the vector length.

1To be precise, although generally referred to as the Bhat-
tacharyya distance, this function is actually the Hellinger
distance [1], a variation that, conveniently, obeys the trian-
gular inequality [6].

The independence assumption is not entirely correct because
appearance (color) may be structurally influenced by posi-
tion. As this would lead to the actual path-cost being struc-
turally larger than the estimate, it does not invalidate the
admissibility though. So the one heuristic that estimates the
distance to the goal node becomes:

h(bi, bj) =

∥∥∥∥ DEu(bi, bj)
DB(bi, bj)

∥∥∥∥ (2)

4. EVALUATION CRITERIA
In this section we define the evaluation criteria applicable

in the context of object tracking. Emphasizing the partic-
ular nature of our approach, we introduce slight variations
on the general conceptions of precision and recall. We also
present the data sets used in our tests.

4.1 Bounding boxes
We define the overlap of a bounding box, b, with a ground-

truth box, l, as

O(b, l) =
A(b ∩ l)

(A(b) +A(l))/2
(3)

where A calculates the surface area of a bounding box. The
fraction divides the overlapping surface by the average sur-
face area of the two boxes. It can be seen that it evaluates to
a value between 0, for no overlap, and 1, for full overlap and
both boxes of the same size. We accept a bounding box as
a match if it significantly overlaps some ground-truth box:
O(b, l) ≥ 0.7.

4.2 Person tracks
We notice that track detections can match multiple ground-

truth tracks and vice versa. This is, however, undesired be-
cause ideally each extracted person track should unambigu-
ously follow a single person throughout its presence in the
scene. We will therefore evaluate tracks only against that
ground-truth track to which it matches the most bounding
boxes (at least two).

Using the above definitions we express performance in
terms of precision and recall, which we evaluate at two dif-
ferent levels. At the first level, we count tracks. The recall
over all tracks is: the fraction of labeled tracks that is at
least positively matched once. At the second level we look
inside tracks and count bounding boxes. The recall for a spe-
cific track, T , given the matching ground-truth, L, is: the
fraction of bounding boxes in L that are matched by bound-
ing boxes in T . Logically, the precision for a specific track
is then the fraction of bounding boxes in T that match a
bounding box in L. Notice that we omitted a measure for
the overall precision, as this is more a measure of perfor-
mance on the object detection algorithm.

Although we aim to show results of coarse tracking and
the effect of track refinement, it should be noticed that the
performance will to a certain extent always depend upon
the quality of the person detection. In this case, the total
number of bounding boxes generated by person detection is
167,837. 1,965 of them together match 1,936 labels (out of
the 42,182). This corresponds to a precision of 0.0117 at
maximum recall of 0.0459.
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Figure 3: Examples of ground-truth. Labeled persons
may well be occluded and show large variation is scale. The
shown images are cut-outs from the original frame at exactly
the bounding box areas.

Video sequence Frames Actors Labels Tracks

Rotterdam 8,600 4 287 4
BEHAVE 11,200 6 41,895 21

Total 19,800 10 42,182 25

Table 1: Statistics on the datasets. A track is bounded
by the person being not present for at least 100 frames.

4.3 Test data
There are two data sets used in our tests. The first dataset

was acquired in collaboration with the Rotterdam police and
comprises video material from actual surveillance cameras
in the Rotterdam city center. People walk by naturally, in
groups and separately. The images are of reasonable resolu-
tion and most of the time quite noisy. The second dataset is
the BEHAVE dataset [4]. This dataset is more focused on
interaction between people. It mainly shows people flock-
ing together and separating. The quality of the recordings
is generally better than the first dataset, although there is
less variation in aspects like scene changes, weather, etc. In
both datasets the annotations mark persons by means of a
bounding box, even if largely occluded. Figure 3 shows some
extracted annotations.

5. EXPERIMENTAL RESULTS
In this section we present and discuss the results obtained

from the evaluation criteria proposed in this paper. In sec-
tion 5.1 we evaluate the quality of coarse tracks, particularly
in view of providing an optimal basis for track refinement.
Section 5.2 then evaluates the effect of refinement on the
quality of person tracks.

5.1 Coarse tracking
We assess coarse tracking in its recall and average track

precision. The single most important aspect of coarse track-
ing is its recall, as refinement does not add new tracks. The
average track precision provides insight in the priors of re-
finement. We assess the influence of the upper bound on the
bounding-box-to-track distance, λ, and the drift bounding
weight, w. Results are shown in figure 4. Notice that, in
contrast to common practice, the figures plot both values
on the vertical axis. Plotting recall on the horizontal versus
precision on the vertical axis would show garbled results for
two reasons; the functions are non-monotonic and are not
directly related as the precision is calculated over bounding
boxes while recall is calculated over tracks.
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Figure 4: Coarse tracking results. Recall of the ground-
truth tracks and precision within the detected tracks for
varying λ (4a) and w (4b).

The effect of λ is quite intuitive. Relaxing the similar-
ity measure for adding new detections to tracks introduces
more false detections, and hence decreases the average track
precision. On the other hand, since it adds more bounding
boxes in general, it also allows to discover otherwise unde-
tected tracks. In fact, that is happening at λ = 300 where
we notice a sudden increase in recall.

A small surprise lies waiting in parameter w, the ratio of
matching new bounding boxes to the first or the last element
in a track. Both precision and recall show an optimum at
w = 1 which means that new bounding boxes should only
be matched against the first track element. Any adaptive
appearance strategy thus proves to have an adverse effect
on performance!

5.2 Track refinement
To control the large amount of noise present in the object

detections, track refinement is performed with hysteresis; we
repeatedly refine a track, each time decreasing the likelihood
threshold, θ, in steps of 0.5. Figure 5 shows the impact of
each iteration on the precision and recall. For each plot, the
top-left point is the starting point and following resembles
a track refinement iteration.
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Figure 5: Track refinement results. θ decreases in steps
of 1

2
. Shown are precision versus recall after each iteration

for different starting values of θ (from coarse tracking). The
plots show degradation in precision and an increase in recall
as an effect of track refinement.

We see that remarkably the second iteration in most cases
has also a negative effect on the recall. This can be explained
by the fact that tracks that previously did not match any
person, after refinement do match a person. Because the
recall shows the average recall of each track, and because
such added tracks contain at least a few false detections,
they are expected to contribute negatively to the recall.

Drawing a line to connect the starting points shows the
change in performance when performing pure coarse track-
ing (without refinement) at different levels of θ. We see
here too that the previous notion holds for decreasing recall.
More interesting though, is the comparison to the effect of
track refinement, which is able to increase the recall while
fairly maintaining precision. Coarse tracking at θ = 0.5 plus
refining gives a factor 2.7 higher recall and increases preci-
sion by 3% over simply coarse tracking at θ = 0.

6. SUMMARY AND CONCLUSIONS
In this paper we have proposed a new approach to track-

ing, which is particularly focused towards video forensics.
Differently from the traditional approach, we step away from
the real-time and the forward-only constraints. Doing so,
our tracking algorithm does not rely on motion estimation
and does not need any recalibration. It exploits the fact
that the video is off-line to construct a graph to solve the
tracking task. We have thoroughly evaluated it on two dif-
ferent datasets, one of which comprises real-life data. Even
though the used person detection algorithm did not produce
convincing results, we showed that our tracking and refine-
ment algorithm is still able to significantly improve the per-
formance over basic tracking without refinement.

At present we are working on a next massive real-life
surveillance dataset and hope to soon be able to evaluate
on this dataset too. In the mean time it would be interest-
ing to evaluate the tracking algorithm with a different object
detection base.
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