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a b s t r a c t

In this paper, we compare local colour descriptors to grey-value descriptors. We adopt the evaluation
framework of Mikolayzcyk and Schmid. We modify the framework in several ways. We decompose the
evaluation framework to the level of local grey-value invariants on which common region descriptors
are based. We compare the discriminative power and invariance of grey-value invariants to that of colour
invariants. In addition, we evaluate the invariance of colour descriptors to photometric events such as
shadow and highlights. We measure the performance over an extended range of common recording con-
ditions including significant photometric variation. We demonstrate the intensity-normalized colour
invariants and the shadow invariants to be highly distinctive, while the shadow invariants are more
robust to both changes of the illumination colour, and to changes of the shading and shadows. Overall,
the shadow invariants perform best: they are most robust to various imaging conditions while maintain-
ing discriminative power. When plugged into the SIFT descriptor, they show to outperform other meth-
ods that have combined colour information and SIFT. The usefulness of C-colour-SIFT for realistic
computer vision applications is illustrated for the classification of object categories from the VOC chal-
lenge, for which a significant improvement is reported.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many computer vision tasks depend heavily on local feature
extraction and matching. Object recognition is a typical case where
local information is gathered to obtain evidence for recognition of
previously learned objects. Recently, much emphasis has been
placed on the detection and recognition of locally (weakly) affine
invariant regions [1–5]. The rationale here is that planar regions
transform according to well known laws. Successful methods rely
on fixing a local coordinate system to a salient image region,
resulting in an ellipse describing local orientation and scale. After
transforming the local region to its canonical form, image descrip-
tors should be well able to capture the invariant region appear-
ance. As pointed out by Mikolajczyk and Schmid [6], the
detection of elliptic regions varies covariantly with the image
(weak perspective) transformation, while the normalized image
pattern they cover and the image descriptors derived from them
are typically invariant to the geometric transformation. Recogni-
tion performance is further enhanced by designing image descrip-
tors to be photometric invariant, such that local intensity
transformations due to shading and variation in illumination have
no or limited effect on the region description. State-of-the-art
ll rights reserved.
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methods in object recognition normalize mean intensity and stan-
dard deviation of the intensity image [2,6,7]. Moreover, image
measurements using a Gaussian filter and its derivatives is becom-
ing increasingly popular as a way of detecting and characterizing
image content in a geometric and photometric invariant way.
Gaussian filters have interesting properties from an image process-
ing point of view, among others, their robustness to noise [8], their
rotational steerability [9], and their applicability in multi-scale
settings [10]. Many of the intensity based descriptors proposed
in literature are based on Gaussian (derivative) measurements
[1,11–14]. Hence, as one contribution of this paper, we aim to eval-
uate the Gaussian derivative performance independent of the
descriptor. A well engineered exponent of intensity descriptors is
Lowe’s SIFT descriptor [2]. Indeed, for grey-value descriptors, the
detection of affine regions combined with the SIFT descriptor is
demonstrated to be better than many alternatives [1]. Hence, as
a second contribution of this paper, we aim to extent this descrip-
tor to colour, and we will evaluate its performance with respect to
photometric variation and discriminative power.

In this paper, we consider the extension to colour-based
descriptors. colour has high discriminative power; in many cases,
objects can well be recognized merely by their colour characteris-
tics [15–20]. However, photometric invariance is less trivial to
achieve, as the accidental illumination and recording conditions af-
fect the observed colours in a complicated way. Photometric
invariance has been intensively studied for colour features
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[16,17,21–24]. Geusebroek et al. [25] derived a set of colour invari-
ant features based on the Gaussian derivative framework, facili-
tated by Koenderink’s Gaussian colour model. The important
research question is if colour-based descriptors indeed improve
upon their grey-based counterparts in practise. The answer de-
pends on the stability of the non-linear combinations of Gaussian
derivatives necessary to achieve a similar level of invariance as
implemented in grey-value descriptors. For instance, the values
of photometric invariants are distorted when the image is JPEG
compressed, as the compression distorts the pixel values and spa-
tial layout, and more for the colour channels than for the intensity.
Therefore, we aim at a comparative study of local colour descrip-
tors, in comparison to grey-value descriptors.

To be precise on the scope of the paper, there is no need to ad-
dress the issue of (affine) region detection, as many well perform-
ing methods exist [6,26–31]. Hence, we will concentrate on
descriptor performance. Furthermore, to enable a fair comparison
between intensity based descriptors and colour based descriptors,
we demand identical geometric invariance for both intensity based
features and colour based features. This requirement is conve-
niently fulfilled by the Gaussian measurement framework.

For the evaluation of local grey-value and colour invariants, we
adopt the extensive methodology of Mikolajczyk and Schmid [1].
In this paper, the authors propose the evaluation of descriptor per-
formance by the matching of regions from one image to another
image. Correct matches are determined using the homography be-
tween the two images. From [1], we adopt the measures to evalu-
ate discriminative power and invariance. Also, we adopt variety in
recording conditions, being changes of illumination intensity, of
the camera viewpoint, blurring of the image, and JPEG compres-
sion. We go beyond [1] by extending this set with images recorded
under different illumination colours and illumination directions.
These conditions induce a significant variation in the image record-
ing. For an illustration of images recorded under varying illumina-
tion directions, see Fig. 1.

We extend the number of images used in the evaluation frame-
work [1] to 26,000 images, representing 1000 objects recorded un-
der 26 imaging conditions. Moreover, we further decompose the
evaluation framework in [1] to the level of local grey-value invar-
iants on which common region descriptors are based. We measure
the performance of photometric invariants for the detection of col-
our transitions only. Hence, we evaluate the performance of the
Gaussian grey-value and colour invariant derivatives, to indicate
the merit of the invariant when plugged into a region descriptor.
Finally, we establish performance criteria that are specific to colour
invariants, indicating the level of invariance with respect to photo-
metric variation, and evaluating the ability to distinguish between
various photometric effects.

The paper is structured as follows: In Section 2, we shortly over-
view grey-value and photometric invariants and we discuss previ-
ous work on the evaluation of grey-value image invariants, which
we relate to the evaluation of photometric invariants as proposed
in this paper. Section 3 describes the invariant features used in
Fig. 1. Example object recorded under semi-hemispherical illumination, and images reco
right of the object.
our comparison. Section 4 discusses the performance measures
and the datasets, and presents the experimental results. For a real-
istic application of the invariants, we evaluate the performance on
the VOC dataset [32] in Section 5. Conclusions are drawn in
Section 6.

2. Previous work

2.1. Grey-value invariants

Many techniques for the description of images have considered
local features. Methods based on local intensity values in the im-
age, see e.g. [33,34], are successfully applied to image matching.
A considerable step forward was the work by Schmid and Mohr
[12]. They combined Gaussian derivative measurements in a mul-
ti-scale and rotation invariant descriptor. The Gaussian derivatives
were computed at Harris corner points [11], achieving general rec-
ognition under occlusion and clutter. The choice for the Gaussian
filter was fundamental in there method, allowing their descriptor
to capture the local differential structure of the image [35] such
that scale-invariance was achieved.

To identify an appropriate and consistent scale for Gaussian-
based image measurements, Lindeberg [10] determined local max-
ima over scale. This scheme determines the characteristic scale for
the local differential image structure, and has been successfully ap-
plied to detect keypoints [2] and multiscale Harris detectors [6]. To
achieve invariance to affine planar transformations, Lindeberg and
Gårding [27] considered a local affine adaptation. Such an affine
adaptation has recently been incorporated in Harris-affine and
Hessian-affine detectors [6].

The use of the local Gaussian differential structure has received
considerable interest. Gaussian derivative based descriptors have
been proven to be very distinctive for matching, see e.g. [36–38].
Schiele and Crowley [13] modelled differential structure across
an image by accumulating image derivatives into histograms,
effectively capturing texture information. Belongie et al. [39] accu-
mulated image derivatives in a regional grid with multiple bins to
model both shape and location information, resulting in the so-
called shape-context. Varma and Zisserman [40] modelled texture
appearance by accumulation of the Gaussian-based MR8 filter-
bank. Winn et al. [41] are using a Gaussian filterbank for object rec-
ognition by a visual dictionary approach.

The most successful local image descriptor so far is Lowe’s SIFT
descriptor [2]. The SIFT descriptor encodes the distribution of
Gaussian gradients within an image region. The SIFT descriptor is
a 128-bin histogram that summarizes local oriented gradients over
8 orientations and over 16 locations. This represents the spatial
intensity pattern very well, while being robust to small deforma-
tions and localization errors. Nowadays, many modifications and
improvements exist, among others, PCA-SIFT [42], GLOH [1], Fast
approximate SIFT [43], and SURF [44]. These region-based descrip-
tors have achieved a high degree of invariance to overall illumina-
tion conditions for planar surfaces. Although designed to retrieve
rded under an illuminant at decreasing altitude angles. Illuminant azimuth is to the
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identical object patches, SIFT-like features turn out to be quite suc-
cessful in bag-of-feature approaches to general scene and object
categorization, see e.g. [45].

2.2. Photometric invariants

Colour invariants have received extensive theoretical and
experimental treatment, due to the additional discriminative
power that comes with colour information in comparison to
grey-value information. Additionally, colour information enables
one to distinguish between true colour variation and photometric
distortions, as pointed out by Gershon [46]. Indeed, for colour
information to be useful, Slater and Healey [47], Finlayson [22],
and Gevers and Smeulders [17], have all stressed the importance
of achieving invariant colour measurements to varying lighting
conditions such as a change in illumination colour, illumination
direction, or camera viewpoint.

Photometric invariants can be derived from the physical laws
of light reflection. Methods which normalize mean intensity and
standard deviation for grey-value descriptors are assuming Lam-
bert’s law of light reflection, I = ql n. Here, the observed image I
is the result of a multiplicative formation process, for which q
represents the surface albedo, l the light source direction and
intensity, and n the surface normal. Normalization of the (local)
standard deviation removes the contribution of l in the image
descriptor, whereas the mean normalization counteracts the cam-
era sensitivity offset. However, the normalized result still de-
pends on both the surface reflectance q and the geometry of
the surface represented by it’s normal n. Hence, shadow and
shading edges are coded by image descriptors. This very effect
causes nowadays image descriptors to be effective for planar
patches only.

Colour images convey more information about the image for-
mation process, and hence may improve on the features which
can be discriminated. Inspired by the success of colour indexing
[15], Funt and Finlayson [16,22] use the Lambertian assumption
to arrive at photometric invariant indexing of images. Although
the methodology to achieve photometric invariance is essentially
similar to the grey-value case outlined above, they improve in dis-
criminative power by adding the extra colour information avail-
ably from the image. Furthermore, by exploiting the extra
information which comes with colour, they discount the effects
of shadow and shading on their image descriptor. Gevers and
Smeulders [17] elaborate on this work by deriving several sets of
invariants. These sets are invariant under the more complicated
photometric model proposed by Shafer [48]. In this way, they ar-
rive at features invariant for highlights and for coloured illumina-
tion. In consecutive work [49], shadows, highlights, and true colour
boundaries are separated in practise, based on a pixel-wise com-
parison of invariant values.

Geusebroek et al. [25] extended photometric invariance to
Gaussian-based derivatives, facilitated by Koenderink’s Gaussian
framework. Hence, effectively combining photometric colour
invariance with the highly successful Gaussian geometric invari-
ants. The pixel-based invariants can still be represented by consid-
ering the limiting case of the spatial scale for the Gaussian filters
small, such that single pixels are covered. However, tuning the fil-
ters to a larger scale allows for the more interesting class of geo-
metric and photometric invariant features.

Promising recent methods aim at combining colour and shape
description of the local neighbourhood. Mindru et al. [50] have
considered colour moments, which are invariant to illumination
colour. However, in [1], local moments-based descriptors were
found to be relatively unstable. Van de Weijer and Schmid [51]
augmented the SIFT descriptor with a histogram of photometric
invariant values, effectively combining colour and shape informa-
tion. They have shown that adding colour information to the SIFT
descriptor improves its discriminative power. Likewise, Geodeme
et al. [52] have used localized colour moments to reduce a posteri-
ori the mismatches of SIFT descriptors. Other recent approaches
have altered the SIFT descriptor itself. Abdel-Hakim and Farag
[53] have based the SIFT descriptor on the hue gradient rather than
the intensity gradient. Bosch and Zisserman [54] have computed
SIFT from the HSV representation to provide a richer descriptor.
Unfortunately, the improvement in performance for such descrip-
tors is unclear, as no well established evaluation method is avail-
able for colour based descriptors.
2.3. Performance evaluation

For the evaluation of discriminative power of local descriptors,
an extensive evaluation framework has been proposed by Miko-
layzcyk et al. [1,55]. They aimed at evaluating the different stages
of an nowadays object recognition framework, by decomposing the
benchmark in the separate evaluation of keypoint detection and lo-
cal image descriptors. Furthermore, they realized the importance
of evaluating robustness against geometric and photometric dis-
tortions of the target image. They evaluate the discriminative
power and invariance of descriptors over various imaging condi-
tions. Discriminative power for any of the detector–descriptor
combinations is evaluated over: illumination intensity, of the cam-
era viewpoint, blurring of the image, and JPEG compression. Invari-
ance is measured by the performance degradation over
increasingly hard imaging conditions, e.g. increasing JPEG com-
pression rates. Moreels and Perona [56], and Fraundorfer and Bisc-
hof [57] elaborated on this framework by considering descriptor
evaluation for 3D objects.

Van de Sande et al. [58] evaluates colour SIFT descriptors for ob-
ject an scene recognition. Their study provides a theoretical over-
view of photometric invariant properties, and an evaluation of
various colour SIFT descriptor on PASCAL VOC [32] data and TREC-
VID data [59]. However, the authors do not link the theoretical de-
rived invariance properties to relevant experiments. Hence, no
insight is gained in the effectiveness of the various photometric
invariants in discounting imaging effects. Only an overall picture
of classification performance on these specific datasets is provided.
We improve on this work by demonstrating both theoretically and
experimentally the merit of photometric invariance in SIFT
descriptors. We further break down the performance to the low-le-
vel (Gaussian) filtering and the higher-level (SIFT) feature
extraction.
2.4. The contribution of this paper

With the increasing interest in distinctive and robust local fea-
tures, we propose in this paper a benchmark for the evaluation of
local colour invariants. The contribution of this paper is threefold:

� We establish a framework for the evaluation of colour image
descriptors, including a suitable dataset and three measures of
performance: discriminative power, constancy under irrelevant
image distortions or imaging conditions, and the ability to dis-
tinguish true (object) variation from irrelevant (photometric)
variation.

� We include colour information in SIFT descriptors, and propose
three colour SIFT methods each having different characteristics
with respect to photometric variation.

� We evaluate the performance of these descriptors together with
the performance of the Gaussian colour invariants on which
they are based. We compare with alternative colour SIFT imple-
mentations from literature.
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Regarding the first contribution, we adopt the setup from [1,55]
to evaluate descriptor performance over increasingly hard imaging
conditions. We consider the ALOI database [60] to match regions
that are computed from 26,000 images of 1000 objects in total.
Ground truth is obtained by manual selection of stable Harris-af-
fine regions inside the objects. The dataset contains both image
transformations as well as photometric variation in imaging condi-
tions, and is considered more suitable for evaluation of colour
descriptors than the original database proposed by Mikolayzcyk
et al. [1,55] or the one proposed by Moreels and Perona [56]. For
example, the database contains six different lighting conditions
and, very important for assessing colour descriptors, variation in
illumination colour. Hence, allowing the assessment of colour con-
stancy for colour image descriptors.

With respect to our second contribution, we will include the
Gaussian colour invariant gradients proposed in [25] into the SIFT
descriptor [2]. We will evaluate their performance with respect
their grey-value counterparts, and with respect to colour SIFT
descriptors from literature [53,54].

Finally, our third contribution further decomposes the evalua-
tion framework proposed in [1,55]. Mikolayzcyk et al. evaluate dis-
criminative power and invariance of region descriptors. SIFT-based
descriptors consist of a set of Gaussian derivative image measure-
ments and a well-designed histogram description thereof. The per-
formance of the Gaussian filter and the non-linear combinations to
obtain geometric invariance are well known and taken for granted.
However, for photometric invariance, non-linear combinations
may significantly alter its performance. Hence, we decompose
the benchmark proposed by Mikolayzcyk et al. further in order to
address this issue separately. We abstract from the descriptors
here, and evaluate the underlying, local invariants only. The dis-
criminative power and invariance will be established for local
grey-value invariants, and for the Gaussian colour invariants of
[25]. Furthermore, following [49], we will assess the power of an
invariant to distinguish object colour variation from photometric
variation.
3. Invariants

We will evaluate the performance of Gaussian-based invariant
features. For completeness, and to introduce notation, we shortly
rehearse grey-value differential invariants and colour invariants
in this section.

3.1. Grey-value invariants

We denote a grey-value image E(x,y), with a scalar value at pixel
location (x,y). The filtering of a grey-value image by an (isotropic)
Gaussian Gr(x,y) at scale r is given by (leaving out pixel position
parameters): Êr ¼ E � Gr, where * is the convolution operator. The
notational use of the hat symbol (̂�) implies dependence on the scale
parameterr, hence we leave the scale parameter out in the following
and simply use �̂. More generally, we consider the filtering of an im-
age E(x,y) by a Gaussian filter G and its x- and y-derivatives,

Êj ¼ E � Gj; ð1Þ

where subscript j 2 {;,x,y} indicates either smoothing or spatial
differentiation.

The gradient is a rotation invariant derivative measurement, gi-
ven by

Êw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2

x þ Ê2
y

q
: ð2Þ

Normalizing each gradient value by the local intensity suppresses
regional intensity variations [25],
cW w ¼
Êw

Ê
: ð3Þ
3.2. Colour invariants

We consider the colour-based photometric invariants from [25],
which are derived from the Gaussian opponent colour model. First,
we recap this colour model. Three opponent colours are obtained
per pixel: E(x,y), Ek(x,y) and Ekk(x,y), representing ,respectively, the
intensity, the yellow–blue channel, and the red–green channel.
Here, we consider the Gaussian opponent colour model, which is
computed from RGB values directly by the linear transformation
[25]:

bEðx; yÞbEkðx; yÞbEkkðx; yÞ

2
664

3
775 ¼

0:06 0:63 0:27
0:30 0:04 �0:35
0:34 �0:60 0:17

0
B@

1
CA Rðx; yÞ

Gðx; yÞ
Bðx; yÞ

2
64

3
75 ; ð4Þ

where bE, bEk and bEkk denote the intensity, blue–yellow and green–
red channel. The transformation effectuates the decorrelation of
RGB values.

Gaussian (derivative) filtering and construction of the gradient
for each opponent colour channel is similar to the grey-value case.
The colour-based counterpart of Eq. (2) becomes

bEkiw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibE2

kix
þ bE2

kiy

r
: ð5Þ

Likewise, the colour invariants cW kw and cW kkw are a generalization
of the grey-value invariant cW w from Eq. (3),

cW kiw ¼
bEkiwbE : ð6Þ

Note that for i = 0 in ki, the results for Eqs. (5) and (6) indeed is ex-
actly the grey-value invariants bEw and cW w (Eqs. 5 and 6) by the very
construction of the opponent colour space: the first channel (i = 0) is

the intensity channel. The photometric invariants cW w, cW kw andcW kkw are invariant to regional variations of the intensity.
Likewise, other photometric invariants can be constructed. The

invariants cW kix compute first the gradient and normalize it by the
local intensity later. Alternatively, the intensity normalized colour

values
bEkðx;yÞbEðx;yÞ and

bEkkðx;yÞbEðx;yÞ can be differentiated with respect to x or y,

which, using the chain rule for differentiation, yields

bC kj ¼
bEkj
bE � bEk

bEjbE2
; ð7Þ

bC kkj ¼
bEkkj
bE � bEkk

bEjbE2
; ð8Þ

where subscript j 2 {x,y} indicates spatial differentiation. Under
Lambertian reflection, the normalization of colour values by the lo-
cal intensity results in colour values independent of the intensity
distribution. Hence, bC kj and bC kkj and their derivatives are invariant
to shadow and shading. The shadow and shading invariant gradi-

ents are obtained from bC kw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibC2

kx þ bC2
kyÞ

q
and bC kkw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibC2
kkx þ bC2

kky

q
.

A next step is to include the Fresnel reflectance, hence addition-

ally modelling highlights. In this case, the local colour ratio,
bEkðx;yÞbEkkðx;yÞ

,

is invariant to the intensity distribution and the Fresnel coefficient
(see [25] for details). Invariance to the Fresnel coefficient implies
invariance to highlights in the image. Again applying the chain rule
to obtain spatial derivatives yields



Fig. 2. Randomly selected objects from the ALOI collection are depicted in (a). Imaging conditions are shown in (b), respectively: the reference image, blurring (r = 2.8 pixels,
image size 192 � 144), JPEG compression (50%), illumination direction change (to 30� altitude, from the right), viewpoint change (30�), illumination colour change
(3075 K ? 2175 K).
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bHj ¼
bEkk
bEkj � bEk

bEkkjbE2
k þ bE2

kk

; ð9Þ

where subscript j 2 {x,y} indicates spatial differentiation. This yields

the gradient bHw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibH2

x þ bH2
y

q
, which is invariant to shadow, shading

and highlights.
To illustrate the gradient measurements by the photometric

invariants, we combine the invariants in each of the sets
fcW w;cW kw;cW kkwg and fbC kw; bC kwg to obtain a single value per pixel
(bHw already yields a single value per pixel). The combined edge
strength is measured by root of the squared sum. For W we com-

pute Ww ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficW 2

w þcW 2
kw þcW 2

kkw

q
, whereas for C we have

Cw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibC2

kw þ bC2
kkw

q
. Furthermore, we define Ew as the non-normal-

ized combined edge strength over all colour channels, that is, sim-
ilar to Ww but without the local intensity normalization. The total
Fig. 3. Photometric invariant gradients. Ew is not photometric invariant, Ww is invariant
shadow, shading and highlights.
edge strengths Ew, Ww, Cw, Hw � bHw, each illustrating one set of
photometric invariants, are depicted in Fig. 3. Note that the shad-
ing is removed by Cw (d), and that the non-saturated highlights
are removed by Hw (e).
4. Performance evaluation

We compare the local grey-value and colour invariants based on
three evaluation criteria:

� Discriminative power. We establish the power of each invariant to
discriminate between image regions. Discriminative power is
measured by the quality of region matching, similar to [1]. The
successful matching strategy as proposed by Lowe [2], is based
on the rationale that for the recognition of an object, it suffices
to correctly match only a few regions of that object. In our exper-
to illumination intensity, Cw is invariant to shadow and shading, Hw is invariant to
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Fig. 4. (a) Image regions for, respectively: the reference image, blurring, JPEG compression, illumination colour change, illumination direction change, and viewpoint change.
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1 software available at: http://www.science.uva.nl/~mark
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imental framework, we push this to the extreme, and consider the
matching of one region of an object against a database of 1000
regions: one noisy realization of the same object matched against
999 of other objects. Under noisy conditions we consider
image deformations caused by blurring, JPEG compression and
out-of-plane object rotation (viewpoint change), and photometric
variation induced by changes in illumination direction and
illumination colour. Precision and recall characteristics reflect
the discriminative power of the invariant under evaluation.

� Invariance or robustness. As above, but now we establish the deg-
radation of the number of correct matches as function of an imag-
ing condition or image transformation which increasingly
deteriorates, similar to [55]. As with discriminative power, the con-
ditions we test are blurring, JPEG compression, illumination direc-
tion, viewpoint change, illumination colour. The degradation in the
recall reflects the constancy of the invariant under examination.

� Information content. We establish the power of each invariant to
discriminate between true colour transitions while remaining
constant under non-object related transitions induced by sha-
dow, shading, and highlights. Hence, we assess simultaneously
for each invariant its power to discriminate between colour
transitions, and its invariance to photometric distortions. Note
that this is different from the two experiments above, as here
we evaluate the property to discriminate between the variant
and invariant aspects in the photometric condition, in isolation
of a possible effect on recognition performance.

4.1. Experimental setup

We consider for 1000 objects from the ALOI database [25], the fol-
lowing imaging conditions: JPEG compression, blurring, and
changes of the viewpoint, illumination direction and illumination
colour. Fig. 2 illustrates the imaging conditions for some of the
objects.

For each object image, we determine its regions. To be consis-
tent with literature, we determine Harris-affine regions [6]. As
pointed out in [1], to establish the correct matching of regions,
one should either fix the camera viewpoint, or one should con-
sider the homography limiting oneself to more or less flat scenes.
For 3D objects, the assertion of a flat scene fails. To overcome
this problem, we consider images that have been recorded with
fixed camera viewpoint. However, the condition of viewpoint
change has to be settled. Therefore, for each object, we manually
selected the single region inside the object which is most consis-
tent between the original and the image recorded under a view-
point change. We copied the region from the original to all
remaining imaging conditions, see Fig. 4 for an example. Note
that, as we are dealing with regions inside objects only, the black
background does not affect the experiments. Furthermore, trying
to find one region from the 1000 selected regions could be seen
as searching the one region in an image of 1000 cluttered ob-
jects, for which all selected regions are visible. Together with
the variation in image transformations and imaging conditions,
a total of 26,000 regions are available. The regions vary signifi-
cantly in size and anisotropy, see Fig. 4a and b, respectively.
The ground truth of regions is publicly available on the website
of the ALOI database [61].

Next, we compute the invariants from each region. To be consis-
tent with literature, we normalize the regions as in [6]. We con-
sider two experiments:

� Single location computation. In the first experiment, we com-
pute the invariant gradients from one location. We do so by
computing them at a fixed scale (i.e. one third of the region size).
For each region, we determine the location in which the image
gradient Ew is maximum. For all copied regions (see for region
extraction the description above), this location is identical. From
this location, we compute all invariants.

� SIFT-based computation. In the second experiment, we compute
the SIFT descriptor from the normalized region identical to
Mikolayzcyk’s computation [1], but with the grey-value gradient
inside the SIFT descriptor replaced by one of the invariant colour
gradients. 1

http://www.science.uva.nl/~mark


Table 1
Grey-value and colour invariants

Invariant Gradients Property Eq. Colour-SIFT name

E-grey {Ew} Not photometric invariant (2) —
E-colour {Ew,Ekw,Ekkw} Not photometric invariant (5) —
W-grey {Ww} Invariant to local intensity level (3) (W-colour-) SIFT
W-colour {Ww,Wkw,Wkkw} Invariant to local intensity level (6) W-colour- SIFT

C-colour {Ww,Ckw,Ckkw} Invariant to local intensity level, plus invariant to shadow and shading (7) C-colour- SIFT

H-colour {Ww,Hw} Invariant to local intensity level, plus invariant to shadow and shading, and highlights (9) H-colour- SIFT

Grey-value and colour invariants used in the experiments.
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For the performance evaluation, we consider the following sets
of invariant gradients, see Table 1. The appendix -SIFT implicates
SIFT-based computation, otherwise single location Gaussian invar-
iants are considered. Original SIFT is also included in the experi-
ments and is equivalent to W-grey-SIFT. To ensure results
improve in discriminative power with respect to intensity based
descriptors—one of our goals in adding colour information—we in-
clude the intensity gradient Ww in the H and C colour based
descriptors. Although this seems contradictory at first sight, the
orthogonalization of intensity and intensity-normalized colour
information proofs effective in matching.

For fair comparison to the original SIFT descriptor, we reduce
the dimensionality of all colour SIFT descriptors to 128 numbers
using PCA reduction (the covariances have been determined over
200 example regions computed from the reference images). Fur-
thermore, we will evaluate the hue-based SIFT descriptor of Ab-
del-Hakim and Farag [53], termed hue-colour-SIFT, and the
HSV-based SIFT descriptor of Bosch and Zisserman [54], termed
hsv-colour-SIFT.

4.2. Discriminative power

The objective of this experiment is to establish the distinctive-
ness of the invariants. To that end, we match image regions com-
puted from a distorted image to regions computed from the
reference images as in [1]. The discriminative power is measured
by determining the recall of the regions that are to be matched,
and the precision of the matches:

recall ¼ #correct matches
#correspondences

; ð10Þ

precision ¼ #correct matches
#correct matchesþ#false matches

: ð11Þ

Here, recall indicates the number of correctly matched regions rel-
ative to the ground truth of corresponding regions in the dataset.
Precision indicates the relative amount of correct matches in all
the returned matches. The definition of recall is specific to the prob-
lem of matching based on a ground truth of one-to-one correspon-
dences, hence it deviates from the definition as used in information
retrieval. The aim in our experiment is to match correctly all regions
(recall of one) with ideally no mismatches (precision of one).

We consider the nearest-neighbour matching as employed in
[1]. Distances between values of photometric invariants are com-
puted from the Mahalanobis distance (the covariances have been
determined over 200 examples computed from reference images).
Over various thresholds, the number of correct and false matches
are evaluated to obtain a recall vs. precision curve. A good descrip-
tor would produce a small decay in this curve, reflecting the main-
tenance of a high precision while matching more image regions.

We randomly draw a test set of regions and use 1000-fold cross
validation to measure performance over our dataset. However, dis-
criminative power varies between the features. To end up with
graphs which allow a comparison between various levels of colour
invariance, we vary the number of regions to match per experi-
ment. The number of regions to which a single region is compared
is set to 20 for the invariants computed from one location. We con-
sider a successful distinction between 20 image points to be the
minimal requirement of a point-based descriptor. For the SIFT-
based computation of invariants, we increase this number, as the
region-based description is more distinctive. The number of re-
gions to which one region is compared is between 100 or 500,
depending on the hardness of the imaging condition. We consider
a successful distinction between 100 regions to be the minimal
requirement of a region-based descriptor. We consider a successful
distinction between 500 regions to be sufficient for realistic com-
puter vision tasks, this is in line with validation in [1,55].

4.2.1. Experimental results: discriminative power
The results of the region matching for invariant gradients are

shown in Fig. 5. The organization of all figures is as follows, see
also the legends. All photometric invariants are plotted using so-
lid lines. All colour-based invariants are plotted using red lines,
opposed to grey-value invariants which are plotted in black
lines.

Overall, the performance of H-colour is disappointing and
apparently lacks discriminative power. Two effects play a role. First,
this descriptor misses one colour channel of information, and better
discriminative power could be achieved when adding a saturation
channel. However, in that case one would, at best, expect a perfor-
mance similar toW-colour. We will see a comparison later on when
establishing performance for the colour SIFT descriptors. A second
effect is the instabilities caused by the normalization in the denom-
inator of Eq. (9). The expression becomes unstable for colours which
are unsaturated, hence being greyish. Blurring by the Gaussian filter
enhances this effect, as colour at boundaries—which we are evaluat-
ing in this setup—are mixed. Hence, H-colour seems unsuitable for
region descriptors based on Gaussian derivatives.

Furthermore, grey-value derivatives E-grey and W-grey are
outperformed by colour based descriptors, except when illumina-
tion colour is changed (Fig. 5e). In that case, normalized intensity
W-grey performs reasonable, but is still outperformed by many
colour based invariants.

In detail, the effect of blurring, shown in Fig. 5a, causes the im-
age values to be smoothed. Hence, details are lost, but no photo-
metric variation is introduced. The colour gradient with no
photometric invariant properties, E-colour, performs best. Be-
sides the decay in performance due to additional blur, the graph
clearly illustrates the gain in discriminative power when using col-
our information.

The compression of images by JPEG, shown in Fig. 5b, causes the
colour values to be distorted more than the intensity channel. Still,
colour information is distinctive, as the colour gradient that is
invariant to the intensity level, W-colour, performs best. At the
beginning of the recall–precision curves, one clearly sees the
advantage of orthogonalizing intensity and colour information, as
W-colour, C-colour, and H-colour perform significantly better
than E-colour, for which all channels are correlated with inten-
sity. In the latter case, all values of the SIFT descriptor will be
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Fig. 5. Discriminative power of photometric invariant gradients.
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severely corrupted by the JPEG compression. For the invariant col-
our descriptors, the intensity channel will be relatively mildly cor-
rupted by the compression, whereas the colour channels still add
extra discriminative power. Compression effects become more
influential at the tail of the recall-precision curves, where one sees
H-colour to drop off quit early due to instability of the descriptor,
followed by C-colour. Although W-colour had a slower start, it
ends up doing quite well due to the more stable calculation of
the non-linear derivative combination.
For changes of the illumination direction, Fig. 5c, the main
imaging effects are darker and lighter image patches, and shadow
and shading changes. However, for the small scale at which we
measure the Gaussian derivative descriptors, we expect intensity
changes to dominate over shadow and shading edges. Shadow
and shading (geometry) edges are expected to become more
important when assessing SIFT based descriptors, which capture
information over a much larger region. Hence, both colour
gradients that are invariant to intensity changes, W-colour and
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C-colour, are performing well. Clearly, the colour invariant
descriptors outperform grey-value descriptors and non-invariant
colour descriptors.

The results of a change in viewpoint, Fig. 5d, clearly demon-
strate the advantage of adding colour information. The patches,
manually indicated to be stable, merely contain a change in
information content due to an projective transformation and small
errors in the affine region detection. Furthermore, the light field
will be distributed somewhat different over the image, causing
W-colour and C-colour to perform superior over grey-value
descriptors, non-invariant colour descriptors, and the H-colour

descriptor.
For varying illumination colour, Fig. 5e, obviously the colour

values become distorted. The colour gradient invariant to shadow,
C-colour, shows to be very robust here. Although C-colour is
based on colour, its gradients are computed in such a way that
can be shown to be reasonably colour constant [25]. Furthermore,
one would expect the grey-value descriptors not to be affected by
illumination colour changes. However, a change in overall inten-
sity is also present, making direct use of E-grey infeasible. The
intensity normalized invariant W-grey performs reasonable, but
lacks the discriminative power which comes with the use of
colour.

4.2.2. Experimental results: discriminative power for colour-SIFT
descriptors

Fig. 6 shows the discriminative power of the invariants when
they are plugged into the SIFT descriptor. The figure has an iden-
tical organization as Fig. 5. The only exception in the experimen-
tal setup is that the number of regions, to which a single region is
matched, is increased. This number varies over the imaging con-
ditions, and is either 100 or 500, to obtain suitable resolution in
the performance graphs. Furthermore, note that two extra meth-
ods from literature have been added, being the hue-colour-

SIFT descriptor [53], and the hsv-colour-SIFT descriptor [54].
Overall, the relative performance of SIFT-based computation of

invariants corresponds largely to relative performance of invari-
ants from single points. Colour-based SIFT invariant to shadow
and shading effects, C-colour-SIFT, performs best.

Generally, the SIFT-based computation improves significantly
the discriminative power compared to single-point computation.
Almost all colour and grey-value descriptors perform well under
blurring (Fig. 6a), JPEG compression (Fig. 6b), and illumination col-
our changes (Fig. 6e). Note that the C-colour-SIFT descriptor
performs equally well as the intensity based SIFT descriptor in
the last case, implying a high degree of colour constancy for this
descriptor.

Discriminative power drops when considering illumination
direction or viewpoint changes, see Fig. 6a and b. These cases are
much harder to distinguish using a SIFT descriptor. In these cases,
the grey-value based SIFT is outperformed by the colour-based
SIFT descriptors. In particular, the colour-based SIFT invariant to
shadow and shading effects, C-colour-SIFT, is very discrimina-
tive in these cases. This can be explained by the large spatial area
over which the SIFT descriptor captures image structure. Hence,
shadow and shading (object geometry) effects are more likely to
be captured by the SIFT descriptor, but the effects being cancelled
by the C invariant.

The shadow and highlight invariant H-colour-SIFT is gener-
ally not very distinctive compared to W-colour-SIFT and C-col-

our-SIFT. Lack of discriminative power affects the performance
for hue-colour-SIFT, H-colour-SIFT, and SIFT under blur-
ring. Furthermore, the hue-based descriptors hue-colour-SIFT

and H-colour-SIFT are affected by JPEG compression, and by
illumination colour changes. The distinctiveness of hue-colour-
SIFT is generally much less than of H-colour-SIFT. Hence, using
the hue alone is not a distinctive region property. The distinctive-
ness of hsv-colour-SIFT is generally somewhat higher than of
H-colour-SIFT. Thus, the saturation s in the hsv colour space is
a distinctive property. But, the distinctiveness of hsv-colour-

SIFT is generally less than of W-colour-SIFT and C-colour-

SIFT, due to instability as argued before.

4.3. Invariance

The objective of this experiment is to establish the constancy of
the invariants against varying imaging conditions. Likewise [55],
we measure the degradation of recall (Eq. (11)) over increasingly
hard imaging conditions. The experimental setup is identical to
the previous experiment. The aim in this experiment is to mini-
mize the degradation over more distorted images.

4.3.1. Experimental results: invariance
The results of the region matching over increasingly hard imaging

conditions is shown in Fig. 7. The organization of the figure is identi-
cal to Figs. 5 and 6. The present graphs are orthogonal to Figs. 5 and 6,
in that now the amount of degradation is varied, at a fixed recall
which corresponds to the end-point of the curves in Figs. 5 and 6.
Any decline in performance indicates lack of constancy with respect
to the tested condition. Ideally, the decline would be zero (horizontal
line), indicating perfect invariance to the set of imaging conditions.

For image blurring, Fig. 7a, no significant imaging effects are ob-
served. Hence, all descriptors have equal performance with respect
to constancy, although initial discriminative power varies from a
recall of 0.2 for grey-value derivatives to more than 0.7 for colour
based derivatives. For JPEG compression, Fig. 7b, the grey-value
invariants I-grey and W-grey are slightly more constant than
the colour invariants, as the image intensity is less affected by JPEG
compression than the image chromaticity. For changes in the illu-
mination direction, Fig. 7c, due to the small scale of the derivative
descriptors, the main imaging effect is the change of region inten-
sity. Hence, W-grey, W-colour, C-colour and H-colour are very
stable. For a viewpoint change, Fig. 7d, only marginal imaging ef-
fects are observed. Hence, all measures perform equally well with
respect to constancy. For varying illumination colour (e), besides
the intensity based measures E-grey and W-grey, C-colour is
very invariant. This measure has theoretically been shown to be
reasonably colour constant [25].

4.3.2. Experimental results: invariance for colour-SIFT descriptors
We repeat the invariance experiment but now the invariants

are plugged into the SIFT descriptor. The results are shown in Fig. 8.
Overall, most descriptors are performing well for blurring (Fig.

8a), JPEG compression (Fig. 8b), and illumination colour change
(Fig. 8e). Exceptions again are the hue based descriptors H-col-

our-SIFT and hue-colour-SIFT, which lack discriminative
power, and are more affected by these conditions. A change in illu-
mination direction or viewpoint is much harder for the SIFT
descriptor to deal with, even with colour invariance build in. Over-
all, the C-colour-SIFT seems the best choice, for which shadow
and shading edges are discounted. This descriptor has invariance
comparable to the intensity based SIFT descriptor, but gains con-
siderably in discriminative power.

4.4. Information content

The objective of this final experiment is to establish the infor-
mation content of the photometric invariants. Information content
refers to the ability of an invariant to distinguish between colour
transitions and photometric events such as shadow, shading and
highlights. Ideally, the invariant’s values covaries with colour tran-
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Fig. 6. Discriminative power of photometric invariant gradients, when plugged into the SIFT descriptor.
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sitions and it’s value is constant to photometric events to which it
is designed to be invariant. We illustrate the information content
of W-colour and C-colour, see Fig. 9. For the first object, new
image edges are introduced by changing the illumination direction
in Fig. 9b and c. Hence, the matching is better with the shadow and
shading invariant descriptor C-colour-SIFT. Fig. 9e and f show
an example where no shadow/shading invariance performs better.
Here, no new edges are introduced by the change in illumination
direction, and only the local intensity is affected due to relatively
large-scale shading effects.
To establish the information content, we measure the discrimi-
native power and invariance over individual image regions. Each
image region is labelled whether it contains a colour transition,
or a shadow, shading or highlight transition. In this way, the infor-
mation content evaluates the invariant’s discriminative power and
invariance over various photometric events. To that end, we con-
struct a large annotated dataset. This dataset contains tens of
images with in the order of hundreds of labelled image points lo-
cated at the various photometric events. The images are selected
from the CURET dataset [62]. The selected texture images contain
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Fig. 7. Invariance of photometric invariant gradients over increasingly hard imaging conditions.
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many edges, where we annotated for each image whether the tex-
ture was generated mainly by either shadow/shading (sponge,
cracker b, lambswool, quarry tile, wood b, and rabbit fur) or high-
light effects (aluminium foil, rug a, and styrofoam). From these
images, regions have been detected by applying a Harris corner
detector [11]. Fig 10a and b illustrate, for two fragments of texture
images, shadow/shading and highlight edges, respectively. In addi-
tion, we have collected image points located at colour transitions.
To that end, images have been taken from PANTONE colour patches
[63], see Fig. 10c for an illustration. From the PANTONE patch com-
binations, we have selected the 100 combinations that have the
largest hue difference, hence selecting patches which reflect true
changes in object colour rather than intensity or saturation
differences.
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Fig. 8. Invariance of photometric invariant gradients over increasingly hard imaging conditions, when plugged into the SIFT descriptor.
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We measure an invariant’s power to distinguish between colour
transitions and disturbing photometric events by the Fisher crite-
rion. From many colour transitions, we compute a first cloud of
points; from transitions of a particular disturbing photometric
event, we compute a second point cloud. The Fisher criterion ex-
presses the separation between the two clouds of points, termed
{x1} and {x2}, respectively:
information ¼ jlðfx1gÞ � lðfx2gÞj2

r2ðfx1gÞ þ r2ðfx2gÞ
: ð12Þ
4.4.1. Experimental results: information content
The values of photometric invariants to various photometric

events are shown in Fig. 11. The plots show values relative to the



Fig. 9. Illustration of matching for two objects. One is better matched with C-colour-SIFT, the other with W-colour-SIFT, respectively. Correct matches are shown in
yellow, false matches are shown in blue.

Fig. 10. Examples of the photometric events dataset. Detected points are given a label whether the point is located on a (a) shadow/shading edge, (b) highlight edge, or (c)
colour edge.
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Fig. 11. Scatter plots of invariant values to photometric events. The figures depict (a) Cw vs. Ww and (b) Hw vs. Ww . All invariants are sensitive to colour edges. Cw and Hw are
invariant to shadow and shading, where Hw is additionally invariant to highlights. The horizontal lines describe a 90% interval of the invariant values. This gives an indication
of the invariant’s ability to distinguish between values to colour edges and to disturbing photometric events.
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total colour edge strength Ww. We do so, to express simultaneously
the power of Ww and of the shadow and shading invariants Cw and
Hw to distinguish between photometric events and true colour
edges. As expected, the values of the invariants Cw and Hw are close
to zero for shadow/shading edges (note that values of the reference
invariant Ww are indeed significant to shadow/shading edges). For
shadow/shading disturbances, we obtain informationðCwÞ ¼ 2:6,
and informationðHwÞ ¼ 4:9. Thus, the invariant Hw separates sha-
dow/shading from object transitions much better than Cw. Further-
more, the value of Hw is also low for highlights, see Fig. 11b.
However, as expected, not all of the values are close to zero due
to pixel saturations at highlights. As a result, the invariance and
the information content of Hw are somewhat lower for highlight
disturbances than for shadow/shading disturbances,
informationðHwÞ ¼ 2:9.

Overall, the photometric invariant H-colour is more constant
to shadow and shading than C-colour. Both perform well when
separating colour transitions from shadow and shading transitions.
The separation of colour transitions and highlights by H-colour is
harder due to saturated highlights. As a consequence, most of the
highlights are separated well, but some highlights are misclassified
as colour transitions.
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5. Evaluation on the PASCAL-VOC 2006 dataset

In this final experiment, we evaluate the performance of the
colour-SIFT descriptors on the VOC dataset [32] containing 10 cat-
egories of natural and man-made objects in realistic settings. As an
experimental framework, we consider the bag-of-feature ap-
proach, see e.g. [45]. We outline the approach shortly. Images are
encoded by vector quantizing the appearance space by mapping
descriptor vectors obtained from the image onto a codebook. The
codebook contains descriptor vectors that are representative of
the dataset. A common scheme is to construct the codebook by
storing the cluster centres obtained from k-means clustering
[5,64]. We create codebook representations according to the meth-
od of Perronnin et al. [65]. They have proposed a distinctive histo-
gram representation that is tuned to the categories to be classified.
The codebook is constructed by clustering 50,000 descriptor vec-
tors into 256 cluster centres.

It is important to notice that we deviate from [65] only in that
we do not obtain cluster centres from Gaussian-mixture modelling,
but from k-means. We do so for reason of speed, and also to pre-
vent reduction of the dimensionality of the descriptors to 50 as
done in [65]. As a consequence of the different clustering, a lower
performance is achieved with our implementation than reported in
[32]. Even though the performance may be less, our main point
here is a relative performance of the grey and colour-based SIFT
descriptors.

The VOC dataset consists of a training, validation and testing
set. We prefer the k-nearest neighbour classifier as it performs best
(tested among the linear SVM, nearest mean, Fisher and logistic
regression classifiers). Optimal k is determined from performance
on the validation set. The performance for the SIFT and C-col-

our-SIFT descriptors is determined from the test set. The objec-
tive is to compare qualitatively the performance of the SIFT and
C-colour-SIFT descriptors within a successful bag-of-feature
approach.

The performance of the SIFT and C-colour-SIFT descriptors
for codebook-based classification is depicted in Fig. 12. As a classi-
fication performance measure, we consider the area under the
curve (auc). For the cat, car and horse categories, the classification
accuracy of SIFT and C-colour-SIFT is similar, while for one
category (cows) the performance of C-colour-SIFT is somewhat
less than of SIFT (3%). For the other categories, C-colour-SIFT
classifies the images significantly better than does SIFT, up to
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Fig. 12. VOC classification results obtained with gray (SIFT) and colour-SIFT
(C-colour-SIFT) descriptors.
approximately 10% improvement for the bike, bus and sheep
categories.

The colour SIFT methods, like original SIFT, are based on edge
detection, in this case, chromatic edge detection. Hence, the colour
itself does not play a significant role, only colour contrast is what is
emphasized. The improved results are due to a better discrimina-
tion between coloured patches, and to the increased invariance
to shading and shadow effects. The results on this dataset are in
agreement with the recent alternative study by Van de Sande et
al. [58]. We conclude that for this realistic categorization task,
the C-colour-SIFT descriptor is the preferred choice over the
traditional SIFT descriptor.

6. Conclusions

In this paper, we have presented an experimental evaluation of
local colour invariants in the presence of realistic geometric trans-
formations and photometric changes. The goal was to compare lo-
cal invariants computed on regions from 3D objects. The
evaluation was designed to assess performance of local invariants,
which can be directly plugged into many of the descriptors that are
available from literature. The setup is to evaluate of each invariant
its distinctiveness, invariance, and information content. The evalu-
ation protocol, together with test data and ground-truth, is avail-
able from the internet, allowing evaluation and comparison of
future colour descriptors.

We have considered the grey-value based gradient I-grey. The
grey-value photometric invariant W-grey is derived from I-grey

by locally normalizing it by the image intensity. We have consid-
ered their extensions to colour, yielding I-colour and W-colour.
Further, we have taken into account more advanced photometric
invariants, being the shadow and shading invariant C-colour,
and the shadow, shading and highlight invariant H-colour.

Our experimental evaluation showed the most distinctive col-
our invariant to be C-colour, which is designed to be constant
to changes in illumination conditions, and to the geometry of the
object. That is, shadow and shading effects are ignored. Further-
more, the invariant is reasonably colour constant. Our experiments
showed the descriptor to outperform alternatives with respect to
discriminative power, while being more constant to illumination
direction, viewpoint, and illumination colour changes. Hence, the
C-colour based invariant is applicable in many computer vision
tasks.

We have plugged the local invariants into the SIFT descriptor.
Our experiments showed the C-colour-SIFT based descriptor
to outperform the traditional intensity based SIFT, due to it’s signif-
icant increase in discriminative power, while being equally con-
stant to the tested conditions as traditional SIFT. Furthermore, C-
colour-SIFT outperforms hue-based SIFT [53] and HSV-based
SIFT [54] proposed in literature. The usefulness of C-colour-SIFT
for realistic computer vision applications is illustrated for the clas-
sification of object categories from the VOC challenge [32], for
which a significant improvement is reported.
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