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Abstract—In this paper, we present a general guideline to find a better distance measure for similarity estimation based on statistical

analysis of distribution models and distance functions. A new set of distance measures are derived from the harmonic distance, the

geometric distance, and their generalized variants according to the Maximum Likelihood theory. These measures can provide a more

accurate feature model than the classical euclidean and Manhattan distances. We also find that the feature elements are often from

heterogeneoussources thatmayhavedifferent influenceonsimilarityestimation.Therefore, theassumptionof single isotropic distribution

model is often inappropriate. To alleviate this problem, we use a boosted distance measure framework that finds multiple distance

measures, which fit the distribution of selected feature elements best for accurate similarity estimation. The new distance measures for

similarity estimationare tested on two applications: stereomatchingandmotion tracking in video sequences. The performanceof boosted

distancemeasure is further evaluated on several benchmark data sets from theUCI repository and two image retrieval applications. In all

the experiments, robust results are obtained based on the proposed methods.

Index Terms—Image classification, information retrieval, pattern recognition, artificial intelligence, algorithms.
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1 INTRODUCTION

SIMILARITY has been a research topic in the field of
psychology for decades (see Wallach [1] and Tversky

and Krantz [2]), but recently, there has been a huge
resurgence in the topic. Similarity judgments are considered
to be a valuable tool in the study of human perception and
cognition and play a central role in the theories of human
knowledge representation, behavior, and problem solving.
Tversky [3] describes the similarity concept as “an organiz-
ing principle by which individuals classify objects, form
concepts, and make generalizations.”

1.1 Similarity Estimation in Image Retrieval

Retrieval of images by similarity, that is, retrieving images
that are similar to an already retrieved image (retrieval by
example) or to a model or schema, is a relatively old idea.
Some might date it to antiquity, but more seriously, it
appeared in specialized geographic information systems
databases around 1980, in particular, in the “Query by
Pictorial Example” systemof IMAID [4]. From the start, itwas
clear that retrieval by similarity called for specific definitions

of what it means to be similar. In the mapping system, a
satellite image wasmatched to existingmap images from the
point of view of similarity of road and river networks, easily
extracted from images by edge detection. Apart from
theoretical models [5], it was only in the beginning of the
1990s that researchers started to look at retrieval by similarity
in large sets of heterogeneous images with no specific model
of their semantic contents. The prototype systems of Kato [6],
followed by the availability of the QBIC commercial system
using several types of similarities [7], contributed to making
this idea more and more popular.

Typically, a system for retrieval by similarity rests on
three components:

. Extraction of features or image signatures from the
images and an efficient representation and storage
strategy for this precomputed data.

. A set of similarity measures, each of which captures
some perceptivelymeaningful definition of similarity
and which should be efficiently computable when
matching an example with the whole database.

. A user interface for the choice of which definition of
similarity should be applied for retrieval, presenta-
tion of retrieved images, and supporting relevance
feedback.

The research in the area has made the following evident:

. A large number of meaningful types of similarity
can be defined. Only part of these definitions is
associated with efficient feature extraction mechan-
isms and (dis)similarity measures.

. Since there are many definitions of similarity and the
discriminating power of each of themeasures is likely
to degrade significantly for large image databases, the
user interaction and the feature storage strategy
componentsof thesystemswillplayan important role.

. Visual content-based retrieval is best used when
combined with the traditional search, both at the user
interface and at the system level. The basic reason for
this is that content-based retrieval is not seen as a
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replacement of parametric (SQL), text, and keywords
search. The key is to apply content-based retrieval
where appropriate,which is typicallywhere theuse of
text and keywords is suboptimal. Examples of such
applications are where visual appearance (for exam-
ple, color, texture, andmotion) is theprimaryattribute
as in stock photo/video, art, and so forth.

Gudivada andRaghavan [8] listed different possible types
of similarity for retrieval: color similarity, texture similarity,
shape similarity, spatial similarity, and so forth. Someof these
types canbe considered in all or onlypart of one image, canbe
considered independently of scale or angle or not, depending
on whether one is interested in the scene represented by the
image or in the image itself. Representation of features of
images, such as color, texture, shape, motion, is a funda-
mental problem in visual information retrieval. Image
analysis and pattern recognition algorithms provide the
means to extract numeric descriptors that give a quantitative
measure of these features. Computer vision enables object
and motion identification by comparing extracted patterns
with predefined models.

1.2 Distance Measure for Similarity Estimation

In many science and engineering fields, the similarity
between two features is determined by computing the
distance between them using a certain distance measure. In
computer vision, as well as some other applications, the
euclidean distance or sum of the squared differences
(L2—SSD) is one of the most widely used measures.
However, it has been suggested that it is not appropriate for
many problems [9]. From a maximum likelihood (ML)
perspective, it is well known that the SSD is justified when
the feature data distribution is Gaussian [10], whereas the
Manhattan distance or sum of the absolute differences
(L1—SAD), another commonly used measure, is justified
when the feature data distribution is Exponential (double or
two-sided exponential). Therefore, whichmeasure to use can
bedetermined if theunderlyingdata distribution is knownor
well estimated. The common assumption is that the real
distribution should fit either theGaussian or the Exponential.
However, in many applications, this assumption is invalid.
Finding a suitable distance measure becomes a challenging
problem when the underlying distribution is unknown and
could be neither Gaussian nor Exponential [10].

In content-based image retrieval [11], feature elements are
extracted for different statistical properties associated with
the entire digital images or perhaps with a specific region of
interest. Theheterogeneous sources suggest that the elements
may be from different distributions. In previous work, most
of the attention focused on extracting low-level feature
elements such as color-histogram [12], wavelet-based texture
[13], [14], and shape [15]with little or no considerationof their
distributions. The most commonly usedmethod for calculat-
ing the similarity between two feature vectors is still to
compare the euclidean distance between them.

Although some work has been done to utilize the data
model in similarity image retrieval [16], [17], [18], [10], the
relation between the distribution model and the distance
measure has not been fully studied yet. It has been justified
thatGaussian, Exponential, andCauchydistribution result in
L2, L1, and Cauchy metrics, respectively. However, distance
measures that fit other distribution models have not been
studied yet. The similarity estimation based on feature
elements from unknown distributions is an even more
difficult problem.

In this paper, based on previous work [16], [17], [18], we
propose a guideline to learn a robust distance measure for
accurate similarity estimation. The novelty and contribution
of our work lie on two folds. First, we study the relation of
data distribution, distance function, and similarity estima-
tion.Weprove that thewell-knowneuclideanandManhattan
distances are not the optimal choices when the data
distribution is neither Gaussian nor Exponential. Further,
our study on the relation between mean estimation and data
distribution found a new set of distance measures. They
correspond to a set of distributions that cannot be mathema-
tically formulated and have not been reported in literature
before. Our experiments show that these new distance
measures perform better than traditional distance measures,
which implies that the new distributions model the data
better than the well-known Gaussian and Exponential
distributions. Second, aboosteddistancemeasure framework
is used to automatically find the best distance functions from
a set of given measures and choose the feature elements that
are most useful for similarity estimation. It is especially
robust to small sample set problembecause thebestmeasures
are learned on each selected feature elements. Experimental
results show the superior performance of the proposed
method. It is also worth mentioning that arbitrary distance
functions canbeplugged into the boosting framework,which
may provide more accurate similarity estimation.

The rest of this paper is organized as follows: Section 2
presents a distancemeasure analysis using theML approach.
Section 3 describes the boosted distance measure. In
Section 4, we apply the new distance measures to estimate
the similarity in a stereo matching application, motion
tracking in a video sequence, and content-based image
retrieval. Discussion and conclusions are given in Section 5.

2 DISTANCE MEASURE ANALYSIS

2.1 Maximum Likelihood Approach

The additive model is a widely used model in computer
vision regarding ML estimation. Haralick and Shapiro [19]
consider this model in defining the M-estimate: “Any
estimate � defined by a minimization problem of the form
min

P
i fðxi � �Þ is called an M-estimate.” Note that the

operation “–” between the estimate and the real data implies
anadditivemodel. Thevariable� is either theestimatedmean
of a distribution or, for simplicity, one of the samples from
that distribution.

Maximum Likelihood theory [19] allows us to relate a
data distribution to a distance measure. From the mathe-
matical-statistical point of view, the problem of finding the
right measure for the distance comes down to the
maximization of the similarity probability.

We use image retrieval as an example for illustration.
Consider first, the two subsets ofN images from the database
ðDÞ : XXXX � D, YYYY � D, which according to the ground truth are
similar

XXXX � YYYY or xxxxi � yyyyi; i ¼ 1; . . . ; N; ð1Þ
where xxxxi 2 XXXX and yyyyi 2 YYYY represent the images from the
corresponding subsets.

Equation (1) can be rewritten as

xxxxi ¼ yyyyi þ ddddi; i ¼ 1; . . . ; N; ð2Þ
where ddddi represents the “distance” image obtained as the
difference between image xxxxi and yyyyi.
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In this context, the similarity probability between two
sets of images XXXX and YYYY can be defined

P ðXXXX;YYYY Þ ¼
YN
i¼1

pðxxxxi; yyyyiÞ; ð3Þ

where pðxxxx; yyyyÞdescribes the similarity between imagesxxxx and yyyy
(measured by the probability density function of the
difference between xxxx and yyyy). Independence across images is
assumed. We define

fðxxxxi; yyyyiÞ ¼ � log pðxxxxi; yyyyiÞ: ð4Þ
Equation (3) becomes

P ðXXXX;YYYY Þ ¼
YN
i¼1

exp½�fðxxxxi; yyyyiÞ�f g; ð5Þ

where the function f is the negative logarithm of the
probability density function of xxxx and yyyy.

According to (5), we have to find the function f that
maximizes the similarity probability. This is the Maximum
Likelihood estimator for XXXX, given YYYY [19].

Taking the logarithm of (5), we find that we have to
minimize the expression

XN
i¼1

fðxxxxi; yyyyiÞ: ð6Þ

In our case, according to (2) the function f does not
depend individually on its two arguments, query image xxxxi,
and the predicated one yyyyi but only on their difference. We
have thus a local estimator, and we can use fðddddiÞ instead of
fðxxxxi; yyyyiÞ, where ddddi ¼ xxxxi � yyyyi and the operation “–” denotes
pixel-by-pixel difference between the images or an equiva-
lent operation in feature space. Therefore, minimizing (6) is
equivalent to minimizing

XN
i¼1

fðddddiÞ: ð7Þ

Maximum Likelihood estimation shows a direct relation
between the data distribution and the comparison measure.
One can note that the Gaussian model is related to L2 metric,
whereas the Exponential model is related to L1 metric and so
is Cauchy metric, respectively [16], [10]. Note that although
we consider images as an example, this notion can be
extended to feature vectors associated with the images when
weareworkingwith image features or, even, can be extended
to pixel values in the images.

2.2 Distance Measure Analysis

The Gaussian, Exponential, and Cauchy distribution models
result in the L2 metric, L1 metric, and Cauchy metric,
respectively [10]. It is reasonable to assume that there may be
other distance measures that fit the unknown real distribu-
tion better. More accurate similarity estimation is expected if
the measure could reflect the real distribution. We call this
problem of finding the best distancemeasure distancemeasure
analysis. It can be mathematically formulated as follows.

Suppose we have observations xi
1 from a certain

distribution

xi ¼ �þ di; ð8Þ
where di, i ¼ 1; � � � ; N are data components and � is the
distribution mean or a sample from the same class if it is
considered as center of a subclass from a locality point of
view. In most cases, � is unknown and may be approxi-
mated for similarity estimation. For a distance function

fðx; �Þ � 0; ð9Þ
which satisfies the condition fð�; �Þ ¼ 0, � can be estimated
by �̂ which minimizes

" ¼
XN
i¼1

fðx; �̂Þ: ð10Þ

It is equivalent to satisfy

XN
i¼1

d

d�̂
fðxi; �̂Þ ¼ 0: ð11Þ

For some specific distributions, the estimated mean �̂ ¼
gðx1; x2; � � � ; xNÞ has a closed form solution. The arithmetic
mean, median, harmonic mean, and geometric mean in
Table 1 are in this category.

It is well known that theL2 metric (or SSD) corresponds to
the arithmetic mean, whereas the L1 metric (or SAD)
corresponds to the median. However, no literature has
discussed the distancemeasures associatedwith thedistribu-
tion models that imply the harmonic mean or the geometric
mean. Those measures in Table 1 are inferred using (11).
Fig. 1a illustrates the difference among the distance functions
fðx; �̂Þ for the arithmeticmean,median, harmonicmean, and
geometric mean. For fair comparison, the value of � is set to
be 10 for all distributions. We found that in distributions
associated with the harmonic and geometric estimations, the
observations that are far from the correct estimate ð�Þ will
contribute less in producing �, as distinct from the arithmetic
mean. In that case, the estimated values will be less sensitive
to the bad observations (that is, observations with large
variances), and they are therefore more robust.

2.3 Generalized Distance Measure Analysis

The robust property of harmonic and geometric distance
measures motivates us to generalize them and come up with
new measures that may fit the distribution better. Three
families of distance measures in Table 2 are derived from the
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TABLE 1
Distance Measures and the Mean Estimation

for Different Distributions

1. The observations can be in scalar or vector form. For simplicity, our
derivations are based on the scalar form, but the extension to vector form is
straightforward. Each vector element can be treated as a scalar.
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generalized mean estimation using (10). The parameters p, q,
and r define the specific distance measures and describe the
corresponding distributionmodels that may not be explicitly
formulated as Gaussian and Exponential. We found that in
the generalized harmonic mean estimation, the first type is
generalized based on the distance measure representation,
whereas the second type is generalized based on the
estimation representation. However, if p ¼ 1 and q ¼ �1,
both typeswill become ordinary harmonicmean, and if p ¼ 2
and q ¼ 1, both types will become an arithmetic mean. As for
the generalized geometric mean estimation, if r ¼ 0, it will
become an ordinary geometric mean. It is obvious that the
generalized measures correspond to a wide range of mean
estimationsanddistributionmodels. Figs. 1b, 1c, and1dshow
the distance measure function fðx; �̂Þ corresponding to the
first type and second type generalized harmonic mean and
the generalized geometric mean estimation, respectively. It
should be noted that not all mean estimations have a closed-
form solution, as in Tables 1 and 2. In that case, �̂ can be
estimated by numerical analysis, for example, greedy search
of �̂ to minimize ".

3 BOOSTING DISTANCE MEASURES FOR SIMILARITY

ESTIMATION

3.1 Motivation

Asmentioned in Section 1, themost commonly used distance
measure is the euclidean distance that assumes that the data
have a Gaussian isotropic distribution. When the feature
space has a large number of dimensions, an isotropic
assumption is often inappropriate. Besides, the feature
elements are often extracted by different statistical ap-
proaches, and their distributions may not be the same and
different distance measures may better reflect the distribu-
tions. Thus, an anisotropic and heterogeneous distance

measure may be more suitable for estimating the similarity
between features.

Mahalanobis distance ðxxxxi � yyyyiÞTWðxxxxi � yyyyiÞ is one of the
traditional anisotropic distances. It tries to find the optimal
estimation of the weight matrix W . It is worth noting that it
assumes that the underlying distribution is Gaussian, which
is often not true. Furthermore, if k is the number of
dimensions, the matrix W contains k2 parameters to be
estimated, which may not be robust when the training set is
small compared to the number of dimensions. Classical
techniques such as Principal Component Analysis (PCA)
[20] or Linear Discriminant Analysis (LDA) [21] may be
applied to reduce the dimensions. However, these methods
cannot solve the problems of a small training set, and they
also assume Gaussian distribution.

3.2 Boosted Distance Measures

Basedon the analysis in Section 3.1,weuse a boosteddistance
measure for similarity estimation, where the similarity
function can be estimated by a generalization of different
distancemeasures on selected feature elements. In particular,
we use AdaBoost with decision stumps [22] and our distance
measure analysis to estimate the similarity. Given a training
setwith featurevectorsxxxxi, the similarity estimation isdoneby
training AdaBoost with differences dddd between vectors xxxxi and
xxxxj, where each difference vector dddd has an associated label ld:

2

ld ¼ 1 if xxxxi and xxxxj are from same class
0 otherwise:

�
ð12Þ

Aweak classifier is defined by a distance measurem on a
feature element f with estimated parameter(s) �, which could
be as simple as the mean and/or a threshold. The label
prediction of the weak classifier on feature difference dddd is
hm;f;�ðddddÞ 2 f0; 1g.

In this paper, for simplicity, the weak classifier learns
two parameters as �: p 2 f�1; 1g and threshold. The
prediction is defined as follows:
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Fig. 1. The distance function fðx; �Þ of (a) the arithmetic mean, median,
harmonic mean and geometric mean, (b) first-type, (c) second-type
generalized harmonic mean, and (d) the generalized geometric mean (�
is fixed and set to 10).

TABLE 2
Generalized Distance Measures

2. The elements of difference vector dddd between vectors xxxxi and xxxxj can be
measured by different metrics, for example, euclidean distance dddd ¼
kxxxxi � xxxxjk2 or Manhattan distance dddd ¼ jxxxxi � xxxxjj.
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hðddddÞ ¼ 1 if df � p < threshold � p
0 otherwise:

�
ð13Þ

TheboosteddistancemeasureHðddddÞ is learnedbyweighted
training with different distance measures on each feature
element andby selecting themost important feature elements
for similarity estimation iteratively. Consequently, we derive
a predicted similarity Sðxxxx; yyyyÞ ¼ HðddddÞ that is optimal in a
classification context. The brief algorithm is listed below.

Please note that the resulting similarity Sðxxxx; yyyyÞ may not
be a traditional metric. It does not have the metric
properties such as symmetry and triangular inequality.
However, it is not necessarily a disadvantage because the
proposed application of similarity estimation does not rely
on the metric properties. Indeed, nonmetric distances
measure can be more accurate for comparing complex
objects, as have been studied recently in [23].

Boosting Distance Measure Algorithm
Given: Pairwise difference vector set D and the

corresponding label L
Number of iterations T
Weak classifiers based on each distance measurem
for each feature element FE

Initialization: weight wi;t¼1 ¼ 1=jDj, i ¼ 1; . . . ; D
Boosting:
For t ¼ 1; . . . ; T

. Train the weak classifier on the weighted sample set.

. Select the best weak classifier giving the smallest error
rate:

"t ¼ min
m;FE;�

P
i

wi;tjhm;FE;�ðddddiÞ � lij:

. Let ht ¼ hmt;FEt;�t with mt, FEt, �t minimizing error
rate.

. Compute the weights of classifiers ð�tÞ based on its
classification error rate:

Let �t ¼ "t
1�"t

, �t ¼ 1
logð�tÞ:

. Update and normalize the weight for each sample:

wi;tþ1 ¼ wi;t�
1�jht;i�lij
t

wi;tþ1 ¼ wi;tþ1=
P

i wi;tþ1:

end for t
Final prediction HðddddÞ ¼ P

t
�thtðddddÞ:

The method has three main advantages: 1) the similarity
estimationuses only a small set of elements that ismost useful
for similarity estimation, 2) for each element, the distance
measure that best fits its distribution is learned, and 3) it adds
effectiveness and robustness to the classifier when we have a
small training set compared to the number of dimensions.

Because the feature elements may be from different
sources, they may be modeled as different distributions.
Actually, the correlation of distribution is very difficult to be
mathematically modeled even if we assume the same
distribution for different features as in Relevant Component
Analysis (RCA) and [24]. The boosting scheme alleviates that
problem because the feature elements selected have compli-
mentary properties in similarity estimation and, conse-
quently, the correlation among the selected feature elements
should be low. Furthermore, since the training iteration T is
usually much less than the original data dimension, the
boosted distance measure works as a nonlinear dimension
reduction technique similar to Viola and Jones [25], which
keeps the most important elements to similarity judgment. It

could be very helpful to overcome the small sample set
problem [26]. It is worth mentioning that the proposed
method is general and can be plugged into many similarity
estimation techniques, such as widely usedK-NN [27].

Compared with other distance measures proposed forK-
NN, the boosted similarity is especially suitable when the
training set is small. Two factors contribute to this. First, ifN is
the size of the original training set, this is augmentedbyusing
a new training setwithOðN2Þ relations between vectors. This
makes AdaBoost more robust against overfitting. Second,
AdaBoost complements K-NN by providing an optimal
similarity. Increasing the effectiveness for small training sets
is necessary in many real classification problems, and in
particular, it is necessary in applications such as retrieval
where the user provides a small training set online.

3.3 Related work

We notice that there have been several works on estimating
the distance to solve certain pattern recognition problems.
Domeniconi et al. [28] and Peng et al. [29] propose specific
estimations designed for theK-NN classifier. They obtain an
anisotropic distance based on local neighborhoods that are
narrower along relevant dimensions and more elongated
along nonrelevant ones. Xing et al. [30] propose estimating
the matrixW of a Mahalanobis distance by solving a convex
optimization problem. They apply the resulting distance to
improve theK-meansbehavior. Bar-Hillel et al. [31] alsouse a
weight matrix W to estimate the distance by RCA. They
improve theGaussianMixture EMalgorithmby applying the
estimated distance along with equivalence constraints.

The work by Athitsos et al. [32] and Hertz et al. [33]
resemble the boosting part of our method, although their
approach is conceptually different. Athitsos et al. [32]
proposed a method called BoostMap to estimate a distance
that approximates a certain distance, for example, EMD
distance by Ruber et al. [46] but with a much smaller
computational cost. Our method does not approximate or
emulate any given distance. What we want to do is to learn a
new distance function that is accurate for our problem.
Hertz’s work [33] uses AdaBoost to estimate a distance
function in a product space (with pairs of vectors), whereas
the weak classifier minimizes an error in the original feature
space. Therefore, the weak classifier minimizes a different
error than the one minimized by the strong classifier
AdaBoost. In contrast, our framework utilizesAdaBoostwith
weak classifiers that minimize the same error as AdaBoost
and in the same space. Apart from this conceptual difference,
Hertz et al. [33] use Expectation-Maximization of Gaussian
Mixture as a weak classifier, where they assume that the data
have a Gaussian Mixture distribution and estimate several
covariance matrices, which may not work well when the real
distribution is not Gaussian or the training set is small
compared to the dimensionality of the data.

4 EXPERIMENTS AND ANALYSIS

4.1 Distance Measure Analysis in Stereo Matching

Stereo matching is the process of finding correspondences
between entities in images with overlapping scene content.
The images are typically taken from cameras at different
viewpoints, which imply that the intensity of corresponding
pixels may not be the same.

In stereo data sets, the ground truth for matching
corresponding points may be provided by the laboratory
where these imageswere taken.Thisgroundtruth isa resultof
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mapping the world coordinates, in which the camera is
movingtothe imagecoordinates,usingthethree-dimensional
geometry relations of the scene. In this case, an automatic
stereomatcher,whichisabletodetect thecorrespondingpoint
pairs registered in the stereo images of the test set scenes can
be tested. For this stereo matcher, it is possible to determine
the best measure when comparing different image regions
to find the similar ones. The optimum measure in this case
will give the most accurate stereo matcher.

Weuse two standard stereodata sets (Castle set andTower
set) provided by CarnegieMellonUniversity. These data sets
contain multiple images of static scenes with accurate
information about object locations in 3D. The images are
taken with a scientific camera in an indoor setting, the
Calibrated Imaging Laboratory at CMU. The 3D locations are
given in X � Y � Z coordinates with a simple text descrip-
tion (at best accurate to 0.3mm), and the corresponding image
coordinates (the ground truth) are provided for all 11 images
taken for each scene. For each image, there are 28 points
provided as ground truth in theCastle set and 18 points in the
Tower set. An example of two stereo images from the Castle
data set is given in Fig. 2.

In each of the images, we consider the points, which are
given by the ground truth, and we want to find the proper
similarity estimation, which will ensure the best accuracy
in finding the corresponding points according to the
ground truth.

We cannot use a single pixel information but have to use a
region around it, so wewill perform template matching. Our
automatic stereo matcher will match a template defined
around one point from an image with the templates around
points in the other images to find similar ones. If the resulting
points are equivalent to those provided by the ground truth,
we consider thatwe have a hit; otherwise, we have amiss. The
accuracy is given by the number of the hits divided by the
number of possible hits (number of corresponding point
pairs). Because the ground truth is provided with subpixel
accuracy, we consider that we have a hit when the
corresponding point lies in the neighborhood of one pixel
around thepoint providedby the ground truth.Our intention
is to try distance measures other than SSD, that is, L2, (which
is used in the original algorithms) in calculating the disparity
map. The algorithm is described in the following:

1. Obtain the ground truth similarity distance distribu-
tion A template of size 5� 5 is applied around each
ground truth point (that is, 28 points for each image),
and the real distance is obtained by calculating the
difference of pixel intensities within the template
between sequential frames, which is the difference
between frame2and frame1, frame3and frame2, and
so on.

2. Obtain the estimated similarity using distance mea-
sure analysis:

a. Given the 28 ground truth points in one frame,
say, frame k, the template matching centered at
a ground-truth point is applied to find its
corresponding point in frame kþ 1.

– To find the corresponding point in frame
kþ 1, we search a band centered at the row
coordinate of the pixel provided by the test
frame k with a height of seven pixels and
width equal to the image dimension. The
template size is 5� 5.

– The corresponding point is determined to
minimize the quantity of distance, which is
defined by distance measures. For example,
the distance under L1 metric is the summed
as the absolute difference between the in-
tensity of each pixel in the template and
that in the searching area, that is,

P25
i¼1

jxi;kþ1 � xi;kj, and the distance under L2 is
the summed squared difference between
each pixel intensity in the template and
that in the searching area, that is,

P25
i¼1

ðxi;kþ1 � xi;kÞ2. For other distance measures,
", see Tables 1 and 2.

b. Apply the template centered at the ground-truth
point in frame k and its tracked point in frame
kþ 1 to calculate pixel intensity difference as the
estimated similarity measurement.

3. Apply the Chi-square test [34].

The estimated distance and the real distance are compared
using Chi-square test.

DistBoost [33] and the Boosted Distance are also tested
for comparison. Note that Chi-square test cannot be applied
on these two techniques. For the parameterized measures,
we should choose the parameter value that minimizes the
Chi-square test. As our first attempt, the parameters of p, q,
and r are tested in the range of �5 to 5 with step size 0.1.
Two thirds of the reference points pairs are randomly
selected for training, and the rest are used for testing.

Fig. 3 shows the real distance distribution and the
estimated distance distribution for the distance measures
on the Castle data set. Both the solid and dashed curves are
sampled with 233 points at equal intervals. The Chi-square
test value is shown for each measure in Table 3. The smaller
the Chi-square test value, the closer the estimation is to the
real distribution. The generalized geometric mean measure
has the best fit to the measured distance distribution.
Therefore, the accuracy should be the greatest when using
the generalized geometric mean measure (Table 3). In all
cases, the hit rate for the generalized geometric mean ðr ¼
1:5Þ is 80.4 percent, and the hit rate for the Cauchymeasure is
78.9 percent. The hit rates obtained with L1 and L2 are both
78.2 percent. The Cauchy measure performs better than both
L1 and L2. It should be noted here that the Chi-square
test score is not exactly in the same order of the hit rate
though the winner is consistent in both cases. This is because
the ground truth is provided with subpixel accuracy during
the data collection process, and we consider that it is a
hit when the corresponding point lies in the neighborhood
of one pixel around the point provided by the ground truth.
The inconsistency introduced by this rounding distance
may explain the observation (not in the exact order for
both measures). The boosted measure outperformed the

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 3, MARCH 2008

Fig. 2. A stereo image pair from the Castle data set.
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DistBoost. Similar results were obtained for the Tower set,
and they are not shown here.

To evaluate the performance of the stereo matching
algorithm under difficult matching conditions, we also use
the ROBOTS stereo pair [35]. This stereo pair is more
difficult due to varying levels of depth and occlusions
(Fig. 4). For this stereo pair, the ground truth consists of
1,276 points pairs with one pixel accuracy. Two thirds of the
reference points pairs are randomly selected for training,
and the rest are used for testing.

Consider a point in the left image given by the ground
truth. The disparity map gives the displacement of the
corresponding point position in the right image. The
accuracy is given by the percentage of pixels in the test set,
which the algorithm matches correctly. Table 4 shows the
accuracy of the algorithmswhen different distancemeasures
are used. Note that the accuracy is lower using the ROBOTS
stereo pair, showing that, in this case, the matching
conditions aremore difficult. However, still, the second-type
generalized harmonicmeanwith q ¼ 4:1 gives the best result.
TheCauchymeasure still performs better thanL1 andL2, and
this observation is consistent with [10]. Our best single
distance measure even outperformed the learning-based
DistBoost, whereas the Boosted Distance measure outper-
formed all other distance measures. It is worth mentioning
that our improvement for the stereomatching experiments is
relatively small. We believe that the cost of searching for the
bettermeasure is small, and our approach could give an even
larger improvement on other test sets.

4.2 Distance Measure Analysis in Motion Tracking

In this experiment, the distancemeasure analysis is tested on
a motion tracking application. We use a video sequence
containing19 imagesonamovinghead ina static background
[36]. For each image in this video sequence, there are 14points
given as a ground truth. The motion tracking algorithm
between the test frame and another frame performs template
matching to find the best match in a 5� 5 template around a
central pixel. In searching for the corresponding pixel, we
examine a region of width and the height of seven pixels
centered at the position of the pixel in the test frame. The idea
of this experiment is to trace moving facial expressions.
Therefore, the ground truth points are provided around the
lips and the eyes, which are moving through the sequences.
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Fig. 3. The real distance distribution (dashed line) versus the estimated distance distribution (solid line) for the Castle data set. (a) L1 (0.0366). (b) L2

(0.0378). (c) Cauchy a ¼ 17 (0.0295). (d) Generalized geometric r ¼ 1:5 (0.0239).

TABLE 3
The Accuracy (Percent) of the Stereo Matcher on the

Castle Set (Best Parameter Is Shown)

TABLE 4
The Accuracy (Percent) of the Stereo Matcher on the

Robots Stereo Pair (Best Parameter Is Shown)

Fig. 4. ROBOTS stereo pair.
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In Fig. 5, we display the fit between the real data
distribution and the four distance measures. The real data
distribution is calculated using the template around points
in the ground truth data set considering sequential frames.
The best fit is the generalized geometric mean measure
with r ¼ 7:0.

Between the first frame and a later frame, the tracking
distance represents the average template matching results.
Fig. 6 shows the average tracking distance of the different
distancemeasures. The generalizedgeometricmeanmeasure
with r ¼ 7:0 performs best, whereas Cauchy measure out-
performs both L1 and L2.

4.3 Boosted Distance Measure in Image Retrieval

Aswe discussed in Section 3.2, the boosted distance measure
performs an element selection that is highly discriminant for
similarity estimation, and it does not suffer from the small
sample set problem as LDA and other dimension reduction
techniques. To evaluate the performance, we tested the
boosted distance measure on image classification against
some state-of-the-art dimension reduction techniques: PCA,
LDA,NonparametricDiscriminantAnalysis (NDA) [37], and
plain euclidean distance in the original feature space.

The two data sets we used are 1) a subset of the MNIST
data set [38], containing similar handwritten 1s and 7s
(Fig. 7a) and a gender recognition database containing facial
images from the AR database [39] and the XM2TVS database
[40] (Fig. 7b). Raw pixel intensity is used as feature elements.
Using rawpixels is just a simple formof representation and is
considered valid in this case because the object appears
aligned in the image. Similar data representation has been
used in other research work, for example, face retrieval work
by Moghaddam et al. [26]. It is noted that our method can be
applied to arbitrary features used in CBIR applications. We
could use any other form of representation because the

method does not depend on this particular choice. The
dimension of the feature for both databases is 784, whereas
the size of the training set is fixed at 200, which is small
compared to the dimensionality of the feature. In such a
circumstance, selecting an appropriate feature element is
very important. In our previous study on face recognition,
we found that it is difficult for classic techniques such as
PCA, LDA, and Fisherface (PCA þ LDA) [41]. In this
experiment, the difference measure m is fixed as L1, that is,
dddd ¼ xxxxi � xxxxj for simplicity. It will be easily extended to
different measures by feeding difference d obtained with
different measures such as euclidean distance in the next
experiment. Nearest-neighbor classifier is used in the
reduced dimension space.

Fig. 8 shows the classification accuracy versus the
projected dimension, which, for our boosted distance
measure, is the number of iterations T . Because of the small
sample problem, the accuracy of LDA is poor, at 50 percent
and 49.9 percent, and is not shown in the figure. A simple
regularization scheme can improve its performance but LDA
still remainsmuchworse thanother techniques. It is clear that
the traditionalmethodsperformpoorlydue to the fact thatwe
use a very small training set compared to the dimensionality
of the data. Note that all traditional methods rely on
estimating a covariance or scatter matrix with k2 elements,
where k is the number of dimensions. Empirical experience
suggests that we need a training set of size greater than 3k2 to
obtain a robust estimation of k2 parameters. However, our
boosted distance measure needs to estimate only a very few
parameters on each dimension, which provides a robust
performance on the small training set and makes it outper-
form the well-known techniques.

4.4 Boosted Distance Measure on Benchmark
Data Set

In this section, we compare the performance of our approach
by boosting multiple distance measures with boosting single
measure and severalwell-known traditional approaches. The
experiment is conducted on 13 benchmark data set from the
University of California, Irvine (UCI) [42] and two data sets
used in the third experiment: gender and written digits
recognition. For the benchmark data set tests, we used
20 percent of the data as training set and 80 percent as testing
set. The traditional distancemeasureswe tested are euclidean
Distance, Manhatan Distance, RCA distance [31], Mahalano-
bisdistancewith the samecovariancematrix for all the classes
(Mah), and Mahalanobis with a different covariance matrix
for every class (Mah-C). The last three measures are sensitive
to small sample set problem. A diagonal matrix D could be
estimated insteadof originalweightmatrixW to simplify that
problem, and consequently, we can obtain three measures
RCA-D, Mah-D, and Mah-CD, respectively. To make the
comparison complete, we also test original AdaBoost with
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Fig. 5. The real data distribution (dashed line) versus the estimated data distribution (solid line) for motion tracking. (a) L1 (0.0997). (b) L2 (0.0765).

(c) Cauchy a ¼ 7:1 (0.0790). (d) Generalized geometric mean with r ¼ 7:0 (0.0712).

Fig. 6. Average tracking distance of the corresponding points in
successive frames; for Cauchy, a ¼ 7:1, and for generalized geometric
mean, r ¼ 7:0.
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decision stump (d.s.), C4.5 [43], boosted L1ðB:L1Þ and
L2ðB:L2Þ. The AdaBoost C4.5 decision tree is implemented
in the Matlab Classification Toolbox [44]. Due to the space
limitation, only the traditional distance measure that gives
the best performance in each data set is shown in Table 5. The
smallest error rates are highlighted in bold.

From the results in Table 5, we can find that the boosted
multiple distance measures performs the best in 12 out of
15 data sets. It provides comparable results to the best
performance on two data sets (spectf and credit). Only in one
data set (ionosphere), our method is outperformed by the
traditional distancemeasure. It proves that themethod could

discover the best distance measure that reflects the distribu-
tion and selects the feature elements that are discriminant in
similarity estimation. It is worth mentioning that our frame-
work does not consider correlation between feature elements
explicitly as otherdistancemeasures suchas theMahalanobis
distance do. However, the boosting process will rarely select
features that are strongly correlated to each other. This is
because, at each round, boosting selects one feature that
provides information not included in the already selected
ones. Therefore, the estimated distance is based on features
complementary to each other. On the other hand, traditional
methods such as the Mahalanobis, used for considering
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Fig. 7. Example images from (a) handwritten digits and (b) gender recognition.

Fig. 8. Accuracy of classification on (a) gender recognition (b) and written digits.

TABLE 5
Comparison to Traditional Distance Measure and AdaBoost on UCI Data Sets
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feature correlation are not robust in spaces of high dimen-
sionalityandsmallnumberof trainingobjects, as shownin the
results.

5 DISCUSSIONS AND CONCLUSIONS

This paper presents a comprehensive analysis on distance
measure and boosting heterogeneous measure for similarity
estimation. Our study shows that learning the similarity
measure is an important step (mostly ignored by the existing
literature) for many computer vision applications. The main
contribution of our work is to provide a general guideline for
designing a robust distance estimation that could adapt data
distributions automatically. Novel distance measures deriv-
ing from harmonic, geometric mean, and their generalized
forms are presented and discussed. We examined the new
measures for several applications in computer vision, and the
estimation of similarity can be significantly improved by the
proposed distance measure analysis.

The relationships between probabilistic data models,
distance measures, and ML estimators have been widely
studied. The creative component of our work is to start from
an estimator and perform reverse engineering to obtain a
measure. In this context, the fact that some of the proposed
measures cannot be translated into a known probabilistic
model is both a curse and a blessing. A curse, because it is
really not clear what the underlying probabilistic models are
(they certainly do not come from any canonical family), and
this is usually the point at which one starts. After all, the
connection between the three quantities (metric, data model,
andMLestimator) is probabilistic. It is a bit unsettling to have
no ideaofwhat thesemodels are. It is ablessingbecause this is
probably the reason why these measures have not been
previously proposed. However, they seem to work very well
according to the experimental result in this paper.

In similarity, estimation of the feature elements are often
fromheterogeneous sources. The assumption that the feature
has a unified isotropic distribution is invalid. Unlike a
traditional anisotropic distance measure, our proposed
method does not make any assumptions on the feature
distribution. Instead, it learns the distance measure for each
element to capture the underlying feature structure. Because
the distance measure is trained on the observations of each
element, the boosted distance does not suffer from the small
sample set problem.Considering that not all feature elements
are related to the similarity estimation, theboostingprocess in
the proposed method provides a good generalization of the
feature elements that are most important in a classification
context. It also has a dimension reduction effect, which may
be very useful when the original feature dimension is high.
The automatic measure adaptation and element selection in
the boosted distance measure bridge the gap between the
high-level similarity concept and low-level features.With this
approach,we guarantee that themeasure factor is filtered out
(it is optimized), and the user can concentrate on getting
better features for improving the matching. Another nice
feature of the approach is that it can be applied to a wide
variety of algorithms, and it is not dependent on them. We
tested the method on image retrieval, stereo matching, and
motion tracking applications to show that the approach can
be applied to a wide variety of computer vision algorithms,
which pose different challenges. The experimental results

show that the boosted measure is more effective than
traditional distance measures.

In the future, we would like to continue this research
work in the following directions:

1. studying the correlation between feature elements
and formulating them mathematically,

2. incorporating our new measure into state-of-the-art
classification techniques,

3. comparing with different feature selection schemes
and evaluating the performance improvement
(comparison with two feature selection schemes
are reported in Appendix A), and

4. using a larger set of distance measures [47] to further
enhance the estimation accuracy.

APPENDIX A

COMPARISON WITH TWO FEATURE SELECTION

SCHEMES

In our framework, feature selection is performed by boosting
and decision stumps, which are classical methods. The main
purpose of the paper is not to introduce a new feature
selection algorithm. Nevertheless, we compare our boosted
distance with the following two feature selection schemes to
show the strength of our method: Greedy Feature Selection
(G.FS) first ranks the individual performanceof each element.
Then, it selects the best K feature elements, where K is the
feature set size. We construct two classifiers for G.FSmethod
using euclidean (G.FS-E) and Manhattan (G.FS-M) distance,
respectively. Exhaustive Feature Selection (E.FS) compares
all the combinationof feature elementswitha fixed feature set
size and chooses the element combination that gives the best
performance. Similarly, we use euclidean and Manhattan
metrics to construct two classifiers, E.FS-E and E.FS-M,
respectively. Although E.FS is theoretically better than or
equivalent to G.FS, its computational cost is high due to the
exhaustive testing process, whichmakes it infeasible for data
setwith largedimensionality. Thedata setsweused areHeart
and Breast-Cancer fromUCI repository [42]. The dimension-
alities data are 13 and 9, respectively. Two thirds of the data
are used for training and the rest for testing.

The results in Fig. 9 suggest that the boosted distance
outperforms both feature selection schemes. The reasons lie
in twofold: First, the newdistancemeasures fit the data better
than traditional euclidean andManhattan distances. Second,
the weighted feature combination makes the performance of
boosted distance less sensitive to the size of the feature set.
Note that using boosting and decision stumps as feature
selection has been reported in the literature [25]. Our
contribution is to integrate this approach into a distance
estimation framework.
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Fig. 9. Comparison of boosted distance with two feature selection schemes. (a) Heart data set. (b) Breast-cancer data set.
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