
Balancing Thread Based Navigation for
Targeted Video Search

Ork de Rooij
Intelligent Systems Lab
University of Amsterdam
Kruislaan 403, 1098 SJ

Amsterdam, The Netherlands
orooij@science.uva.nl

Cees G. M. Snoek
Intelligent Systems Lab
University of Amsterdam
Kruislaan 403, 1098 SJ

Amsterdam, The Netherlands
cgmsnoek@science.uva.nl

Marcel Worring
Intelligent Systems Lab
University of Amsterdam
Kruislaan 403, 1098 SJ

Amsterdam, The Netherlands
worring@science.uva.nl

ABSTRACT
Various query methods for video search exist. Because of the
semantic gap each method has its limitations. We argue that
for effective retrieval query methods need to be combined at
retrieval time. However, switching query methods often in-
volves a change in query and browsing interface, which puts
a heavy burden on the user. In this paper, we propose a
novel method for fast and effective search trough large video
collections by embedding multiple query methods into a sin-
gle browsing environment. To that end we introduced the
notion of query threads, which contain a shot-based rank-
ing of the video collection according to some feature-based
similarity measure. On top of these threads we define sev-
eral thread-based visualizations, ranging from fast targeted
search to very broad exploratory search, with the Fork-
Browser as the balance between fast search and video space
exploration. We compare the effectiveness and efficiency of
the ForkBrowser with the CrossBrowser on the TRECVID
2007 interactive search task. Results show that different
query methods are needed for different types of search top-
ics, and that the ForkBrowser requires significantly less user
interactions to achieve the same result as the CrossBrowser.
In addition, both browsers rank among the best interactive
retrieval systems currently available.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
video retrieval, interactive search, thread based browsing,
conceptual similarity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIVR’08, July 7–9, 2008, Niagara Falls, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-070-8/08/07 ...$5.00.

1. INTRODUCTION
Nowadays huge video archives are available from various

domains, such as broadcasters, news agencies, YouTube, and
home video archives. Users are accustomed to browsing,
navigating and searching through these archives using text-
based retrieval engines. The indices of these engines are
based on filenames, speech-transcripts, or social tags pro-
vided by online users. However, it is well known [23] that
textual descriptions of these sources do not capture the dy-
namic visual content of video adequately. Thus yielding
questionable performance when a user wants to find some-
thing in the collection that has not been annotated as such.

To enable video content retrieval, a lot of research is be-
ing done in automated video content analysis techniques,
e.g. [15][25][18][27]. In general, these techniques offer low-
level access to the video content. Unfortunately specifying a
search query using low-level features is a difficult task for a
human interested in a specific fragment of video. As a con-
sequence the video retrieval results are sub-optimal. Hence,
the user has to look through many possible results, which
slows down the retrieval process. Moreover it is not guaran-
teed that the user finds the fragment she was looking for.

One solution to the problem of having to browse through
long lists of results, is to offer a rich, exploratory, user inter-
face. In such an interface the user is not limited to browsing
only through the initial results, but also through related
items obtained through the use of various query methods.
These will typically be offered in a rich user interface. Using
this, the user is able to explore the collection, rather than
just the initial list of results. A benefit of such a method is
less dependence on the quality of automated techniques, at
the cost of speed of retrieval.

In contrast with this solution, another solution is to fur-
ther optimize the browsing technique employed so that it
delivers fast, targeted search through the query results. This
increases the dependence on automated query answering
techniques, but because browsing is much more efficient such
an interface is able to yield similar performance.

We distinguish two techniques for video retrieval. On the
one hand we have targeted search with a focus on good au-
tomated retrieval techniques, and fast browsing through a
single list of results. On the other hand we have exploratory
search which allows the user to browse into related results
based on what he sees fit. In this paper we will propose a
balance between both techniques by introducing a browse
method which optimizes speed of retrieval by embedding

multiple query methods into a single visual browsing envi-
ronment.

1.1 Query methods for video retrieval
In multimedia retrieval literature a wide gamut of query

methods have been proposed, applied, and evaluated, see [15]
[10] for an extensive overview. We focus here on the ones
that are known to be effective for interactive video search,
namely query-by-keyword, query-by-example, query-by- con-
cept, and their combination.

One of the earliest and most successful methods for video
retrieval to date is query-by-keyword. Query-by-keyword
allows a user to enter textual keywords to find video con-
tent based on textual metadata that can be associated to a
video. The implicit assumption is that the textual metadata
accurately captures all the multimedia content of the video.
Unfortunately this is not always the case. Imagine for ex-
ample a search for a celebrity talking on a telephone. It is
probable that the name of the celebrity will be tagged in the
collection, however the fact that he or she talking on a tele-
phone is not interesting, and is therefore not tagged, so this
fragment cannot be found without watching all fragments of
the celebrity. Moreover, social tags or textual transcripts of
non-English languages may be error prone or simply miss-
ing. Thus for effective video search query-by-keyword needs
to be extended with methods that incorporate analysis of
the visual content.

For querying the visual content, the method of choice has
long been query-by-example. These methods reduce a video
shot, the fragment of video between camera cuts, to a single
keyframe. This keyframe is then represented by a combina-
tion of color, texture or shape based features. A user is able
to query a video collection represented by visual feature vec-
tors by providing an example image [4][21], or sketch [8][24].
By comparing the provided visual feature representation to
the database, the visual similarity between user query and
the video collection is determined. An obvious downside of
this query method is its dependence on dedicated user input
in the form of existing example images or sketches. Moreover
the low-level visual feature representation used for querying
often does not correspond to the users intent. This problem
is known as the semantic gap [23]. In order to reduce the
semantic gap we need more than visual features alone.

In an effort to reduce the semantic gap, a recent alter-
native to query-by-example relies on so called concept de-
tectors. Generic concept detection methods have emerged
lately [18][27], which allow automatic labeling of people, ob-
jects, settings or events within the video content. In general
these automatic methods are based on fusion of various in-
variant visual features in combination with supervised ma-
chine learning using large collections of labeled image exam-
ples. Collections of concept detectors form a lexicon. Exam-
ples from a representative lexicon such as LSCOM [17] may
vary from people like Hu Jintao, objects like a truck, settings
like indoor and events like people marching. A concept detec-
tor lexicon allows query-by-concept. This resembles query-
by-keyword like search through the visual information of the
video. Unfortunately due to varying performance of individ-
ual detectors and ever increasing sizes of lexicons this leads
to new problems for the user: which detector should he use?
Which one is good enough? And can they be combined?
Query-by-concept delivers an interesting starting point for
visual search but by itself it is not the ideal solution yet.

The above query methods each yield a ranking of the video
collection. From there it is left to the user to select relevant
keyframes from this ranking. The quality of these rank-
ings are dependent on both the precision of the used query
method and the skill of the user in specifying query pa-
rameters. Therefore, the quality of the results is not clearly
defined and often inadequate. This requires the user to view
hundreds of results before he retrieves a few good ones. Fur-
thermore, over the years the number of available video query
methods has expanded enormously. Every time a new query
method was introduced query interfaces had to cope with yet
another set of parameters which the user needed to config-
ure. This yielded highly complex search interfaces. To assist
the user with the problem of which query method to use, a
lot of work has been done in visualization methods for video
search.

1.2 Visualization methods for video search
As stated earlier there are two distinct techniques for

video retrieval. Targeted search focuses on exploiting au-
tomated retrieval techniques, and uses fast browsing tech-
niques to browse through the results obtained by these tech-
niques. Exploratory search allows the user to have various
ways to control the browsing process. It allows the user
to browse into related shots based on what he sees. We
therefore categorize related work into visualization methods
which primarily focus on targeted search, and in visualiza-
tion methods which primarily focus on exploration.

In the first category systems typically use automated query-
ing techniques to generate a list of results, which is then
rapidly explored by the user. For example, the Informedia
XVR interface[11] uses rapid serial visual presentation taken
to the extreme to explore results at high speed. The idea be-
hind this is the following. The system obtains initial results
by using automated techniques only. Subsequently, the user
interactively filters these at very high speeds to weed out
the bad results. Inspired by Informedia, the VisionGo video
search engine [16] is primarily based on targeted search. It
combines a single list RSVP technique with several relevance
feedback methods to create new lists of results from the set
of selected results. The MediaMill CrossBrowser[26] also
falls under this category. It is optimized to browse results
from a query in a rapid fashion together with the time-line
of a video.

All systems which combine multiple forms of similarity
into the browse representation in order to allow the user in-
teract with the dataset fall into the second category. For
example the system in [20] combines both the time-line of
videos with content-based similarity in one view. The Infor-
media storyboard-based interface[6][5] was one of the first
search systems which combined multiple modalities into one
interface. The FxPal MediaMagic[1] uses an innovative story
board based interface for displaying results, and allows se-
lected results as starting points for “find similar” queries.
The uBase browser[12] combines even more forms of similar-
ity based browsing. It combines hierarchical, temporal and
lateral browsing together. The NN

k browser used for lat-
eral browsing shows the user a graph network of related re-
sults. The MediaMill RotorBrowser[7] is also an exploratory
browser. This browser is designed for topics that require a
combination of query methods. It allows to integrate query
results with time, visual similarity, semantic similarity and
various other shot based similarity metrics.

�������������	�
��

���

	����	�
��

�
�������	� �����������	� ���������
�
���
������	�

	������
��

	��	������

����
���

����

�
�
���
���

	��	����
��

����������	�

�����
	�������

����
	��������

�

�����	�
��

Figure 1: Overview of thread generation from a video collection. Feature extraction techniques are applied
to every shot in every video, which yields the feature space. Subsequently, every shot is compared to every
other shot using a similarity function appropriate to the features used. We generate two types of threads
from this feature similarity space: static threads and dynamic threads. Static threads are calculated by 1)
clustering the space into groups of related shots, and 2) creating a thread by projecting the cluster to a
ranked list of results. Dynamic threads are calculated on the fly based on a given query shot S, which ranks
the feature similarity space according to the distance to S.

Combinations of both categories are also possible, and
most systems do not explicitly fall into just one category.
To give just one example, the FXPAL collaborative search
system [2] combines their MediaMagic system for query ex-
ploration with an RSVP like single list browsing technique
into a multi user collaborative search system where each user
fulfills one of both tasks.

The above list of systems is by no means complete, but
should give an indication of the recent advances in the field
of visualization methods for video search.

1.3 Contribution
To leverage the benefits of having multiple query meth-

ods without slowing down the interface we elaborate on
the notion of threads [7]. Using these threads, we intro-
duce a browser which combines techniques from targeted
search browsers and exploratory search browsers into a sin-
gle browsing environment: the ForkBrowser. We demon-
strate that this novel browser balances effectiveness of re-
sults with high efficiency. In section 2 we introduce thread-
based visualization framework on which the ForkBrowser is
founded. In section 3 we present the experimental setup
in which we compare the ForkBrowser against the Cross-
Browser. We highlight results in section 5.

2. THREAD-BASED VISUALIZATION
To structure the definition of methods for browsing through

a video collection we use the notion of threads [7]. Threads
are defined as follows:

• A thread is a linked sequence of shots in a specified
order, based upon an aspect of their content.

Threads are in essence ranked lists of shots, based on a
specific feature similarity space, which is in itself based on a
specific video query method. Let’s look at query-by-example:
this query method extracts low-level features, such as Wic-
cest features [9], from an example image, and compares these
with precomputed features from the collection. These pre-
computed features define the feature space of the collection.

Instead of providing an example image, we define a similar-
ity space for this collection by defining a similarity function
which compares every shot to every other shot. From this,
we derive two types of threads based on the search need:
static threads and dynamic threads.

Static threads help in creating a “web” of related shots
through the collection beforehand. These are not changed
during search, and help the user with locating himself within
the collection. They are created by clustering the similar-
ity space into k clusters. Subsequently, these clusters are
projected into one dimensional lists where individual shots
next to each other are also close to each other in similarity
space. In a static thread there is no overall ranking, only a
measure of relatedness between shots. So, the first shot in a
static thread is not the most important one.

Dynamic threads are obtained on the fly based on any
user provided query shot which is already in the collection
itself. The rest of the collection is then re-ranked with the
query shot as the first result. Compare a dynamic thread
with the generated ranking of a query method.

An overview of the thread generation process is visualized
in figure 1. There is a one to one relationship between thread
types and query methods. More specifically, every thread
type is based on a query method. We define the following
thread types.

• query result thread: thread based on the results of
a user constructed query.

In a query result thread the shots are linked because they
all originate as results from the same user specified query.
This thread is used as the starting point for navigation.

• visual thread: thread based on visual similarity.

The visual thread links shots together which share the same
visual characteristics, so that shots next to each other are
also visually similar.

• semantic thread: thread based on semantic similar-
ity.

� ����

�������	
���

�������	������

����

���������	������	�
���������	������	�

�

���������	������	�

���������	������	�

������������ ��	���������

�

�������	
���

���������	������	����������	������	�

����

������

����������

���	����� ����� ����	������������

��	���	������ ���� �	������	������� ��������	������	���	������	�������

�����	������	����

������������ ��������	������ ��������	������
��������	������	����	����������	

���������

��������	�������	����	������

��������	�������	
���	

�������

��������	�������	����	������

��������	��	����	������	

���	������

��������	��	��������	����	��	

������

��������	�������	�	���������	

������	���	�������	����

��������	�������	�������	������

������	����	������	��	�������

Figure 2: Overview of thread-based browsers and their navigation options. The rigidness indicates the
dependence on initial query results. The navigation options indicate possible browsing directions for the
user. The CrossBrowser and ForkBrowser use a direct mapping between user interaction and the interface.
The CrossBrowser displays results and time only. The RotorBrowser displays all possible threads, with the
active thread mapped to user action and a special navigation command to switch threads by rotation. Though
all three browsers focus on targeted search, the RotorBrowser is the only one which can leave the original
search and browse through anything the user sees at that moment.

The semantic thread links shots together based on their de-
tected semantic concept scores, so that shots containing the
same set of detected semantic concepts are close to each
other in the ranked list.

• time thread: thread based on the time-line.

This thread is always static, since the time-line is predeter-
mined for a video.

• textual thread: thread based on textual similarity.

The textual thread links shots to each other which contain
similar ASR text.

All of the above threads, with the exception of the time
thread which is always static, are available as either precom-
puted static or on-the-fly dynamic threads. When a thread
is used as a dynamic thread the difference is that the ranking
is defined by a given query shot.

Every thread consists of a ranking of the entire collection.
This implies that every shot is present in every thread. This
means that given any shot, the user is able to switch to
another thread by selecting one that catches their interest.
But if every shot is present in all threads, this creates a
problem: which threads are relevant for the user?

Since any query method, on which threads are based, does
not know whether it is providing valid results or not. It only
knows the similarity between shots within a thread. And
these similarities are based on the quality of the used fea-
tures, which varies from thread type to thread type. There-
fore these similarities are only valid within a thread, they

�

� � �

� � �

�

�

	
 � �

�����

��	�
��������	�
������

��	�

�������

��

����

���������

����

Figure 3: Mapping between the ForkBrowser inter-
face and the keyboard. The entire interface is con-
trolled by using the left hand only. This leaves the
right hand free to deal with the mouse. The map-
ping allows for rapid interface control by the user.

cannot be used to compare one thread to another. It is
therefore not possible to automatically discard bad threads
based on these similarities alone. A human is however able
to see in a glance whether results are satisfactory or not.
Hence, the decision to use or reject threads should be mostly
left to the user. The browser interface needs to support the
user as much as possible in this role.

2.1 Visualizing threads
Any search engine typically has an interface for entering

queries into the system, and an interface for retrieving re-
sults. In a text retrieval engine the query interface is often
limited to text entry, with the interface for results placed

just below the query interface. The results are typically dis-
played in a long list. For video search engines a single inter-
face screen is not sufficient. This is caused by the fact that
video search engines typically require a much larger number
of query methods, which all demand screen real estate. So
the query interface and result interface are typically divided
into multiple panes on the screen.

A search action for a multi pane search engine is defined
as follows:

1. the user enters parameters into the query screen

2. the system retrieves results and displays them on a
result screen

3. the user mentally adapts to the new interface

4. the user starts browsing through results

5. the user evaluates the results. If these are unsatisfac-
tory, he goes back to step 1.

For our system we try to address a number of problems
with this approach. We begin by defining the required de-
sign criteria which the visualization should adhere to. The
primary goal of any search engine is to help the user to de-
cide quickly if a retrieved result is relevant. This means that
the interface should be fast and effective, both in response
time and in visual design.

The interface should always show unexplored parts of the
collection to the user, in the form of unvisited threads. If
the interface shows not enough possible directions, there is
a danger that the user has to restart her search from an
earlier point each time a thread has no more valid results.
To avoid this the system should provide multiple paths for
finding results.

Design criterion 1. The interface should always indi-
cate to the user where she can go.

The opposite side of this criterion is showing too many
directions. This overwhelms the user with choice. If an
interface is too overwhelming the user requires more time
to process all visual information before a decision can be
made. The interface should therefore be as minimalistic as
possible.

Design criterion 2. The interface should not overwhelm
the user.

A benefit of an interface which always allows more op-
tions is that it reduces the number of times a search has
to be restarted. Since restarting means switching back to a
query interface, a restart requires extra time from the user
to mentally adapt to the different screens. This is to be
avoided.

Design criterion 3. The interface should avoid switch-
ing between different interfaces.

Also, the faster the user is able to select a relevant thread
the faster he can choose to follow or discard it. A direct map-
ping between user action and interface response is therefore
beneficial for browsing efficiency.

Design criterion 4. The interface must use a clear map-
ping between navigation and visualization.

We use the shot as the elementary element in video, this
implies that when a part of a shot is relevant to the query,
the entire shot is relevant. Depending on the genre of video,
such as broadcast news, or home video, the average length
of a shot varies, and there is no preset maximum length of a
shot. Therefore, the content at the beginning of a shot can
be something different from the content at the end of that
same shot. The system should be able to handle this.

Design criterion 5. The interface must be able to brow-
se within a shot.

Finally, video contains motion. By only looking at a
keyframe this motion cannot be seen. This means that a
shot cannot be represented by just one keyframe, so a re-
quirement is that the system should be able to visualize
motion within a shot.

Design criterion 6. The interface must support queries
demanding explicit motion.

Given these design requirements several thread-based brow-
sers are possible. We define three types of browsers which
vary in the decision of which threads to show and which
threads to hide. See figure 2 for an overview of these three
browsers. As introduced earlier, the CrossBrowser [26] pri-
marily focuses on targeted search. It displays only initial
query results and time. On the opposite side is the Rotor-
Browser [7], which uses exploratory search to find results. It
displays as many threads as possible. We introduce a new
browser which balances in-between the CrossBrowser and
the RotorBrowser: the ForkBrowser.

2.2 The ForkBrowser
The ForkBrowser visualizes results by displaying the shots

based on the shape of a fork, see figure 4. This shape was
chosen to allow the user to view multiple threads at once.
Using a grid based representation would allow more shots to
be viewed from a single thread, but this limits the navigation
into related threads. Also, by placing the current shot in
the center of the visualization the interface forces the user to
focus attention to the center of the screen. From here she can
look into the various tines of the fork. These represent the
different threads the user can visit. Any navigation action
into one of the adjoining thread moves the first shot of that
thread into the center of the display. The display will then
update to show threads for that shot. This addresses design
criterion 1. To address design criterion 2 the remainder of
the screen is deliberately left empty. This helps the user to
focus her attention only on the video.

The center tine shows unseen query results. In order to
give the user the context of the shot in the center the left-
most and rightmost tines show the time-line. In order to
allow the user to have more than one direction the two diag-
onal directions are used to show assignable similarity results.
This addresses design criterion 3.

Finally, to help the user to know where she is, and to
easily backtrack to earlier junctions, the stem of the fork
displays browse history. This addresses design criterion 1
again. To ensure that quick navigation is possible all browse
directions, each tine and the stem, are accessible by both the
mouse and directly mapped keyboard shortcuts, see figure 3.
This provides a direct mapping between the interface and
the user, as stated in criterion 4.

Figure 4: Thread-based visualization of the ForkBrowser. In this example from the TRECVID 2007 corpus,
the top tine displays automated query-by-keyword results, the horizontal tines display the time-line of a
“Klokhuis” episode, the diagonal tines display dynamic threads related to the center image, and finally the
stem of the fork displays the current browse history.

To provide a solution for design criteria 5 and 6, shots are
displayed as an animated sequence of up to 16 frames from
the originating shot. This helps answering queries where
the shot is relevant but this information was not shown in
a single keyframe. This resolves design criterion 5. It also
helps solving queries containing explicit motion, which was
design criterion 6.

3. EXPERIMENTAL SETUP
In order to evaluate thread based visualization using the

ForkBrowser we participated in the 2007 NIST TRECVID
Interactive Search task[22]. This is an independent interna-
tional benchmark for video retrieval systems. The goal of
TRECVID is to promote progress in content-based retrieval
from digital video material, by using open, metrics-based
evaluation. Numerous universities, research institutes and
companies participate in TRECVID, hence it can be con-
sidered the de facto standard for video retrieval evaluation.
A general overview of successful approaches for TRECVID
is given in [10]. TRECVID participation gives us a frame-

work for a comparison between the ForkBrowser and the
CrossBrowser with respect to effectiveness and efficiency. It
also gives us an indication how the ForkBrowser measures
up to the current state of the art in video retrieval.

3.1 Data set
The video collection of the TRECVID 2007 benchmark

consists of 100 hours of video material, provided by the
Netherlands Institute for Sound and Vision. The collection
contains videos of news magazines, science news, news re-
ports, documentaries, educational programming, and archival
video. Shot boundary information for the collection is pro-
vided by [19], automated speech recognition on these videos
in Dutch is provided by [13], and a machine translation of
the Dutch text to English is available.

TRECVID splits the collection into two parts. 50 hours
are available for training and development of the system.
The other 50 hours is used for evaluation. The contents of
the evaluation set is not known beforehand, but is compa-
rable to the first collection in terms of content.

During the benchmark itself the user receives a question

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 24. grayscale shots of a street with buildings and people
 23. the Cook character in the Klokhuis series

 22. one or more people playing musical instruments
 21. road taken from a moving vehicle through the front windshield

 20. bridge
 19. classroom scene with one or more students

 18. crowd filling more than half of field of view
 17. woman talking toward the camera in an interview − no other people visible

 16. moving boat
 15. sheep or goats

 14. one or more people walking with one or more dogs
 13. three or more people sitting at a table

 12. a street at night
 11. waterfront with water and buildings

 10. hills or mountains visible
 9. train in motion

 8. street protest or parade
 7. street market scene

 6. person talking on a telephone
 5. canal, river, or stream with some of both banks visible

 4. hands at a keyboard typing or using a mouse
 3. person walking or riding a bicycle

 2. a door being opened
 1. one or more people walking up stairs

Average Precision

Se
ar

ch
 T

op
ic

Experiment 1: Comparing the effectiveness of the CrossBrowser and the ForkBrowser

CrossBrowser
ForkBrowser
Others

Figure 5: Comparison of effectiveness per topic of the CrossBrowser and ForkBrowser on the TRECVID
2007 interactive retrieval benchmark. The green dots indicate browsers of the 28 users of 10 other systems
which used the same evaluation method, i.e. one user, one topic at a time.

in English, together with a couple of example images and
videos. He then uses the system to come up with as many
relevant shots on the test set as possible within a 15 minute
timespan. The resulting shots are evaluated and judged by
NIST. There are in total 24 topics to complete. Typical
topics of 2007 include“Find shots of people walking or riding
a bicycle.”, “Find shots of a train in motion.” and “Find
shots of a woman talking toward the camera in an interview
- no other people visible.”.

3.2 Implementation
We have implemented both automatic and manual query-

ing possibilities. For every new topic the system automati-
cally suggests 1000 results based on the ASR text [14]. The
searcher is free to use the automatically generated results or
not.

In order to supplement the automatic results, the follow-
ing querying systems were also available for searchers.

• query by keyword: keyword search through the ASR
results of the TRECVID 2007 dataset. Both Dutch
and English search engines were available.

• query by example: NIST provided several example
images for each topic. The searcher is able to use these
as a starting point for search through precomputed
Wiccest [9] and Gabor [3] features.

• query by concept: concept selection from a lexicon
of 572 concepts. These were trained beforehand using
the 50 hours of development data and a labelled corpus
of example images.

The CrossBrowser used the above querying systems in
combination with the time-line of each video. The Fork-
Browser has two extra similarity threads. We chose to use
visual similarity based on Wiccest features [9] for the first
thread. The second thread uses visual similarity based on
Gabor features [3].

During the search the interface times and logs all user
actions. When the user submits the final search result, the
resulting list is automatically appended to up to 1000 results
based on a user selected query.

3.3 Experiments and evaluation
We want to evaluate both effectiveness and efficiency of

the browsers. However, since any interactive browser needs
to have a user controlling it, we cannot measure the perfor-
mance of both browsers directly. The benchmark in essence
compares the two expert users, one using the CrossBrowser
and the other the ForkBrowser, on their performance during
the TRECVID 2007 interactive search task. For this reason
we have to be cautious in the conclusions we can draw from
this experiment. We define the following two experiments:

• Experiment 1: Comparing the effectiveness of
the CrossBrowser and the ForkBrowser This ex-
periment compares how both browsers perform, based
on their Average Precision scores for individual top-
ics. Average Precision is a one-valued, bounded, met-
ric which combines both precision and recall. It favors
good results at the beginning of the list. We also mea-
sure the Mean Average Precision, which is the average
precision scores averaged over all topics.

• Experiment 2: Comparing the efficiency of the
CrossBrowser and the ForkBrowser We measure
how both users interact with their browser during the
15 minute timeframe. This allows us to see if there is
a significant difference in browser usage, and whether
this varies between topics or sets an overall trend.
For this we compare the evaluation results as pro-
vided by NIST with our user logs, which are auto-
matically parsed to provide browse statistics. These
statistics include time spent adjusting a query, time
spent searching for results, number user interaction
steps made during searching, number of selected re-
sults, the thread from which results were selected, etc.

4. RESULTS

4.1 Experiment 1: Comparing the effective-
ness of the CrossBrowser and the Fork-
Browser

The results for this experiment are plotted in figure 5.
When we look at the mean average precision, we see that
both browsers achieve nearly the same score, 0.259 for the
CrossBrowser and 0.256 for the ForkBrowser, though aver-
age precision scores for individual topics vary greatly.

For example: the CrossBrowser performs significantly bet-
ter than the ForkBrowser for topics 4: hands at a keyboard
typing and 7: street market scene. The ForkBrowser per-
forms significantly better for topic 9: train in motion and
16: moving boat which both contain explicit motion, and 13:
people sitting at a table. This indicates that the browser ef-
fectiveness is dependent on the topic. Note again that when
looking at individual results the expert user performing the
task influences the results greatly. Therefore though it is
interesting to see that the ForkBrowser and CrossBrowser
yield nearly equal Mean Average Precision statistics, a larger
scale user study is required to determine which browser per-
forms better.

Both browsers achieve a 1.0 average precision score for
topic 23: Cook in Klokhuis, as did a lot of other systems.
This is because there was only a very low number of positive
results in the collection, which were all found.

To analyze whether thread usage is independent of topic
types we have measured the thread usage per topic for the
ForkBrowser. See figure 7. The graph indicates that each
topic required a different combination of threads in order
to find good results. For example topics 18: crowd and
10: mountain used the initial query thread more than oth-
ers. This was because there was a direct concept mapping
available for these topics. For topics 13: people sitting at a
table and 17: woman talking toward the camera the visual
similarity threads were really helpful. During the search
these threads allowed a great number of similar shots to be
selected. For most topics the time thread was very impor-
tant. We explain the success of the time thread as follows.
When a shot is relevant, the shots immediately before and
immediately after are often also relevant. The user sees this
and selects these items. This accounts for the large por-
tion of results obtained from the time-line. The results from
this graph strengthen the hypothesis that we cannot before-
hand merge the different threads into one, since the optimal
thread is not known beforehand.

4.2 Experiment 2: Comparing the efficiency
of the CrossBrowser and the ForkBrowser

We plot results for experiment 2 in figure 6. Results indi-
cate that the ForkBrowser required significantly less user in-
teraction steps for all topics within the same 15 minute time
frame. Also, the high performance on topic 7: street mar-
ket scene for the CrossBrowser can be explained. The expert
user went through a great number of results using more than
6000 interaction steps. Also interesting is that though both
browsers were able to achieve an 1.0 score on topic 23: Cook
in Klokhuis, the CrossBrowser user used more than double
the amount of user interactions.

5. CONCLUSIONS
In this paper, we combined aspects of exploratory brows-

ing and targeted browsing into an effective thread-based
video search system: the ForkBrowser.

For this we have made a distinction between exploratory
search systems and targeted search systems. Targeted search
focuses on fast retrieval based on an initial set of results from
a query system. Exploratory search focuses on exploration
of the video collection by combining multiple query methods
into one visualization, to allow the user to browse to related
shots. It is less dependent on an initial set of results.

To leverage the benefit of exploratory search without slow-
ing down the interface we used the notion of threads. This
allows for a direct mapping between query methods and
threads. Using these threads, we have introduced the Fork-
Browser. A browser which combines techniques from tar-
geted search browsers and exploratory search browsers into
a single browsing environment.

We investigate effectiveness and efficiency of the Fork-
Browser with two experiments in the NIST TRECVID 2007
Interactive search task. In these experiments we compare
the ForkBrowser with the CrossBrowser, a browser based
primarily on targeted search. The TRECVID interactive
search task consists of finding relevant shots for a given topic
within a 15 minute time span from a collection of 50 hours of
videos of news magazines, science news, news reports, doc-
umentaries, educational programming, and archival video.

On average, both browsers were equally effective in this
task. However, if we look at individual topic results, we see
that these vary greatly. This indicates that both browsers
have different strengths depending on the topic. A key in-
sight is that ForkBrowser requires significantly less user in-
teraction steps to achieve this same result. Results also in-
dicate that different combinations of threads are required
for different types of topics. Furthermore, both browsers
rank among the best interactive retrieval systems currently
available.

6. REFERENCES
[1] J. Adcock, M. Cooper, and F. Chen. Fxpal

mediamagic video search system. In Proceedings of the
6th ACM international conference on Image and video
retrieval, pages 644–644, New York, NY, USA, 2007.
ACM.

[2] J. Adcock, J. Pickens, M. Cooper, L. Anthony,
F. Chen, and P. Qvarfordt. Fxpal interactive search
experiments for trecvid 2007. In Proceedings of the
NIST TRECVID workshop 2007.

0 1000 2000 3000 4000 5000 6000 7000
of user interaction steps

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 P

re
ci

si
o
n

1
2

3

4

5
6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

12
3

45

6

7
8

9

10

11 12
13

14

15

16

17

18

19

20

21

22

23

24

Experiment 2: Comparing the efficiency of the CrossBrowser and the ForkBrowser

Figure 6: Average Precision for each topic compared to the number of user interaction steps. The interaction
steps include keyboard presses and mouse clicks for both browsers. Note that the user using the ForkBrowser
(5) used significantly less interactions than the user of the CrossBrowser (+).

24 17 14 1 11 18 10 7 12 13 20 21 8 4 6 5 15 2 16 22 9 23 19 3
0.0

0.2

0.4

0.6

0.8

1.0
Detailed thread usage per topic for the ForkBrowser

Figure 7: Normalized thread usage per topic (indicated by stacked bar). Each color denotes a different type
of thread. Green represents time, purple represents the initial query, yellow represents visually similarity,
red represents history and gray represents other. The lighter colored inlay represents the % of shots that was
judged correct by NIST for that thread. Note that the overall trend in thread usage is browsing through 1)
time, 2) initial query method followed by 3) visual similarity. Note however that different topics use different
thread combinations for optimal performance.

[3] A. Bovik, M. Clark, and W. Geisler. Multichannel
texture analysis using localized spatial filters. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12(1):55–73, 1990.

[4] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein,
and J. Malik. Blobworld: A system for region-based
image indexing and retrieval. Third International
Conference on Visual Information Systems, pages
509–516, 1999.

[5] M. G. Christel and N. Moraveji. Finding the right

shots: assessing usability and performance of a digital
video library interface. In Proceedings of the 12th
annual ACM international conference on Multimedia,
pages 732–739, New York, NY, USA, 2004. ACM.

[6] M. G. Christel and R. Yan. Merging storyboard
strategies and automatic retrieval for improving
interactive video search. In Proceedings of the 6th
ACM international conference on Image and video
retrieval, pages 486–493, New York, NY, USA, 2007.
ACM.

[7] O. de Rooij, C. G. M. Snoek, and M. Worring. Query
on demand video browsing. In Proceedings of the ACM
International Conference on Multimedia, pages
811–814, Augsburg, Germany, September 2007.

[8] M. S. Flickner, H. Niblack, W. Ashley, J. Q. H. Dom,
B. Gorkani, M. Hafner, J. Lee, D. Petkovic, D. Steele,
D. Yanker, et al. Query by image and video content:
the QBIC system. Computer, 28(9):23–32, 1995.

[9] J. M. Geusebroek. Compact object descriptors from
local colour invariant histograms. In British Machine
Vision Conference, volume 3, pages 1029–1038, 2006.

[10] A. G. Hauptmann and M. G. Christel. Successful
approaches in the trec video retrieval evaluations. In
Proceedings of the 12th annual ACM international
conference on Multimedia, pages 668–675, New York,
NY, USA, 2004. ACM.

[11] A. G. Hauptmann, W.-H. Lin, R. Yan, J. Yang, and
M.-Y. Chen. Extreme video retrieval: joint
maximization of human and computer performance. In
Proceedings of the 14th annual ACM international
conference on Multimedia, pages 385–394, New York,
NY, USA, 2006. ACM Press.

[12] D. Heesch, A. Yavlinsky, and S. Rüger. Nnk networks
and automated annotation for browsing large image
collections from the world wide web. In Proceedings of
the 14th annual ACM international conference on
Multimedia, pages 493–494, New York, NY, USA,
2006. ACM.

[13] M. Huijbregts, R. Ordelman, and F. de Jong.
Annotation of heterogeneous multimedia content using
automatic speech recognition. In Proceedings of the
international conference on Semantics And digital
Media Technologies, LNCS, Berlin, 2007. Springer
Verlag.

[14] B. Huurnink and M. de Rijke. Exploiting redundancy
in cross-channel video retrieval. In Proceedings of the
9th ACM SIGMM International Workshop on
Multimedia Information Retrieval (MIR 2007), pages
177–186. ACM Press, September 2007.

[15] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain.
Content-based multimedia information retrieval: State
of the art and challenges. ACM Trans. Multimedia
Comput. Commun. Appl., 2(1):1–19, 2006.

[16] H.-B. Luan, S.-Y. Neo, H.-K. Goh, Y.-D. Zhang, S.-X.
Lin, and T.-S. Chua. Segregated feedback with
performance-based adaptive sampling for interactive
news video retrieval. In Proceedings of the 15th
international conference on Multimedia, pages
293–296, New York, NY, USA, 2007. ACM.

[17] M. Naphade, J. R. Smith, J. Tešić, S.-F. Chang,
W. Hsu, L. Kennedy, A. Hauptmann, and J. Curtis.
Large-scale concept ontology for multimedia. IEEE
Multimedia, 13(3):86–91, 2006.

[18] A. P. Natsev, M. R. Naphade, and J. Tešić. Learning
the semantics of multimedia queries and concepts from
a small number of examples. In Proceedings of the 13th
annual ACM international conference on Multimedia,
pages 598–607, New York, NY, USA, 2005. ACM.

[19] C. Petersohn. Fraunhofer HHI at TRECVID 2004:
Shot boundary detection system. In Proceedings of the
TRECVID Workshop, NIST Special Publication,
Gaithersburg, USA, 2004.

[20] M. Rautianen, T. Ojala, and T. Seppänen.
Cluster-temporal browsing of large news video
databases. In IEEE ICME, pages 2:751–754, Taipei,
Taiwan, 2004.

[21] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
Proceedings of the International Conference on
Computer Vision, volume 2, pages 1470–1477, Oct.
2003.

[22] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation
campaigns and trecvid. In Proceedings of the 8th ACM
International Workshop on Multimedia Information
Retrieval, pages 321–330, New York, NY, USA, 2006.
ACM Press.

[23] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content based image retrieval
at the end of the early years. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, volume 22,
pages 1349–1380, December 2000.

[24] J. R. Smith and S. F. Chang. VisualSEEk: a fully
automated content-based image query system.
Proceedings of the fourth ACM international
conference on Multimedia, pages 87–98, 1997.

[25] C. G. M. Snoek, M. Worring, D. C. Koelma, and
A. W. M. Smeulders. A learned lexicon-driven
paradigm for interactive video retrieval. IEEE
Transactions on Multimedia, 9(2):280–292, 2007.

[26] C. G. M. Snoek, M. Worring, D. C. Koelma, and
A. W. M. Smeulders. A learned lexicon-driven
paradigm for interactive video retrieval. IEEE
Transactions on Multimedia, 9(2):280–292, February
2007.

[27] D. Wang, X. Liu, L. Luo, J. Li, and B. Zhang. Video
diver: generic video indexing with diverse features. In
Proceedings of the international workshop on
Workshop on multimedia information retrieval, pages
61–70, New York, NY, USA, 2007. ACM.

