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ABSTRACT
Concept classification is important to access visual information on
the level of objects and scene types. So far, intensity-based features
have been widely used. To increase discriminative power, color
features have been proposed only recently. As many features exist,
a structured overview is required of color features in the context of
concept classification.

Therefore, this paper studies 1. the invariance properties and
2. the distinctiveness of color features in a structured way. The
invariance properties of color features with respect to photometric
changes are summarized. The distinctiveness of color features is
assessed experimentally using an image and a video benchmark:
the PASCAL VOC Challenge 2007 and the Mediamill Challenge.

Because color features cannot be studied independently from the
points at which they are extracted, different point sampling strate-
gies based on Harris-Laplace salient points, dense sampling and the
spatial pyramid are also studied.

From the experimental results, it can be derived that invariance
to light intensity changes and light color changes affects concept
classification. The results reveal further that the usefulness of in-
variance is concept-specific.

Categories and Subject Descriptors
I.4.7 [Image Processing and Computer Vision]: Feature Mea-
surement; H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Performance, Measurement

Keywords
Color, Invariance, Concept Classification, Object and Video Re-
trieval, Bag-of-Features, Spatial Pyramid
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1. INTRODUCTION
Image concept classification is important to access visual infor-

mation on the level of objects (buildings, cars, etc.) and scene
types (outdoor, vegetation, etc.). In general, systems in both im-
age retrieval [12, 17, 30] and video retrieval [3, 9, 24, 28] use
machine learning based on image descriptions to distinguish ob-
ject and scene concepts. However, there can be large variations in
lighting and viewing conditions for real-world scenes, complicat-
ing the description of images. A change in viewpoint will yield
shape variations such as the orientation and scale of the object in
the image plane. Therefore, effective visual classification methods
should be invariant to accidental recording circumstances.

Among all invariant feature extraction methods on offer, the one
based on salient point detection has gained widespread acceptance
in both the computer vision and video retrieval community [9, 28,
30]. Salient point detection methods and corresponding region de-
scriptors can robustly detect regions which are translation-, rotation-
and scale-invariant. Hereby addressing the problem of viewpoint
changes [15, 19]. However, changes in the illumination of a scene
can greatly affect the performance of object recognition if the de-
scriptors used are not robust to these changes. To increase illumina-
tion invariance and discriminative power, color features have been
proposed [1, 7, 20, 27]. However, as there are many different color
models, a comparison is required based on their illumination invari-
ance properties and their distinctiveness in the context of concept
classification.

Because color features are often computed around specific salient
points, they cannot be evaluated independently of the point sam-
pling strategy used. The sampling strategy can have a profound
effect on 1. the discriminative power and 2. the computational
efficiency of color features. A salient point detector is more ef-
ficient than a set of points densely sampled over the image grid,
but has less discriminative power. Similarly, the extension of point
sampling to multiple image areas, the spatial pyramid [12], adds
discriminative power, at the expense of additional computational
effort.

This paper compares 1. the invariance properties and 2. the dis-
tinctiveness of color features in a structured way. The invariance
properties of color features with respect to photometric changes are
summarized. The distinctiveness of color features is analyzed ex-
perimentally using two representative and widely-adopted bench-
marks from the image domain and the video domain. The bench-
marks are very different in nature: the image benchmark PASCAL
VOC Challenge 2007 [4] consists of photographs and the Medi-
amill Challenge [25] consists of news broadcast videos.

This paper is organized as follows. In section 2, the relation of
this paper with other work is discussed. In section 3, an overview is
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Figure 1: Overview of concept classification using the codebook model. In the first stage, points are sampled in the image, using
either Harris-Laplace or dense sampling. In the color feature extraction stage, color features are extracted around every sampled
point. Next, the color features of an image, the ‘bag-of-features’, are vector-quantized using a codebook. This forms the input to the
SVM classifier, which outputs a concept likelihood score for the image. The spatial pyramid divides the image into 1x1, 2x2, 4x4, etc.
regions. For every region, the color features extracted from that region are vector-quantized. In effect, every image region has its
own bag-of-features. These are then combined at the learning stage. The focus of this paper lies on the point sampling strategy and
the color features.

given of color features and their invariance properties. The experi-
mental setup is presented in section 4. In section 5, a discussion of
the results is given. Finally, in section 6, conclusions are drawn.

2. RELATED WORK
Many current systems for concept classification use the bag-of-

features model as a basic building block. This model vector-quantizes
local features. It is also referred to as ‘textons’ [14], ‘object parts’ [6],
‘visual words’ [23] and ‘codebooks’ [10, 13]. Figure 1 gives an
overview of the components of concept classification based on the
codebook model. The first component is the strategy to sample
points for the local features. Other important components are the
color features which describe the point, the choice of visual code-
book and the machine learning algorithm used.

2.1 Point sampling strategy
Local features are often extracted at either salient points [6, 13,

30] or densely sampled over the image grid [5, 16]. For salient
point extraction, Zhang [30] observes that the Harris-Laplace and
Laplacian detectors are the preferable choice in terms of classifica-
tion accuracy. This detector uses the Harris corner detector to find
potential scale-invariant points. It then selects a subset of these
points for which the Laplacian-of-Gaussians reaches a maximum
over scale. Dense sampling [10] is a uniform sampling over the
image grid with a fixed pixel interval between the points. In the
context of concept classification, a distinction is made between two
classes of concepts: object classification and scene type classifi-
cation. Dense sampling has been shown to be advantageous for
scene type classification, since salient points do not capture the en-
tire appearance of an image. For object classification, salient points
can be advantageous because they ignore homogenous areas in the
image. If the object background is not highly textured, then most
salient points will be located on the object or the object boundary.

In conclusion, to prevent a bias towards concept classes, i.e. ob-
jects or scene type, both salient point sampling and dense sampling
are evaluated to assess concept classification accuracy.

2.2 Color features
For point description, the SIFT feature by Lowe [15] is generally

used because of its good classification accuracy [18, 30]. The SIFT
feature captures the local shape around a point using edge orienta-
tion histograms. However, SIFT operates on intensity information
only, ignoring the color information available. Van de Weijer [27]
and Bosch [1] have recognized this weakness and have proposed
HueSIFT and HSV-SIFT, respectively. Also, there are color his-
tograms in many color models, all with different levels of invari-
ance. In [26], we performed an analysis of the invariance properties
for these and other color features, such as color histograms, color
moment invariants [20] and color extensions of SIFT.

More attention is needed to discuss color features and their in-
variance properties, therefore these will be further covered in sec-
tion 3.

2.3 Codebook-based classification
Codebooks for bag-of-features methods are usually constructed

by clustering the features of points from a set of training images
using a methods such as k-means. Other clustering methods, for
example radius-based clustering [10], are known to improve per-
formance. A more significant aspect of bag-of-features methods,
however, is the codebook size [22]. For example, this was observed
by Jiang [9] in the context of video concept classification.

To improve performance further, Lazebnik [12] proposed the
spatial pyramid, which includes spatial information into the bag-
of-features model. The spatial pyramid divides the image into 1x1,
2x2, 4x4, etc. regions. For every region, the features extracted from
that region are vector-quantized. In effect, every image region is
an image in itself. These are then combined using a weighting
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Figure 2: Concepts of the PASCAL Visual Object Challenge
2007, used in the image benchmark of experiments 1 and 2.
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Figure 3: Concepts of the Mediamill Challenge, used in the
video benchmark of experiment 3. Image based on [25].

scheme which depends on the level in the spatial pyramid. Re-
sults from [12] show that the first division into four image quarters
is most significant w.r.t. performance.

For learning concept classifiers, the Support Vector Machines
(SVM) algorithm is used by all state-of-the-art systems. Variations
in classification accuracy are possible due to the choice of SVM
kernel function. Zhang [30], Wang [28] and Jiang [9] observe that
the χ2 SVM kernel is one of the best kernel functions for concept
classification. Zhang additionally observes that the Earth-Movers
Distance kernel provides similar performance to the χ2 kernel, but
is much more expensive to compute. The χ2 SVM kernel is based
on the χ2 distance between two feature vectors ~F and ~F ′:

d(~F , ~F ′) =
1

2

nX
i=1

( ~Fi − ~F ′i )
2

~Fi + ~F ′i

For notational convenience, 0
0

is assumed to be equal to 0 iff ~Fi =
~F ′i = 0.

In conclusion, in this paper we take the most promising com-
ponents of concept classification based on the codebook model as
starting point: a large codebook in combination with the efficient
χ2 SVM kernel. The effect of extending the bag-of-features model
with a spatial pyramid will be studied in the experiments.

2.4 Evaluation
To evaluate concept classification, there are multiple benchmarks

to chose from. For example, Caltech-256 [8] and the PASCAL
VOC Challenge [4] provide a large set of images with annotated
concepts. The Caltech-256 dataset consists of 30,607 images from
256 different concepts. The PASCAL VOC 2007 dataset consists of
9,963 images from 20 different concepts. However, the advantage
of the PASCAL VOC 2007 dataset is that multiple concepts have
been annotated per image, if they are present. For the Caltech-256
dataset, this is not the case. This paper uses the PASCAL VOC
2007 dataset as an image benchmark. Its concepts are illustrated in
figure 2.

For video, most benchmarks available are based on TRECVID [24]
video data. The Mediamill Challenge [25] provides a baseline
and annotations for 101 concepts. The Columbia374 [29] pro-
vides a baseline for 374 concepts based on LSCOM concept an-
notations [21]. Both are based on the same TRECVID data of news
broadcasts from English, Arabic and Chinese TV channels. How-
ever, the Mediamill Challenge defines a repeatable experiment to
evaluate the performance of visual features only. Therefore, this
paper uses the Mediamill Challenge as a video benchmark. Its con-
cepts are illustrated in figure 3.

Systems with the best performance in image retrieval [17] and
video retrieval [28] use combinations of multiple features for con-
cept classification. The basis for these combinations is formed by
good individual features and multiple point sampling strategies.
Therefore, for a state-of-the-art comparison, color features should
be studied in combination with a good point sampling strategy.

In conclusion, the point sampling strategy and color features will
be evaluated on real-world image and video benchmarks in a state-
of-the-art environment, as shown in figure 1.

3. COLOR FEATURES
In this section, color features are presented and their invariance

properties are summarized. First, color features based on histograms
are discussed. Then, color moments and color moment invariants
are presented. Finally, color features based on SIFT are detailed.
See table 1 for an overview of features and their invariance proper-
ties.



Light intensity change Light intensity shift Light intensity change and shift Light color change Light color change and shift
RGB Histogram - - - - -
O1, O2 - + - - -
O3, Intensity - - - - -
Hue + + + - -
Saturation + + + - -
r, g + - - - -
Transformed color + + + + +
Color moments - + - - -
Moment invariants + + + + +
SIFT (∇I) + + + + +
HSV-SIFT + + + +/- +/-
HueSIFT + + + +/- +/-
OpponentSIFT +/- + +/- +/- +/-
W-SIFT + + + +/- +/-
rgSIFT + + + +/- +/-
Transf. color SIFT + + + + +

Table 1: Invariance of features (section 3) against types of lighting changes. Invariance is indicated with ‘+’, lack of invariance is
indicated with ‘-’. A ‘+/-’ indicates that the intensity SIFT part of the feature is invariant, but the color part is not. All color features
can be selected in the color feature extraction stage from figure 1.

In short, the photometric changes and their corresponding invari-
ance properties are:

• Light intensity changes include shadows and lighting geom-
etry changes such as shading. When a feature is invariant to
light intensity changes, it is scale-invariant with respect to
(light) intensity.

• Light intensity shifts correspond to object highlights under a
white light source and scattering of a white source. When a
feature is invariant to a light intensity shift, it is shift-invariant
with respect to light intensity.

• Light intensity change and shift allows combinations of the
above two conditions. When a feature is robust to these
changes is scale-invariant and shift-invariant with respect to
light intensity.

• Light color change corresponds to a change in the illumina-
tion color and light scattering, amongst others.

• Light color change and shift corresponds to changes in the
illumination, as above, and to object highlights under an ar-
bitrary light source.

For additional details and derivations, we refer to [26].

3.1 Histograms
RGB histogram The RGB histogram is a combination of three
1-D histograms based on the R, G and B channels of the RGB
color space. This histogram possesses no invariance properties, see
table 1.
Opponent histogram The opponent histogram is a combination
of three 1-D histograms based on the channels of the opponent
color space: 0@ O1

O2
O3

1A =

0B@
R−G√

2
R+G−2B√

6
R+G+B√

3

1CA . (1)

The intensity is represented in channel O3 and the color informa-
tion is in channels O1 and O2. Due to the subtraction in O1 and
O2, the offsets will cancel out if they are equal for all channels
(e.g. a white light source). Therefore, these color models are shift-
invariant with respect to light intensity. The intensity channel O3

has no invariance properties. The histogram intervals for the oppo-
nent color space have ranges different from the RGB model.
Hue histogram In the HSV color space, it is known that the
hue becomes unstable around the grey axis. To this end, Van de
Weijer et al. [27] apply an error analysis to the hue. The analysis
shows that the certainty of the hue is inversely proportional to the
saturation. Therefore, the hue histogram is made more robust by
weighing each sample of the hue by its saturation. The H and the
S color models are scale-invariant and shift-invariant with respect
to light intensity.
rghistogram In the normalized RGB color model, the chromatic-
ity components r and g describe the color information in the image
(b is redundant as r + g + b = 1):0@ r

g
b

1A =

0@ R
R+G+B

G
R+G+B

B
R+G+B

1A . (2)

Because of the normalization, r and g are scale-invariant and thereby
invariant to light intensity changes, shadows and shading [26].
Transformed color distribution A RGB histogram is not invari-
ant to changes in lighting conditions. However, by normalizing
the pixel value distributions, scale-invariance and shift-invariance
is achieved with respect to light intensity. Because each channel
is normalized independently, the feature is also normalized against
changes in light color and arbitrary offsets:0@ R′

G′

B′

1A =

0B@
R−µR
σR

G−µG
σG

B−µB
σB

1CA , (3)

with µC the mean and σC the standard deviation of the distribution
in channel C. This yields for every channel a distribution with
µ = 0 and σ = 1.

3.2 Color moments and moment invariants
A color image corresponds to a function I definingRGB triplets

for image positions (x, y): I : (x, y) 7→ (R(x, y), G(x, y), B(x, y)).
By regarding RGB triplets as data points coming from a distri-
bution, it is possible to define moments. Mindru et al. [20] have
defined generalized color moments Mabc

pq :

Mabc
pq =

Z Z
xpyq[IR(x, y)]a[IG(x, y)]b[IB(x, y)]cdxdy.



Mabc
pq is referred to as a generalized color moment of order p+q

and degree a+ b+ c. Note that moments of order 0 do not contain
any spatial information, while moments of degree 0 do not contain
any photometric information. Thus, moment descriptions of order
0 are rotationally invariant, while higher orders are not. A large
number of moments can be created with small values for the order
and degree. However, for larger values the moments are less stable.
Typically generalized color moments up to the first order and the
second degree are used.

By using the proper combination of moments, it is possible to
normalize against photometric changes. These combinations are
called color moment invariants. Invariants involving only a single
color channel (e.g. out of a, b and c two are 0) are called 1-band
invariants. Similarly there are 2-band invariants involving only two
out of three color bands. 3-band invariants involve all color chan-
nels, but these can always be created by using 2-band invariants for
different combinations of channels.
Color moments The color moment feature uses all generalized
color moments up to degree 2 and order 1. This lead to nine pos-
sible combinations for the degree: M000

pq , M
100
pq , M

010
pq , M

001
pq ,

M200
pq , M

110
pq , M

020
pq , M

011
pq , M

002
pq and M101

pq
†. Combined with

three possible combinations for the order: Mabc
00 ,Mabc

10 and Mabc
01 ,

the color moment feature has 27 dimensions. These color moments
only have shift-invariance. This is achieved by Mindru by sub-
tracting the average in all input channels before computing the mo-
ments.
Color moment invariants Color moment invariants can be con-
structed from generalized color moments. All 3-band invariants
are computed from Mindru et al. [20]. To be comparable, the C̃02

invariants are considered. This gives a total of 24 color moment
invariants, which are invariant to all the properties listed in table 1.

3.3 Color SIFT features
SIFT The SIFT feature proposed by Lowe [15] describes the local
shape of a region using edge orientation histograms. The gradient
of an image is shift-invariant. Under light intensity changes, i.e. a
scaling of the intensity channel, the gradient direction and the rel-
ative gradient magnitude remain the same. Because the SIFT fea-
ture is normalized, the gradient magnitude changes have no effect
on the final feature. Light color changes have no effect on the fea-
ture because the input image is converted to gray-scale, after which
the intensity scale-invariance argument applies. To compute SIFT
features, the version described by Lowe [15] is used.
HSV-SIFT Bosch [1] computes SIFT features over all three chan-
nels of the HSV color model, instead of over the intensity channel
only. This gives 3x128 dimensions per feature, 128 per channel.
Drawback of this approach is that the periodicity in the hue chan-
nel is not addressed. Moreover, the instability of the hue for low
saturation is ignored.

The properties of theH and the S channels also apply to this fea-
ture: it is scale-invariant and shift-invariant. However, the H and
the S SIFT features are not invariant to light color changes; only the
intensity SIFT feature (V channel) is invariant to this. Therefore,
the feature is only partially invariant to light color changes.
HueSIFT Van de Weijer [27] introduces a concatenation of the
hue histogram (see section 3.1) with the SIFT feature. When com-
pared to HSV-SIFT, the usage of the weighed hue histogram ad-
dresses the instability of the hue around the grey axis. Because
the bins of the hue histogram are independent, there are no prob-
lems with the periodicity of the hue channel for HueSIFT. Similar
to the hue histogram, the HueSIFT feature is scale-invariant and

†Because it is constant, the moment M000
pq is excluded.

shift-invariant. However, only the SIFT feature is component of
this feature is invariant to illumination color changes or shifts; the
hue histogram is not.
OpponentSIFT OpponentSIFT describes all the channels in the
opponent color space (eq. (1)) using SIFT features. The informa-
tion in the O3 channel is equal to the intensity information, while
the other channels describe the color information in the image.
However, these other channels do contain some intensity informa-
tion: hence they are not invariant to changes in light intensity.
W-SIFT In the opponent color space (eq. (1)), the O1 and O2

channels still contain some intensity information. To add invari-
ance to intensity changes, [7] proposes the W invariant which elim-
inates the intensity information from these channels. The W-SIFT
feature uses the W invariant, which can be defined for the opponent
color space as O1

O3
and O2

O3
. Because of the division by intensity,

the scaling in the diagonal model will cancel out, making W-SIFT
scale-invariant with respect to light intensity. As for the other col-
orSIFT features, the color component of the feature is not invariant
to light color changes.
rgSIFT For the rgSIFT feature, descriptions are added for the
r and g chromaticity components of the normalized RGB color
model from eq. (2), which is already scale-invariant. Because the
SIFT feature uses derivatives of the input channels, the rgSIFT fea-
ture becomes shift-invariant as well. However, the color part of the
feature is not invariant to changes in illumination color.
Transformed color SIFT For the transformed color SIFT, the
same normalization is applied to the RGB channels as for the
transformed color histogram (eq. (3)). For every normalized chan-
nel, the SIFT feature is computed. The feature is scale-invariant,
shift-invariant and invariant to light color changes and shift.

4. EXPERIMENTAL SETUP
Our implementation follows the general scheme for concept clas-

sification based on the codebook model, as detailed in section 2
and summarized in figure 1. In this section, we outline further de-
tails of the experimental setup used to evaluate the different color
features. Then, the experiments and the two benchmarks used for
evaluation are described: the PASCAL VOC Challenge 2007 and
the Mediamill Challenge. After discussing these benchmarks and
their datasets, evaluation criteria are given.

4.1 Implementation
To emperically test the color features, they are used inside local

features based on either salient points [15, 30] or dense sampling.
For salient point extraction, we choose the Harris-Laplace point
detector [19]. For dense sampling, the sample distance used is 6
pixels. The color features from section 3 are computed over the
area around the points. To achieve comparable features for different
scales, all regions are proportionally resampled to a uniform patch
size of 60 by 60 pixels.

To construct a fixed-length feature vector, the bag-of-features
model with a visual codebook is used. The visual codebook is con-
structed using the k-means algorithm. The k-means algorithm is
repeated 20 times on 125,000 features randomly drawn from the
training set to obtain 4,000 clusters. Features from an image are
assigned to the closest cluster. With ~F denoting the feature vector
of length n, where n equals the codebook size:

~Fi =
1

m

mX
j=1

ψ(i, j)

where m is the number of features in the image and indicator func-
tion ψ(i, j) equals 1 if the ith cluster is closest to the jth feature



and 0 otherwise. Closeness is computed using the Euclidian dis-
tance. All elements of ~Fi are constrained to the range [0, 1] by
their definition.

The SVM algorithm is used to learn concept appearance models
from feature vectors. Specifically, the LibSVM implementation [2]
is used with a χ2 kernel. For a spatial pyramid, there is a feature
vector for every image section in the pyramid, e.g. the full image
and the image quarters. The χ2 distances for the different sections
are normalized through division by the average distance. Then, the
final distance is the weighted sum of the section distances. The
weighting of the different image sections is performed as speci-
fied by Lazebnik [12]. For a spatial pyramid up to level 1, this is
a weight of 1 for the full image and weights of 1

4
for the image

quarters.

4.2 Experiments

• Experiment 1: Comparing point sampling strategies on im-
age benchmark.
In this experiment, the performance of features using a stan-
dard bag-of-features codebook model is compared against
the performance of features using a spatial pyramid up to
level 1, i.e. the standard codebook plus the four image quar-
ters. To rule out the effect of different sampling methods, the
experiment is performed for both the Harris-Laplace detector
and densely sampled points.

• Experiment 2: Comparing color features on image bench-
mark.
In this experiment, the performance of color features is eval-
uated on an image benchmark. Based on the results of exper-
iment 1, the spatial pyramid is used exclusively. Sampling
methods used are the Harris-Laplace detector and dense sam-
pling, or a combination of the two. The combination of sam-
pling methods is constructed by concatenating the feature
vectors. The color features used are listed in section 3 and
table 1.

• Experiment 3: Comparing color features on video bench-
mark.
In this experiment, the performance of color features is eval-
uated on a video benchmark. On the video benchmark, only
the combination of the Harris-Laplace detector and dense
sampling is used. The color features used are listed in sec-
tion 3 and table 1.

4.3 Image benchmark
The PASCAL Visual Object Classes Challenge [4] provides a

yearly benchmark for comparison of object classification systems.
The PASCAL VOC Challenge 2007 dataset contains nearly 10,000
images of 20 different concepts (see figure 2), e.g. bird, bottle, car,
dining table, motorbike and people. The dataset is divided into a
predefined train set (5011 images) and test set (4952 images).

4.4 Video benchmark
The Mediamill Challenge by Snoek et al [25] provides an anno-

tated video dataset, based on the training set of NIST TRECVID
2005 benchmark [24]. Over this dataset, repeatable experiments
have been defined. The experiments decompose automatic category
recognition into a number of components, for which they provide a
standard implementation. This provides an environment to analyze
which components affect the performance most. Since our features
use visual information only, we focus on the visual experiment of

Language # Source Program Length
Arabic 7 LBC LBC Nahar 6h 46min
Arabic 5 LBC LBC News (1pm) 2h 5min
Arabic 14 LBC LBC News (8pm) 13h 34min
Chinese 13 CCTV4 Daily News 12h 19min
Chinese 11 CCTV4 News3 5h 5min
Chinese 10 NTDTV NTD News (12pm) 4h 42min
Chinese 9 NTDTV NTD News (7pm) 4h 15min
English 11 CNN Aaron Brown 10h 42min
English 9 CNN Live From 4h 11min
English 15 NBC NBC Philadelphia 7h 5min
English 7 NBC Nightly News 3h 18min
English 11 MSNBC MSNBC News (11am) 5h 12min
English 15 MSNBC MSNBC News (1pm) 7h 3min
Total 137 86h 17min

Table 2: Overview of the news broadcasts in the video bench-
mark.

the Challenge only. For this experiment, the Challenge provides a
baseline performance.

The dataset of 86 hours is divided into a Challenge training set
(70% of the data or 30993 shots) and a Challenge test set (30% of
the data or 12914 shots). For every shot, the Challenge provides
a single representative keyframe image. So, the complete dataset
consists of 43907 images, one for every video shot. The dataset
consists of television news from November 2004 broadcasted on
six different TV channels in three different languages: English,
Chinese and Arabic; see table 2 for a complete overview. On this
dataset, the 101 concepts of the Mediamill Challenge are employed,
listed in figure 3.

4.5 Evaluation criteria
The average precision is taken as the performance metric for de-

termining the accuracy of ranked category recognition results, fol-
lowing the standard set in the PASCAL VOC Challenge 2007 and
TRECVID. The average precision is a single-valued measure that is
proportional to the area under a precision-recall curve. This value
is the average of the precision over all shots judged relevant. Let
ρk = {l1, l2, ..., lk} be the ranked list of items from test set A. At
any given rank k, let |R ∩ ρk| be the number of relevant shots in
the top k of ρ, where R is the set of relevant shots and |X| is the
size of set X . Average precision, AP , is then defined as:

AP (ρ) =
1

|R|

|A|X
k=1

|R ∩ ρk|
k

ψ(lk) (4)

with indicator function ψ(lk) = 1 if lk ∈ R and 0 otherwise. |A|
is the size of the answer set, e.g. the number of items present in the
ranking.

When performing experiments over multiple object classes, the
average precisions of the individual classes can be aggregated. This
aggregation is called mean average precision (MAP). MAP is cal-
culated by taking the mean of the average precisions. Note that
MAP depends on the dataset used: scores of different datasets are
not easily comparable.

5. RESULTS

5.1 Experiment 1: Comparing point sampling
strategies on image benchmark

From the results shown in figure 4, it is observed that the spa-
tial pyramid performs substantially better than the standard code-
book model for all color features. This holds for both salient points
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Figure 4: Evaluation of the standard codebook model and its
extension, the spatial pyramid. Performance is measured on
an image benchmark, the PASCAL VOC Challenge 2007, aver-
aged over the 20 concepts from figure 2. Results are shown for
both Harris-Laplace salient points and dense sampling.

from the Harris-Laplace detector and for densely sampled points.
Adding spatial information to the codebook model provides impor-
tant discriminative information for most concepts. However, for
the concept aeroplane, detailed results (not shown) reveal there is
no improvement or even a small degradation. This is explained by
the lack of a fixed position for aeroplanes in photographs: they can
occur in all image quarters. In that case, the spatial pyramid pro-
vides no benefits. Given that for all other concepts similar or better
performance was obtained with the spatial pyramid, it is adopted
for the remainder of the experiments.

Figure 4 also shows that, overall, dense sampling outperforms
Harris-Laplace salient points. Even on a per-concept basis, Harris-
Laplace is not convincingly better than dense sampling for specific
concepts. This suggests that, if the computational resources are
available, dense sampling should be the primary choice for point
sampling.

5.2 Experiment 2: Comparing color features
on image benchmark

The results from figure 5 show that using both the Harris-Laplace
detector and densely sampled points clearly improves over the in-
dividual sampling strategies. On a per-concept basis, performance
is either better than or has only minor differences from dense sam-
pling. Therefore, to evaluate color features in a realistic setting, the
combination of Harris-Laplace and dense sampling should be used.

From the results shown in figure 5, it is observed that the SIFT
variants perform substantially better than color moments, moment
invariants and color histograms. The moments and histograms are
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Figure 5: Evaluation of color features using either Harris-
Laplace salient points, dense sampling, or both Harris-Laplace
salient points and dense sampling. Performance is measured
on an image benchmark, the PASCAL VOC Challenge 2007,
averaged over the 20 concepts from figure 2.

not very distinctive when compared to SIFT-based features: they
contain too little relevant information to be competitive with SIFT.

Because figure 5 shows only minor differences between SIFT
and the four best color SIFT features (OpponentSIFT, WSIFT, rgSIFT
and transformed color SIFT), the results per concept were analyzed.
For bird, horse, motorbike, person and potted plant, it was ob-
served that the features which perform best have scale-invariance
and shift-invariance for light intensity (WSIFT and rgSIFT). The
performance of the OpponentSIFT feature, which lacks scale-invariance
compared to WSIFT, yields that scale-invariance, i.e. invariance
to light intensity changes is important for these concepts. Trans-
formed color SIFT includes additional invariance against light color
changes and shifts when compared to WSIFT and rgSIFT. How-
ever, this additional invariance can make the feature less discrim-
inative, because a reduction in performance is observed for some
concepts. Overall, this is offset by a gain for other concepts. In fact,
the lack of scale-invariance for light intensity of OpponentSIFT can
be a strong point instead of a weak point: the intensity information
in the feature potentially distinguishes concepts from false posi-
tives.

5.3 Experiment 3: Comparing color features
on video benchmark

From the results shown in figure 6, the same overall pattern as
for the image benchmark is observed: SIFT and color SIFT variants
perform substantially better than the other color features. How-
ever, for this dataset, one of the color SIFT variants stands out:
OpponentSIFT. An analysis on the individual concepts shows that
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Figure 6: Evaluation of color features on a video benchmark,
the Mediamill Challenge, averaged over 101 concepts from fig-
ure 3. Performance of the features shown are obtained using
the combination of the Harris-Laplace detector and dense sam-
pling, both with the spatial pyramid. The baseline performance
provided by the Mediamill Challenge is indicated by a red line.

the OpponentSIFT feature performs best for building, outdoor, sky,
studio, walking/running and weather news, etc. All these concepts
either occur indoor or outdoor, but not both. Therefore, the inten-
sity information present in the OpponentSIFT is very distinctive for
these concepts. For the other color SIFT variants, there is a small
performance gain for some concepts, for others there is a small loss.

5.4 Discussion
From the results of our experiments, it can be noticed that invari-

ance to light intensity changes is concept-specific. For the video
dataset, which consists of news broadcast videos, the light sources
used are very diverse. Every television studio has its own lighting
arrangement, all indoor scenes have different lighting because no
flash is used when filming, etc. Therefore, in this setting the light
intensity information can be highly discriminative for specific con-
cepts which occur in a limited number of lighting conditions. How-
ever, there is also the analogous case for specific concepts which
occur in widely varying lighting conditions. For these concepts,
the color feature used should be invariant to light intensity and light
color changes.

Because almost all color features are shift-invariant, the effect
of light intensity variations on the performance cannot be observed
easily. The color features which are sensitive to light intensity shifts
are the three color histograms. Given that SIFT and its color vari-
ants show best performance, it can be derived that shift-invariance
has no adverse effects on performance.

From the results, no firm conclusions can be drawn with respect
to invariance to light color changes and shifts. Small performance
gains are observed on a per-concept basis, but for other concepts
there is a small loss. Overall, this does not make these color fea-
tures stand out.

To illustrate that per-concept invariance is a viable strategy, we
have performed a simple fusion experiment with the likelihood
scores of SIFT and the best four color SIFT variants. These features
all had similar overall performance on the PASCAL VOC dataset
(MAP≈0.50). Combining these likelihood scores using product fu-
sion [11], gives a MAP of 0.56. This convincing gain, with a naive
method, suggests that the color features are complementary. Other-
wise, overall performance would not have improved significantly.
This is to be expected, as substantial differences on a per-concept
basis were observed in section 5.2. Further gains should be possi-
ble, if the features with the right amount of invariance are fused,
preferably using an automatic selection strategy.

For comparison, the best entry in the PASCAL VOC Challenge
2007, by Marszałek [17], has achieved a MAP of 0.59 using SIFT
and HueSIFT features, additional Laplacian point sampling, ex-
tra image regions for the spatial pyramid and an advanced fusion
scheme. The same simple fusion experiment performed on the
Mediamill Challenge, where the input features have a MAP≈0.41,
gives a score of 0.46. When compared to the baseline provided by
the Mediamill Challenge (MAP=0.22), this is an improvement of
110%.

In summary, the level of invariance needed for color features is
concept-specific. Results from a simple fusion experiment are very
close to the state-of-the-art in the PASCAL VOC Challenge and
exceed the baseline of the Mediamill Challenge by 110%.

6. CONCLUSION
In this paper, the distinctiveness of color features is assessed ex-

perimentally using two benchmarks from the image domain and
the video domain, the PASCAL VOC Challenge 2007 and the Me-
diamill Challenge. From the results, it can be derived that invari-
ance to light intensity changes and light color changes affects con-
cept classification. The results show further that, the usefulness
of invariance is concept-specific: for certain concepts, the lighting
information itself is discriminative, whereas for other concepts in-
variance is needed.
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