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Abstract

Contrast statistics of the majority of natural images conform to a Weibull distri-
bution. This property of natural images may facilitate efficient and very rapid
extraction of a scene's visual gist. Here we investigated whether a neural response
model based on the Weibull contrast distribution captures visual information that
humans use to rapidly identify natural scenes. In a learning phase, we measured
EEG activity of 32 subjects viewing brief �ashes of 700 natural scenes. From
these neural measurements and the contrast statistics of the natural image stimuli,
we derived an across subject Weibull response model. We used this model to pre-
dict the EEG responses to 100 new natural scenes and estimated which scene the
subject viewed by �nding the best match between the model predictions and the
observed EEG responses. In almost 90 percent of the cases our model accurately
predicted the observed scene. Moreover, in most failed cases, the scene mistaken
for the observed scene was visually similar to the observed scene itself. Similar re-
sults were obtained in a separate experiment in which 16 other subjects where pre-
sented with arti�cial occlusion models of natural images. Together, these results
suggest that Weibull contrast statistics of natural images contain a considerable
amount of visual gist information to warrant rapid image identi�cation.

1 Introduction

Natural images, although apparently diverse, have a surprisingly regular statistical regularity. There
is a strong correlation between adjacent image points in terms of local features such as luminance
[1]. These second-order correlations decrease with distance between image points, giving rise to the
typical 1/ f 2 power spectra of natural images. On account of this power-law characteristic, natural
images compromise a very small and distinguishable subset of the space of all possible images, with
speci�c scene categories occupying different parts of this subspace. For example, white noise images
can be distinguished from natural images because of their deviation from the power law statistics,
while street scenes and beach scenes can be separated from each other on the basis of differences
in ensemble power spectra [2]. Thus, the power spectra of natural images contain an indeterminate
amount of the visual gist of these images.
The similarity structure among nearby image points, however, represents only part of the statistical
structure in natural images. There are also higher-order correlations, which introduce structure in
the phase spectra of natural images. This structure is assumed to carry perceptually important image
features such as edges and has been measured in terms of kurtosis in the contrast distribution of
natural images [3, 4, 5]. Geusebroek and Smeulders [6] showed that the two-parameter Weibull
distribution adequately captures the variance and kurtosis in the contrast distribution of the majority
of natural images. In fact, the two parameters of the Weibull contrast distribution turn out to organize
the space of all possible natural scenes in a perceptually meaningful manner [7] and thus are likely
to provide additional information about a scene's visual gist.



Scholte et al. [7] have further shown that the two parameters of the Weibull contrast distribution
match biologically realistic computations of Lateral Geniculate Nucleus (LGN) cells. Speci�cally,
they simulated X-cell responses by �ltering images with a difference of Gaussians (DoG), rectifying
the �ltered images and transforming the pixel values of the resulting images with a contrast gain
function adequate for P-cells. To simulate Y-cell responses, the recti�ed images were passed through
a Gaussian smoothing function and resulting pixel values were subsequently transformed with a
contrast gain function adequate for M-cells. The sum of the resulting X-cell responses turned out
to correlate highly with one Weibull parameter (r=0.95), whereas the sum of the resulting Y-cell
responses correlated highly with the other Weibull parameter (r=0.70). Moreover, the two Weibull
parameters correlated highly with EEG activity (r2=0.5) at the occipital part of the brain. The
�ndings of Scholte et al. [7] show that our brain is capable of approximating the Weibull contrast
distribution of an image on the basis of �lters that are biologically realistic in shape, sensitivity, and
size.
Here we hypothesized that if Weibull contrast distributions of natural images carry perceptually im-
portant information, a neural response model based on the Weibull contrast distribution will predict
brain responses to brief �ashes of natural images. We tested this hypothesis with two experiments in
which we rapidly presented a large set of natural or arti�cial images to multiple subjects while mea-
suring EEG activity across the entire cortex. In each experiment, we constructed a neural response
model from the Weibull statistics of the presented images and corresponding EEG data, which we
then applied to predict EEG responses to a new collection of natural or arti�cial images. To vali-
date the constructed neural response models, we used the approach of Kay et al. [8]: predicted and
measured EEG responses were compared to determine whether the observed image was correctly
identi�ed.

2 Methods

We �rst describe how we �lter images locally with a set of biologically-realistic �lters. Then we
address a local contrast response selection mechanism with which we construct a contrast magnitude
map for a given input image (a detailed description is in submission [12]). Subsequently, Weibull
contrast statistics are estimated from such maps and the relation between image statistics and neural
activity modeled. The section ends with an explanation of a performance measure for EEG-based
image identi�cation.

2.1 Local contrasts values in natural images

As in [7], we use contrast �lters that have spatial characteristics and contrast response properties
closely mirroring well-known characteristic receptive-�elds of LGN neurons [9]. Speci�cally, we
use a bank of second-order Gaussian derivative �lters that span multiple octaves in spatial scale,
that have peak sensitivity approximately inverse to �lter size and that have contrast gain properties
independent of size. We represent contrast gain using an established non-linear response model that
divides input contrast by the sum of the input and a semi-saturation constant [10]. In this model a low
value of the semi-saturation parameter indicates high non-linear contrast gain whereas higher values
result in a linear mapping and thus will not lead to saturation. Given an image, we process each
image location with a bank of 5 contrast �lters covering 5 octaves in spatial scale and, subsequently,
subject the output of each scale-tuned �lter to 5 different gain controls (5 semi-saturation values).
This results, for each image location, in 25 contrast response values.

We applied each of the 5 scale-speci�c �lters, combined with each of the 5 contrast gain controls,
to 800 natural images. Figure 1 shows average responses over all image locations. Contrast is high
at small scale and low semi-saturation. It decreases exponentially with scale owing to the peak
sensitivity of the �lters, which is inversely related to spatial scale. That contrast also decreases with
semi-saturation is explained by the fact that the amount of contrast suppression is proportional to
the semi-saturation value. From these summary statistics it follows that, although natural image
contrast varies considerable within and across scale and contrast gain, the fast majority of natural
image contrasts falls above a lower threshold. It is reasonable to assume that the LGN considers
contrast below this statistical threshold as noise and only processes contrasts above it, i.e. only
processes reliable contrast outputs.



Figure 1: Approximation of the typical range of contrasts generated by LGN neurons tuned to different spatial
frequencies (5 octave scales) and with different contrast gain properties (5 semi-saturation constants). Shown
are the average of local contrast (dark gray), plus and minus two standard deviations, in the gray level (left),
blue-yellow (middle) and red-green (right) color components of 800 natural images.

2.2 Natural image statistics-based selection of unique local image contrast values

What spatial scale and contrast gain does the LGN use to process local image contrast? It is unlikely
that the LGN (linearly) integrates the output of a population of spatially overlapping �lters to de-
termine local image contrast as this would make it sensitive to receptive �eld clutter [11]. Here we
depart from the view that LGN aims to minimize receptive clutter by selecting a single output from a
population of scale and gain speci�c contrast �lters [12]. Speci�cally, in order to determine contrast
at an image location, we apply the smallest �lter with boosted contrast output above what can be
expected to be noise for that particular �lter. We de�ne local contrast as the amount of contrast ex-
ceeding the noise threshold, which for a given scale and gain is set here to half standard deviation of
contrasts in 800 natural images (see �gure 1). This contrast response selection mechanism produces
a contrast magnitude map in ways similar to the scale selection model in [13].
We apply the local contrast selection mechanism separately to the individual color components of
an image. From a single color image, the three color components are extracted using the Gaussian
color model [14], resulting in a gray-scale, blue-yellow and red-green image representations. Each
of these representations is convolved with the 25 scale and gain speci�c contrast �lters and subse-
quently subjected to our local contrast selection mechanism. For each color component a dedicated
scale and gain dependent noise threshold is used (see �gure 1). As a result, for each color image we
get three contrast magnitude maps, which we linearly sum to arrive at a single contrast magnitude
map.

2.3 Weibull statistics of local image contrast

The contrast magnitude map of an image is summarized in a histogram, representing the distribution
of local contrast values of that image. Note that the histogram does not preserve information about
spatial structure in the contrast magnitude map: a scrambling the contrast magnitude map will not
affect the histogram. We subsequently �t a three-parameter Weibull distribution to the contrast
histogram. The three-parameter Weibull distribution is given by

f (x) = c exp( x−µ
β )γ (1)

The parameters of this distribution are indicative for the spatial structure in a natural scene (see
�gure 2) and can be put in a biologically plausible framework [7]. The scale parameter β describes
the width of the histogram. Hence, it varies roughly with the variation in local image contrasts. The
shape parameter γ describes the shape of the histogram. It varies with the amount of scene clutter.
The µ parameter, represents the origin of the distribution. Its position is in�uenced by uneven
illumination. The three Weibull parameters are estimated using a maximum likelihood estimator
(MLE). To achieve illumination invariance, the µ parameter is normalized out.



Figure 2: Two arbitrary natural images from the Corel Photo Library with varying degrees of details and
varying degrees of scene clutter. The details in the upper image are chaotic. They range from large for the bird
to small for partially occluded tree branches. In contrast, the second picture depicts a single coherent object,
the eagle, against a highly uniform background. The image gradient at each image location shows the contrast
strength. All gradients accumulated in a histogram reveal the distribution of local contrasts. The scale and
shape parameters of the Weibull distribution are estimated from the �t to the histogram by maximum likelihood
estimation.

2.4 Model Estimation

We use EEG response signals from C channels (electrodes) covering the entire cortex, to develop
a Weibull response model that predicts neuronal responses to natural images. EEG signals are
measured for S subjects watching N natural images. We average these signals across subjects to
obtain a more robust response signal per channel and per image. This results in an N × C matrix
F(t) of response signals fnc(t). We construct a linear Weibull response model for each channel
separately. Our rationale for combining the two Weibull parameters in a linear fashion is that these
two parameters can be suitably extracted from the X and Y units in the LGN model (as shown in
Scholte et al [7]) and as such the linear combination re�ects linear pooling at the LGN level.
Functional data analysis [15] provides a natural framework for modeling continuous stochastic brain
processes. We use a point-wise multivariate functional linear model to establish the relation between
Weibull parameters X = [β1, ..., βN ; γ1, ..., γN]T and the EEG response fc(t) = [ f̄nc, ..., f̄Nc]T . The
values βn, γn are the Weibull parameters of image n and f̄nc is the across subject average response to
that image at channel c. Weibull response model estimation for channel c then reduces to solving

fc(t) = Xω(t) + ε(t) (2)
where ω(t) is 2 × 1 vector of regression functions and ε(t) = [ε1(t), ...., εS (t)]T is the vector of resid-
ual functions. Under the assumption that the residual functions ε(t) are independent and normally
distributed with zero mean, the regression function is estimated by least squares minimization such
that

�ωc(t) = min
ω∗(t)

∫

t
||fc(t) − Xω∗(t)||2dt. (3)

A roughness penalty, based on the second derivative of ω(t), regularize the estimate �ωc(t). The
estimated regression function provides the best estimate of fc(t) in least squares sense:

�fc(t) = X �ωc(t). (4)
We use �ωc(t) to predict the EEG responses to a new set of M images represented by their Weibull
distribution. The EEG responses to these new images are predicted using the Weibull response



model:
�gc(t) = Y �ωc(t). (5)

where the M × 2 data matrix Y contains the two Weibull parameters for each of the new images and
the M-vector of functions �gc(t) denotes the predicted neural responses for channel c.

2.5 Image Identi�cation

How well does the Weibull response model predict EEG responses to natural images? We answer
this question in terms of EEG-based identi�cation of individual images. Given a set of M new im-
ages and their Weibull parameters Y, the Weibull response model provides the EEG prediction �gc(t).
The match between prediction �gc(t) and true, measured EEG activity gc(t) = [g1, ..., gM] provides
a means for image identi�cation. More speci�cally, an M × M similarity matrix S is constructed,
where each element contains the Pearson's correlation coefficient R between measured gcm(t) and
predicted �gcm(t) response. The similarity matrix shows for each individual image, the amount of
EEG correlation with the other images. The image whose predicted activity pattern is most corre-
lated with the measured activity pattern is selected. A similarity matrix is constructed separately
for each of the C channels. These similarity matrices are squared in order to allow averaging of
similarity matrices across channels. Hence, the square of the correlation coefficient r2 rather than r
itself is used as a measure of similarity between true and predicted response.

3 Experiments and Results

3.1 Stimulus and EEG Data

In our experiments we used 800 color images with a resolution 345 x 217 pixels and a bit-depth
of 24. Of these, 400 were pictures of animals in their natural habitat and 400 pictures of natural
landscapes, city scenes, indoor scenes and man-made objects. These images were taken from a
larger set of images used in Fabre-Thorpe [16]. This subset of images was reasonably balanced in
terms of Michelson contrast, spatial frequency and orientation properties. The Weibull properties of
these images nevertheless covered a wide range of real-world images. The data set did not contain
near duplicates.
The images were presented to 32 subjects on a 19� Ilyama monitor with a resolution of 1024*768
pixels and a frame-rate of 100 Hz. Subjects were seated 90 cm from the monitor. During EEG
acquisition a stimulus was presented, on average every 1500 ms (range 1000-2000 ms) for 100
ms. Each stimulus was presented 2 times for a total of 1600 presentations. Recordings were made
with a Biosemi 52-channel Active Two EEG system (Biosemi Instrumentation BV, Amsterdam, The
Netherlands). Data was sampled at 256 Hz. Data analysis was identical to [17] with the exception
that the high-pass �lter was placed at 0.1 Hz (12 db/octave) and the pre-stimulus baseline activity
was taken between -100 and 0 ms with regard to stimulus onset. Trials were averaged over subject
per individual stimulus resulting in 800 averages of 20 to 32 averages per individual image.

3.2 Experiments

The experiments were carried out with the following parameters settings. Two banks of Gaussian
second-order derivative �lters were used to determine image contrast for each image location. The
�rst set consisted of �lters with octave spatial scales 1.5, 3, 6, 12, 24 (std. in pixels). This set was
used to determine the Weibull scale parameter β. The other �lter bank, with scales 3, 6, 12, 24,
48, was used for the estimation of Weibull shape parameter γ. The spatial properties of the two
sets were determined experimentally and roughly correspond to receptive �eld sizes of small X and
large Y Ganglion cells in the early visual system of the human brain [18]. We used 5 semi-saturation
constants between 0.15 and 1.6 to cover the spectrum from linear to non-linear contrast gain control
in the LGN.

A cross validation study was performed to obtain reliable performance measurements. We repeated
the same experiment 50 times, each time randomly selecting 700 images for model estimation and
100 images for image identi�cation. Performance was measured in terms of the percentage of cor-
rectly identi�ed images for each of the 50 experiments. The 50 measures were then averaged to



Figure 3: Total explained variance in ERP signals by the two Weibull parameters. The peak of
the total explained variance is highest (75 percent) for the IZ electrode overlying the early visual
cortex and gradually decays at higher brain areas. The time course of explained variance for the IZ
electrode reveals that the peak occurs at 113 ms after stimulus onset.

arrive at a single performance outcome. Hence, accuracy was de�ned as the fraction of images
for which the predicted activity pattern and measured activity pattern produced the highest r2. As
accuracy does not re�ect how close the correct image was to being selected, we also ranked the
correlation coefficients and determined within which percentage of the ranked M images the correct
one was.

3.3 Results

We �rst present correlations between ERP signals from across the entire brain and the two parame-
ters of the Weibull �t to the sum of selected local contrast values in the gray-level, blue-yellow and
red-green components of each image. Correlations are strikingly high at electrode Iz overlying the
early visual cortex. The peak r2 (square of the correlation coefficient) over time for that electrode is
75 percent (r = 0.8691; p = 0). The peak r2 over time slowly decays away from the occipital part
of the head as can be seen from the topographic plots in �gure 3. The Weibull parameters explain
most variance in the ERP signal very early in visual processing at 113 ms after stimulus onset (3)
and continue to explain variance up to about 200 ms. This suggests that the two Weibull parameters
are probably only relevant to the brain in the early phases of visual processing.
Accuracy results are shown in �gure 4. The topographic plots show image identi�cation accuracy
for single channels (electrodes). Channel IZ produces the highest accuracy with 5 percent. This
means that based on ERP signal at the IZ electrode, 5 out of 100 images are on average correctly
identi�ed from the similarity matrix. Then follow channel Oz with 4.3 percent, O2 with 4.1 and
so on. Image identi�cation based on multiple channels strikingly improves performance as shown
in �gure 4. When the similarity matrices from the 20 most contributive channels are averaged,
accuracy of almost 90 percent is obtained. This means that, with a Weibull response model of only
two parameters, almost every image can be correctly identi�ed from the neural activity that this
image triggers. As an aside we note that this implies that the different parts of the early visual
system process different types of images (in terms of the two Weibull parameters) in different ways.

To test the individual contribution of the Weibull parameters, we performed principal component
analysis on the beta and gamma parameters and used the principal component scores separately for
image identi�cation. A Weibull response model based only on one of the two principal component
scores performs signi�cantly less as can be seen in �gure 4. Moreover, there is large difference in
accuracy performance between the two projected Weibull parameters. These results demonstrate



Figure 4: Accuracy performance for the full (two-parameter) and partial (orthogonal projection of
one of the two parameters) Weibull response model. Accuracy is based on the accumulation of
image identi�cation at multiple channels. The topographic plots show the accuracy performance for
the individual channels.

that the two Weibull parameters indeed capture two different perceptual aspects of natural scenes,
which together constitutes an important part of early neural processing of natural images.
Accuracy results in �gure 4 only show how often the correct image is ranked �rst, not where it is
ranked. We therefore analyzed the image rankings (data not shown). For the �rst most contributive
channel (41), the correct image is always ranked within the top 13 percent of the images. The
ranking slightly worsens (top 15 percent) for the second most contributive channel (Oz) and for the
third (O2, top 16 percent). From the fourth channel and beyond there is a clear but steady drop
in ranking. The ranking data show an overall pattern similar to the one seen in the accuracy data
and indicate that, even in cases where an image is not correctly identi�ed, the misidenti�cation is
limited.
When does identi�cation fail? We extracted frequently confused image pairs from all similarity ma-
trices of all 50 cross validation steps for all 64 channels. These image pairs reveal that identi�cation
errors tend to occur when the selected image is visually similar to the correct image. The upper row
of �gure 5 shows 4 images from our data set and the images with which these have been confused
frequently. The �rst set of 2 images, containing grazing cows and a packed donkey, have been con-
fused 6 times across the 50 cross validation experiments, the second, and third set 5 times and the
fourth set 4 times. The overall similarity between the confused images is evident and remarkable
considering the variety of images we have used. These �ndings suggest that the Weibull model
captures aspect of a scene's visual gist that the brain possibly uses for perception at a glance.
We further scrutinized image identi�cation performance on occlusion models of natural images.
Following [19], we created 24 types of dead leave images containing disks of various sizes (large,
medium and small), size distributions (Power law and exponential), intensities (equal intensity ver-
sus decaying intensity) and opacities (occluding versus transparent). For each image type, 16 in-
stances were composed resulting in a total of 384 dead leave images. We presented 16 subjects with
the 384 dead leaves images while recording their EEG activity. As with our natural images, the beta
and gamma parameter values of the Weibull contrast distributions underlying the 364 dead leave
images correlated highly with EEG activity (r2 = 0.83). A cross validation experiment in which we
used 284 dead leaves images for building a Weibull response model and 100 for image identi�ca-
tion resulted in an average image identi�cation performance of 94 percent (see �gure 4). Confusion
analysis revealed that dead leave images with clear disks were well identi�ed, whereas dead leaves
images composed of transparent and thus indistinguishable disks were confused frequently (�gure



Figure 5: Most confused image pairs during cross-validation. Note the global similarity in spatial
con�guration between the natural image pairs. Similarity between most confused dead leave image
pairs is also apparent: except for the fourth pair, they are all images with transparent disk (but with
different disk sizes and disk intensity patterns). Dead leave images with small, opaque and equal
intensity disks (as in the lower right example) were least confused.

5). Apparently, the information in the EEG signal that facilitates image identi�cation is related to
clear object-background differences.

4 Discussion and Conclusion

To determine local image contrasts, we have applied a bank of biologically-motivated contrast �lters
to each image location and selected a single �lter output based on receptive �eld size and response
reliability. The statistics of locally selected image contrasts, appropriately captured by the Weibull
distribution, explain up to 75 percent of occipital EEG activity for natural images and almost 83
for arti�cial dead leave images. We have used Weibull contrast statistics of these images and corre-
sponding EEG activity to construct a Weibull response model for EEG-based rapid image identi�ca-
tion. Using this model, we have obtained image identi�cation performance of 90 percent for natural
images and 94 percent for dead leave images, which is remarkable considering the simplicity of the
two-parameter Weibull image model and the limited spatial resolution of EEG data. We attribute
this success to the ability of the Weibull parameters to structure the space of natural images in a
highly meaningful and compact way, invariant to a large class of accidental or trivial scene features.
Both the scale and shape parameters contribute to the meaningful organization of natural images and
appear to play an important role in the early neural processing of natural images.
Kay et. al [8] report similar image identi�cation performance using an other biologically plausible
model. In this model, a natural image is represented by a large set of Gabor wavelets differing in
size, position, orientation, spatial frequency and phase. Haemodynaymic responses in the visual
cortex are integrally modeled as a linear function of the contrast energy contained in quadrature
wavelet pairs. In a repeated trial experiment involving 1700 training images, 120 test images, and
fMRI data of 2 subjects, 92 percent of the test images were correctly identi�ed for one subject and 72
for a second subject. In a single trial experiment, the reported performances are 52 and 31 percent
respectively. We note that in contrast to [8], our neural response model is based on (summary)
statistics of �lter outputs, rather than on �lter outputs themselves. This may explain our models
ability to compactly describe a scene's visual gist.
In conclusion, we embrace the view that common factors of natural images imprinted in the brain
daily, underlie rapid image identi�cation by humans. Departing from this view, we establish a
relationship between natural image statistics and neural processing through the Weibull response
model. Results with EEG-based image identi�cation using the Weibull response model, together
with the biological plausibility of the Weibull response model, supports the idea that the human
visual system evolved, among others, to estimate the Weibull statistics of natural images for rapid
extraction of their visual gist [7].
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