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a b s t r a c t

For the modeling of materials, the mapping of image features onto a codebook of feature representatives
receives extensive treatment. For reason of their generality and simplicity, filterbank outputs are com-
monly used as features. The MR8 filterbank of Varma and Zisserman is performing well in a recent eval-
uation. In this paper, we construct color invariant filter sets from the original MR8 filterbank. We evaluate
several color invariant alternatives over more than 250 real-world materials recorded under a variety of
imaging conditions including clutter. Our contribution is a material recognition framework that learns
automatically for each material specifically the most discriminative filterbank combination and corre-
sponding degree of color invariance. For a large set of materials each with different physical properties,
we demonstrate the material-specific filterbank models to be preferred over models with fixed
filterbanks.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The appearance of materials change significantly under differ-
ent imaging settings, depending on the settings themselves (Dana
et al., 1999) and also on the physical properties of a material
(Koenderink et al., 1999). Hence, materials-specific image repre-
sentations may improve on the recognition performance, as they
capture properties that are distinctive to the material and are bal-
anced with the variation of imaging settings. For instance, for one
material, the local intensity variation is a distinctive property,
while the other is distinguished best from other materials based
on its color properties. Fig. 1 depicts some materials from the ALOT
dataset (Geusebroek and Smeulders, xxxx) and the testing condi-
tions (Fig. 2). The first and second material are distinguished best
when comparing their colors, more specifically, the red channel.
For the third and fourth material, the most discriminative feature
is the amount of intensity edges, while the fifth image in the first
row and the second image in the third row are distinguished best
when comparing the information in the green channel. These
examples illustrate the advantage of material-specific representa-
tions. The objective in this chapter is to learn material-specific rep-
resentations for more than 250 materials.

For material recognition (Varma and Zisserman, 2005; Leung
and Malik, 2001) and classification (Hayman et al., 2004), but also
for object and scene classification (Zhang et al., in press), the map-
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ping of image features onto a codebook of feature representatives
(Jurie and Triggs, 2005; Nowak et al., 2006) has received extensive
treatment. Commonly used features are the class of SIFT-based fea-
tures (Lowe, 2004; Mikolajczyk and Schmid, 2005; Burghouts and
Geusebroek, 2008), see e.g. (Lazebnik et al., 2005). Alternatively,
filterbank outputs are in use as features. Promising methods that
use filterbanks to model object and scenes, have been proposed
by Winn et al. (2005) and by Shotton et al. (2006).

In previous work by the authors Burghouts and Geusebroek
(2006), image edges were filtered by a filterbank and subsequently
annotated by their color improving the discriminative power of
filterbanks further. The objective of Burghouts and Geusebroek
(2006) was to extend a method that was originally proposed for
grey-value images to include color information. The extension
works well for images with many edges, and we do not expect it
to work for more general images. Furthermore, the purpose of this
paper is broader: we will integrate various ways of measuring col-
or by filterbanks. We consider filterbanks for reason of their dis-
criminative power, simplicity and generality.

To adapt the representation to a particular material, we con-
sider various ways to represent an image. To that end, consider
various intensity and color filterbanks. They are adapted from the
MR8-filterbank which performs well in a recent evaluation (Varma
and Zisserman, 2005). Each of the filterbanks measures different
color channels, and each achieves a different degree of photometric
invariance. We adopt techniques from the literature on invariant
feature design, see e.g. (Finlayson et al., 1994; Gevers and Smeul-
ders, 1999; Geusebroek et al., 2001). The general scheme to con-
struct a representation of a filtered image, typically a histogram,
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Fig. 2. Test images for the ALOT material depicted above on third row, first column.

Fig. 1. Example materials from the ALOT dataset (Geusebroek and Smeulders, xxxx).
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is to first establish representatives of the filter outputs, or textons
(Leung and Malik, 2001). A standard solution that aims to mini-
mize the average reconstruction error is the k-means algorithm,
employed originally by Sivic and Zisserman (2003) and Csurka
et al. (2004). Alternatively, Winn et al. (2005) employed an infor-
mation–maximization approach. For any of these approaches to
establish textons, the problem is how to arrive at a representation
that is specific to the material at hand.

A recent method proposed by Perronnin et al. (2006) establishes
class-specific textons for each of N classes. As the authors point
out, the straightforward accumulation of all textons into one large
codebook is not feasible, as the learning of materials will be ham-
pered as a result of the large histograms representing the images
(curse of dimensionality). To avoid this problem, they suggest to
use the N sets of class-specific textons to create respectively N
codebooks. Each image is subsequently represented by the N code-
books resulting in N histograms. Elegantly, for each image the N
histograms are fed to N class-specific classifiers. Classification of
the image is based on the N thus obtained posterior probabilities.
In (Perronnin et al., 2006), high performance is reported for the
classification of 7–10 categories. However, for the classification
of more than 250 materials, the method in (Perronnin et al.,
2006) will be hampered by the creation of more than 250 histo-
grams for each image. With 24 images per class, over
24 � 250 � 250 histograms need to be constructed, which is not fea-
sible in practice. Rather, we will propose a scalable alternative to
construct material-specific representations, by representing the
image by M � N histograms. The M histograms are obtained from
M color invariant codebooks, each learned from one filterbank with
specific color and invariant properties. As a result, the class-speci-
ficity of codebooks is not in the learned textons, but in their color
and invariance properties.

The paper is organized as follows: In Section 2, the MR8 filter-
bank and its color invariant versions are introduced. We propose
the framework to learn material-specific color information and
invariance in Section 3. In Section 4, we evaluate first the perfor-
mance of the intensity and color filterbanks on the CURET (Dana
et al., 1999) and ALOT datasets based on discriminative power,
invariance to image settings and clutter. Second, we evaluate the
framework to adapt the use of filterbanks to the material. Conclu-
sions are drawn in Section 5.

2. Color invariant filterbanks

In this section, we introduce the MR8 filterbank and several
extensions to color. The MR8 filterbank is shown in Fig. 3a. Typi-
cally, before the image is convolved with the MR8 filterbank, the
image is normalized to zero mean and unit variance, to achieve
invariance to imaging conditions, see e.g. (Varma and Zisserman,
2005). In the following subsections, we extend the MR8 filterbank
to incorporate color information, and we consider various transfor-
mations to achieve color invariance from literature.

2.1. MR8-NC

In a first modification of the MR8 filterbank to extend it to use
color information, we apply the filterbank to the image’s color
channels directly. This is a straightforward extension that is also
employed by Winn et al. (2005), who have applied the MR8 filter-
bank to Lab color values. We largely follow (Winn et al., 2005) here.
However, we restrain to a linear subspace of RGB, and apply the
filterbank to the three opponent color channels of the image.
Opponent colors have the advantage that the color channels are
largely decorrelated. Here, we consider the Gaussian opponent
color model, which is computed from RGB values directly by
Geusebroek et al. (2001)bEðx; yÞbEkðx; yÞbEkkðx; yÞ

2664
3775 ¼ 0:06 0:63 0:27
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where bE, bEk and bEkk denote the intensity, blue–yellow and green–
red channel.

Likewise the usage of the MR8 filterbank in the VZ algorithm
(Varma and Zisserman, 2005), we normalize each of the color
channels bE, bEk and bEkk, to zero mean and unit variance



Fig. 3. MR8-LINC: a color invariant filterbank. The original MR8-filterbank (a – top row) is convolved with each of the image’s opponent colors channels (a–c – upper rows),
to yield 24 responses per pixel. Each of the 24 filter outputs is normalized by the local intensity as is measured by a Gaussian kernel of the same size of the MR8 filter (a-c –
lower rows). The only MR8 filter that is not normalized is the Gaussian kernel that measures intensity (otherwise it would yield a constant output). The normalization
achieves invariance to local intensity changes. (The figure is best viewed in color.)
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bE0 ¼ bE � lbE
rbE ; bE0k ¼ bEk � lbEk

rbEk

; bE0kk ¼
bEkk � lbEkk

rbEkk

; ð2Þ

where lbE , rbE denote the mean and standard deviation of the inten-
sity channel, respectively; lbEk

, rbEk

denote the mean and standard
deviation of the blue-yellow opponent color channel, respectively;
and, equivalently, lbEkk

, rbEkk

denote the mean and standard devia-
tion of the green–red opponent color channel, respectively.

Next, each of the normalized color channels bE0, bE0k, and bE0kk is
convolved with the MR8 filterbank, yielding 24 filter outputs per
pixel. This first extension of the MR8 filterbank is termed MR8 with
normalized colors, or MR8-NC.

2.2. MR8-INC

In a second modification, we normalize the color channels
such that they maintain more color information than is the case
with MR8-NC. With MR8-NC, the means of the yellow–blue and
red–green channels are normalized to zero, effectively discarding
the actual chromaticity in the image, and only considering the
variation. The color channels will be affected mainly by the
lighting direction relative to the object and to the camera (Suen
and Healey, 2000), which are mostly characterized by intensity
fluctuations. Hence, we propose to normalize the three opponent
color channels only by the standard deviation of the intensity.
Normalizing the intensity channel by the standard deviation of
intensity
bE0 ¼ bE � lbE
rbE ; ð3Þ

sets the variance of this channel to unity. Here, lbE and rbE indicate
the mean and standard deviation of the intensity channel as before.
Normalizing the yellow–blue and red–green channels also by the
intensity standard deviation

bE0k ¼ bEk

rbE ; bE0kk ¼
bEkk

rbE ; ð4Þ

yields a more stable responses when the intensity variation fluctu-
ates as a consequence of lighting or viewpoint changes. At the
same time, it maintains information about the chromaticity in
the image. Likewise MR8-NC, each of the normalized color channels
is convolved with the MR8 filterbank, yielding 24 filter outputs per
pixel. We refer to this filterbank as MR8 with intensity-normalized
colors, or MR8-INC.

2.3. MR8-LINC

In a third modification, we modify the MR8-filterbank to
achieve invariance to local intensity changes by a local color nor-
malization rather than a global one. We follow closely the invariant
Gaussian features developed in (Geusebroek et al., 2001). In
(Geusebroek et al., 2001), each of the local image measurements
is normalized by the intensity in a small neighborhood. This
achieves invariance to the local intensity level.
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We propose to filter for each pixel the non-normalized oppo-
nent color values using the MR8-filterbank, to obtain 24 filter out-
puts per pixel. Also, for each pixel, we measure the local intensity
with a Gaussian kernel at the same scale as the MR8 filter under
consideration. Per pixel, we normalize each output of the MR8 filt-
erbank by the local intensity as measured by that Gaussian filter,
yielding the transformed filter responses MR80

MR80 bE� �
¼ MR8ðbEÞbEr

; MR80 cEk

� �
¼MR8ðcEkÞbEr

;

MR80 cEkk

� �
¼MR8ðcEkkÞbEr

; ð5Þ

where MR8ð�Þ indicates the successive application of a filter from
the filterbank, and bEr represents the intensity image smoothed at
the same spatial scale as the filter of MR8 under consideration,
see Fig. 3. Obviously, the zeroth order Gaussian filter from the
MR8-filterbank is not normalized by the local intensity, otherwise
its output would be constant. We refer to this color filterbank as
MR8 with local intensity-normalized colors, or MR8-LINC.

2.4. MR8-SLINC

Finally, we construct a shadow and shading invariant filterbank,
termed MR8-SLINC. Similar to MR8-LINC, the invariance is
achieved locally. With MR8-LINC, first the filterbank outputs are
computed before normalization by the local intensity. Alterna-
tively, the color values bEkðx; yÞ and bEkkðx; yÞ can be normalized lo-
cally first before filtering the thus obtained images

MR80ðbEÞ ¼MR8ðbEÞbEr
; MR80ðcEkÞ ¼MR8

cEkbE
 !

;

MR80ðcEkkÞ ¼ MR8
cEkkbE

 !
: ð6Þ

Under Lambertian reflection, the normalization of color values by
the local intensity results in color values independent of the inten-
sity distribution. Hence, the filterbank outputs of MR8-SLINC are
invariant to shadow and shading.

2.5. Filterbank properties

Similar to MR8, the color-based filterbanks MR8-NC and
MR8-INC involve a global color normalization. In other words,
the normalization is dependent on the contents of the image.
Hence, clutter will affect the normalization. This makes the output
of MR8-NC and MR8-INC scene-dependent. In contrast, the local nor-
malizations that are employed in MR8-LINC and MR8-SLINC are
not scene-dependent, but only locally dependent on the actual color
values.

Further, the filterbanks can be ordered by their degree of invari-
ance. MR8-SLINC is most invariant as its color channels aim to dis-
card intensity variation. MR8 and MR8-NC retain respectively the
intensity and color variation, but they discard their mean and var-
E 

Eλλ 

Eλ 

MR8-  
LINC[0]

MR8-
LINC[1] 

MR8-
LINC[2] 

Fig. 4. Color codebook approach where the three color channels are separately filtered an
iance. MR8-LINC retains more of the intensity and color variations,
as it discards locally the variance due to intensity fluctuations. Fi-
nally, MR8-INC is less invariant than MR8-LINC, as it discards only
the global variance due to intensity fluctuations.

3. Color invariant codebooks and material-specific adaptation

In this section, we consider the construction of color invariant
codebooks from the several filterbanks, and the methodology to
apply the codebooks in a material-specific setting. First, we formal-
ize the color invariant filterbanks as follows: MR8-X = {MR8-X[0],
MR8-X[1], MR8-X[2]}, where X 2 fNC, INC, LINC, SLINC}. To
avoid the joint learning of color channels, we learn one codebook
for each color channel MR8-X[i], with i 2 f0;1;2g. For codebook
construction, we follow the common scheme of learning textons
by k-means clustering of filterbank outputs (Leung and Malik,
2001, 2003, 2004, 2005). We consider a single set of 20 images ran-
domly drawn from the learning set of material images. Each is fil-
tered by one of the filterbanks MR8-X[i], and from each filtered
image we store 10 cluster centers. As a result, for each filterbank
MR8-X[i], we obtain a codebook of 200 textons. For the filterbank
MR8-X, we have obtained 3 codebooks of length 200. For fair com-
parison with the single-channel MR8 filterbank, the length of the
MR8 codebook is increased to 600 by storing 30 instead of 10 clus-
ter centers per learning image.

To represent an image in terms of codebooks, it is filtered by
each of the color channel filterbanks MR8-X[i] first, before mapping
the filter outputs onto the corresponding codebook and counting
the most similar occurrences. For each MR8-X[i], a histogram of
length 200 is obtained; hence for MR8-X three histograms are ob-
tained. After concatenation of the histograms per color channel, a
histogram of length 600 is obtained that corresponds to the filter-
bank MR8-X. The codebook representation is outlined in Fig. 4.

3.1. Material-specific adaptation

The limitation of the color codebook representation as proposed
above, is that the discriminative power of the color channels is
averaged by using a single histogram comparison measure. For in-
stance, the intensity information may be less distinctive for a given
material than is the color information. The averaging of the infor-
mation in the color channels may lead to incorrect classification
of materials. The misclassification of an image of the blueish mate-
rial, mistakenly considered to be more similar to the pink material,
is illustrated in Fig. 5a.

To overcome the limited resolving power of the direct combina-
tion of the three color channels, we start with classification of a
material at the level of individual color channels and to give pref-
erence to a distinctive combination thereof. Fig. 5b illustrates that
the blueish material is well separated from the pink material using
the information in the third color channel.

We propose to train one classifier per color channel per filter-
bank to discriminate one material from all other materials. Hence,
with I filterbanks, F1;...;I , and J color channels, c1;...;J , we obtain I � J
codebook  
LINC[0] 

codebook  
LINC[1] 

codebook  
LINC[2] 

histogram 
LINC[0] 

histogram 
LINC[1] 

histogram 
LINC[2] 

histogram 
MR8-LINC 

d represented by a histogram. Subsequently, the histograms are combined into one.
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Fig. 5. Separation of two images of the same material from one image of an other material. The fixed representation in (a) is not able to distinguish correctly between the two,
while the material-specific representation is able to distinguish between the two (third color channel). (The figure is best viewed in color.)
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classifiers. With N materials, each classifier outputs N posterior
probabilities. With this procedure, I � J � N values are produced
by the first classifier stage.

In the combination stage, one classifier is trained using the
I � J � N values obtained for each material image. This one versus
all classifier learns per material the discriminant function from
the posterior probabilities assigned to each material by the individ-
ual classifiers. As a result, the combined classifier learns implicitly
the filterbank and color channel that is most distinctive for the spe-
cific material. To infer explicitly from the material-specific discrim-
inant function provides information which filterbank and color
representation combination is most distinctive for a given mate-
rial, we determine for each material which of the individual classi-
fier’s outputs approximates the normal to the discriminant
function of the combining classifier best. This measure indicates
the importance of a particular filterbank for the classification of
the given material.

4. Experiments

In the experiments, we evaluate the color filterbanks and their
combination. We take two datasets into account to cover a wide
range of real-world materials and imaging conditions under which
they can be viewed. First, we consider the well-known CURET data-
set (Dana et al., 1999). This dataset enables one to test the robust-
ness under varying imaging conditions, i.e. changes of the
illumination direction and of the camera viewpoint. For color-
based methods, a critical issue is whether the method is robust
to color transformations in the image as a consequence of vary-
ing illumination color. Second, we consider the ALOT dataset
(Geusebroek and Smeulders, xxxx) to also include variations of
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Fig. 6. Accuracy of material recognition for various filterbanks with randomly selected i
standard deviation over 1000 repetitions (best viewed in color).
the illumination color. Additionally, this dataset contains more
color and 3D variation. Some of the materials that are included
in the ALOT dataset are illustrated in Fig. 1, while some test images
are shown in Fig. 2. In total, we evaluate the filterbanks on 61 tex-
tures of the CURET dataset and on 200 textures of the ALOT data-
set. In the experiments we use in total 5612 CURET images and
7200 ALOT images, respectively. For CURET, the train, test and tex-
ton learn sets are mentioned in (Varma and Zisserman, 2005); for
ALOT the sets are publicly available on the website of the ALOT
database.

In the experiments, the number of textons is always set to 200
(as shown in (Varma and Zisserman, 2005) this parameter does not
affect the results significantly). For the individual and combined
classifiers, we prefer respectively the nearest mean classifier
(Euclidean distance) and the linear Bayes-normal classifier (Duda
et al., 2000), as these are performing best.

4.1. Color invariant codebooks

4.1.1. Random images
We start the performance evaluation by establishing the classi-

fication accuracy when selecting randomly the learning images.
This experiment gives an indication of the discriminative power
and robustness of each of the color filterbanks. We include the ori-
ginal MR8 as a baseline comparison. We consider the mean and
standard deviation of classification accuracy over 1000 repetitions
(random selections).

Fig. 6a and b shows the recognition results for the CURET and
ALOT datasets, respectively. First, we discuss the results for the
CURET dataset. The filterbanks with most invariant properties,
MR8, MR8-NC and MR8-SLINC filterbanks perform less than the less
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mages of (a) the CURET dataset and (b) the ALOT dataset. The vertical bars indicate
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invariant MR8-INC and MR8-LINC filterbanks. MR8 performs some-
what better than MR8-NC and MR8-SLINC, as it’s nearest mean
classifier puts all emphasis on the intensity information. With
MR8-NC and MR8-SLINC, emphasis of the nearest mean classifier
is also put on the color channels, of which almost all information
is lost due to the normalization of the mean and variance. The
MR8-LINC filterbank performs better than does MR8-INC, as it pro-
vides a better approximation of the changing intensity effects by
doing so locally.

As expected, for ALOT the performance of the filterbanks is dif-
ferent, as this dataset contains more color and 3D variation. The se-
vere 3D variations causes the intensity to change in such a way
that it cannot be approximated well globally. This explains the
low performance of the MR8-INC filterbank. At the same time, with
much more colorful materials, the global normalization of image
colors makes sense: local color variations in the image are now
kept albeit relative to each other. Also, the severe 3D variations
across materials causes their appearance to change significantly
with different illumination. Keeping color variations while being
very invariant, explains the good performance of the MR8-NC filter-
bank. The MR8-INC and MR8-LINC filterbanks are less invariant,
hence they perform somewhat less than MR8-NC. The distinctive
color information maintained by MR8-INC and MR8-LINC explains
their better performance compared to the MR8 filterbank.

4.1.2. Cluttered images
Robustness to clutter is of importance for image modelling

where the image frame is not fixed, or/and where no image seg-
mentation is available. The setup of the previous experiments in-
volves images that contain no clutter, as the image frames are
fixed and each image captures one material only. In this experi-
ment, we evaluate the sensitivity of the color-based filterbanks
MR8, MR8-NC, MR8-INC and MR8-LINC to clutter.

First, we randomly select one learning image for each texture.
Second, we simulate clutter by concatenating the learning image
with a randomly selected image of another texture. For the first
cluttered test image, the percentage of original vs. clutter is 90%
vs. 10%. To simulate various degrees of clutter, we increase the
clutter percentage, up to 40% (note: with 50%, the classification
would become chance). The cluttered images are publicly available
on the website of the ALOT (Geusebroek and Smeulders, xxxx)
database. Obviously, for generalization purposes, we use the texton
dictionary from the previous experiment (i.e. we do not learn new
textons from cluttered images).

Fig. 7a and b shows the results for increasingly cluttered images
of the CURET and ALOT datasets, respectively. The MR8-LINC filter-
bank performs significantly better than the other filterbanks, MR8,
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Fig. 7. Accuracy of material recognition for various filterbanks with increasin
MR8-NC, and MR8-INC, over various degrees of clutter. The low
performance of MR8, MR8-NC, and MR8-INC is due to the global
normalization schemes that they employ. A global normalization
is distorted by clutter, so the filterbank input is different when
dealing with variations of clutter. The local normalization em-
ployed in MR8-LINC is not distorted by clutter. The small perfor-
mance drop here is due to ambiguity in the images themselves
as a result of the cluttering. However, even with 40% clutter, the
MR8-LINC filterbank achieves a classification accuracy of 75.5%
on the ALOT dataset, while the runner-up (MR8-LINC) has an accu-
racy of 39.0% only.

The results of individual filterbanks are summarized as follows.
From the previous two experiments, we conclude that the locally-
invariant MR8-LINC and MR8-SLINC filterbanks are very robust to
clutter, and that they perform well on different datasets. The MR8-
LINC is performing best on the CURET dataset (limited 3D varia-
tion), whereas MR8-SLINC performs second-best on the ALOT
dataset (severe 3D variation).

4.2. Adaptive color invariant codebooks

Since MR8-LINC and MR8-SLINC perform well but on different
datasets, and given that the datasets contain very different types of
materials, we establish in this experiment whether the tuning of
each of the filterbanks to a particular material is beneficial.

As expected, Fig. 8a and c indicate that the classification accu-
racy is increased by combining the MR8-LINC and MR8-SLINC filt-
erbanks. While the classification accuracy of MR8-LINC is almost
saturated for the CURET dataset, 0.96, the combination achieves a
marginal improvement, 2%. For the ALOT dataset, the performance
is increased from 0.35 to 0.42 achieving an improvement of 19.8%.

Indeed, as laid down in Fig. 8b and d, the most distinctive filter-
bank per material varies significantly across the datasets, and also
across the individual materials. The CURET dataset contains many
materials of which the structure is similar. Hence, the intensity
variation, although very discriminative (see previous experiments),
is not most discriminative. Rather, color information is most dis-
criminative, as the color channels of the filterbanks are often most
distinctive. The information in the filterbanks that are not invariant
to shadow and shading, MR8-LINC, is in 56% most distinctive. Most
CURET materials are uni-colored, hence the color information is
distinctive. With uni-colored materials, too much information is
lost when discarding shadow and shading variation. Hence, the
shadow and shading invariant filterbank MR8-SLINC is in less
cases, 27%, most distinctive.

For the ALOT dataset, the performance improvement due to filt-
erbank tuning is significant. As this dataset contains more variation
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Fig. 8. Accuracy of material recognition for the best performing filterbanks MR8-LINC and MR8-SLINC and their combination for the CURET dataset (a) and the ALOT dataset
(c). Percentages indicate how often a particular color channel of a filterbank is most distinctive (b and d). Both filterbanks have three color channels, but note that MR8-
SLINC[0] � MR8-LINC[0], so five results are shown.

Table 1
Summary of the performance of the MR8 filterbank and proposed color modifications.

Performance using
4 examples

Performance
with 20% clutter

Merit

CURET
(%)

ALOT
(%)

CURET
(%)

ALOT
(%)

CURET
(%)

A LOT
(%)

MR8 58 23 29 32
MR8-NC 54 36 17 15
MR8-INC 60 22 54 57
MR8-LINC 67 30 99 96
MR8-SLINC 57 31 97 94
Adaptive 2 20
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of the material properties, and because more materials are in-
cluded, the results generalize better. For ALOT the most distinctive
filterbanks corresponds to intensity information. This can be ex-
plained from the fact that intensity variation rather than color var-
iation is the dominating factor in material appearance (Koenderink
et al., 1999). The information in the filterbanks that are not invari-
ant to shadow and shading, MR8-LINC, is in 28% most distinctive.
The shadow and shading invariant filterbank MR8-SLINC is in 25%
most distinctive. We conclude that MR8-LINC and MR8-SLINC are
discriminative for large but different sets of materials, respectively.

Finally, we stress that the recognition of materials from the
ALOT dataset is obviously a far from solved problem. Here, we have
demonstrated the merit of automatically tuning filterbanks with
different invariant properties to individual materials with different
physical properties.

5. Conclusion

In this paper, we have proposed a framework to learn for each
material specifically the most distinctive filterbank from a set of
intensity and color invariant filterbanks. The considered filterbanks
are adopted from the distinctive MR8 filterbank of Varma and
Zisserman, from which color invariant filterbanks are constructed
using techniques from literature. First we have established the dis-
tinctiveness, and the robustness to image settings and clutter, for
individual filterbanks for the classification of more than 250 mate-
rials from the CURET and ALOT datasets, recorded under various
illumination directions, viewpoints, and illumination colors. MR8-
NC is the straightforward extension of MR8 to color, and likewise
it normalizes the mean and variance per color channel. We have
shown that this proves to be a good strategy if multiple colors
are apparent. MR8-INC normalizes each color channel by the vari-
ation of the intensity channel. This is a good strategy if the 3D var-
iation of materials is limited. Two color filterbanks normalize
locally the filterbank outputs. MR8-LINC normalizes locally by
the intensity level to counteract intensity fluctuations, whereas
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MR8-SLINC aims at shadow and shading invariant filterbank out-
put. The locally-invariant filterbanks perform on average best,
where MR8-LINC (MR8-SLINC) distinguishes better between
materials with limited (significant) 3D variation. Additionally, we
have demonstrated that the locally-invariant filterbanks are signif-
icantly more robust to image clutter than are filterbanks that in-
volve global normalization. The results are summarized in Table 1.

Second, we have considered the performance of adapting filter-
bank combinations to each material specifically. This allows to
tune for each material the color channel(s) and invariant properties
that discriminates it best from other materials. We have proposed
a scheme to do so by learning automatically the best discriminant
function in joint filterbank space. Indeed, we have shown that the
most distinctive filterbank differs across the CURET and ALOT data-
sets and across their individual materials. We have demonstrated
that this automated tuning of color information and invariance to
individual materials results in performance improvements of up
to 20%. This result illustrates the merit of tuning a set of invariants
to instances that have different physical properties.
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