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ABSTRACT

Can a machine learn to perceive emotions as evoked by an
artwork? Here we propose an emotion categorization system,
trained by ground truth from psychology studies. The train-
ing data contains emotional valences scored by human sub-
jects on the International Affective Picture System (IAPS), a
standard emotion evoking image set in psychology. Our ap-
proach is based on the assessment of local image statistics
which are learned per emotional category using support vec-
tor machines. We show results for our system on the IAPS
dataset, and for a collection of masterpieces. Although the
results are preliminary, they demonstrate the potential of ma-
chines to elicit realistic emotions when considering master-
pieces.

Index Terms— Emotion categorization, scene catego-
rization, natural image statistics.

1. INTRODUCTION

One of the main intentions of a master is to capture the scene
or subject such that the final masterpiece will evoke a strong
emotional response. Each stroke of an artist’s brush against
the canvas brings not only depth to the painting itself but also
to the emotional expression that the painting will convey in
the end. While the emotional feelings may vary from one
person to another, there is some common ground, as many
people tend to experience similar emotions when provoked
by famous artworks. However, to mimic emotional feelings
is a non trivial task for a machine. One could argue that emo-
tions, among other stimuli, may be derived from visual con-
tent. Considering the current advances of scene categorization
techniques, we believe that it is possible to achieve machine
prediction of emotions as evoked by visual scenes for humans.

While the recognition of emotions as expressed by hu-
mans, for example by facial expressions, has matured to
a state where robust emotion recognition software is avail-
able [1] the perception of emotions as evoked by visual scenes
is an almost untouched area of research [2, 3]. In this paper,
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Fig. 1. Which emotions do these masterpieces evoke? Can
a machine learn to perceive these emotions? (a) Portrait of
Lydia Delectorskaya, the Artist’s Secretary by Matisse; (b)
Satyr and Nymph by Matisse, Both at the Hermitage, St. Pe-
tersburg, Russia; (c) The Mill at Wijk bij Duurstede by Jacob
van Ruisdael, Rijksmuseum, Amsterdam, The Netherlands.

we consider whether we can train a visual categorization al-
gorithm to mimic the emotions as perceived by humans when
looking at master paintings, see Fig. 1. We have chosen the
domain of masterpieces as the masters are well known for



their accurate and consistent arousal of emotions from their
paintings.

2. MACHINE EMOTION PERCEPTION FROM
IMAGES

We use scene analysis and machine learning techniques to
learn to differentiate between pictures from various emotion
evoking categories. The training set is the International Af-
fective Picture System (IAPS) dataset extended with subject
annotations to obtain ground truth categories.

2.1. Emotional valences ground truth

IAPS is a common stimulus set frequently used in emotion
research. It consists of 716 natural colored pictures taken by
professional photographers. They depict complex scenes con-
taining objects, people, and landscapes (Fig. 2). A large data
set already exists that characterizes those pictures in their re-
liability to elicit specific emotions. All pictures are catego-
rized in emotional valence (positive, negative, no emotion;
[4]). The images used as ground truth in our experiment, a
subset of 396 of the IAPS images which are categorized in
distinct emotions by Mikels et al. [5], in anger, awe, disgust,
fear, sadness, excitement, contentment, and amusement, see
Fig. 2. The categorization was made in two steps: A pilot
study (20 subjects) with an open answering format has re-
vealed eight frequently named types of emotions. In the main
study (60 subjects) participants had to label each picture con-
cerning these eight categories on a seven-point scale. Using
this method 396 pictures were labeled either as one specific
emotion or as a mixture of several emotions, see [5] for more
details. Note that single pictures can belong to different emo-
tional categories.

2.2. Holistic features from image statistics

We follow the scene categorization method put forward in van
Gemert et al. [6]. This method has proven itself in realis-
tic scenarios like the visual categorization task of TRECVID
[7]. We aim to decompose complex scenes according to an
annotated vocabulary. The visual words in this vocabulary
provide a first step to automatic access to image content [8].
Given a fixed vocabulary, we assign a similarity score to all
words for each region in an image. Different combinations
of a similarity histogram of visual words provide a sufficient
characterization of a complex scene.

In contrast to common codebook approaches [9, 10, 11,
12, 8], we use the similarity to all vocabulary elements [6]. A
codebook approach uses the single, best matching vocabulary
element to represent an image patch. For example, given a
blue area, the codebook approach must choose between wa-
ter and sky, leaving no room for uncertainty. Following [6],
we use the similarity to all vocabulary elements. Hence, we

Fig. 2. International Affective Picture System (IAPS) [4].
The following emotional classes are distinguished in the
dataset [5]: A - anger, Am - amusement, Aw - awe, C - con-
tentment, D - disgust, E - excitement, F - fear, S - sadness, Un
- undifferentiated negative, Up - undifferentiated positive.

model the uncertainty of assigning an image patch to each
vocabulary elements. By using similarities to the whole vo-
cabulary, our approach is able to model scenes that consist of
elements not present in the codebook vocabulary.

We extract visual features for each sub-region of an im-
age, densely sampled on a regular grid. The grid is con-
structed by dividing an image in n×n overlapping rectangular
regions. The overlap between regions is one half of the region
size. The number of regions is governed by a parameter r, that
indicates the number of regions per dimension, where the two
dimensions in the image are the width and height. In our ex-
periments, we use a coarse sampling of the image with r = 4
and a fine sampling of the image using r = 17.

2.2.1. Wiccest Features

We rely on Wiccest features for image feature extraction on
regular grids. Wiccest features [13] utilize natural image
statistics to effectively model texture information. Texture
is described by the distribution of edges in a certain image.
Hence, a histogram of a Gaussian derivative filter is used to
represent the edge statistics. It was shown in [14] that the
complete range of image statistics in natural textures can be
well modeled with an integrated Weibull distribution. This
distribution is given by
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where r is the edge response to the Gaussian derivative
filter and Γ(·) is the complete Gamma function, Γ(x) =∫∞
0

tx−1e−1dt. The parameter β denotes the width of the
distribution, the parameter γ represents the ‘peakness’ of the
distribution, and the parameter µ denotes the mode of the
distribution. The position of the mode is influenced by un-
even illumination and colored illumination. Hence, to achieve
color constancy the values for µ is ignored.

The Wiccest features for an image region consist of the
Weibull parameters for the color invariant [13] edges in the
region. Thus, the β and γ values for the x-edges and y-edges
of the three color channels yields a 12 dimensional descrip-
tor. The similarity between two Wiccest features is given by
the accumulated fraction between the respective β and γ pa-
rameters:
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)
, where F and G are

Wiccest features. We compute the similarity to 15 proto-
concepts [6] for F and G. We divide an input frame into
multiple overlapping regions, and compute for each region
the similarity to 15 proto-concepts [6].

2.2.2. Gabor Features

In addition to the Wiccest features, we also rely on Gabor fil-
ters for regional image feature extraction. Gabor filters may
be used to measure perceptual surface texture in an image
[15]. Specifically, Gabor filters respond to regular patterns
in a given orientation on a given scale and frequency. A 2D
Gabor filter is given by:
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where Gσ(x, y) is a Gaussian with a scale σ,
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) the orientation.
Note that a zero-frequency Gabor filter reduces to a Gaussian.

In order to obtain an image region descriptor with Gabor
filters we follow these three steps: 1) parameterize the Ga-
bor filters 2) incorporate color invariance and 3) construct a
histogram. First, the parameters of a Gabor filter consist of
orientation, scale and frequency. We use four orientations,
0◦, 45◦, 90◦, 135◦, and two (scale, frequency) pairs: (2.828,
0.720), (1.414, 2.094). Second, color responses are measured
by filtering each color channel with a Gabor filter. The W
color invariant is obtained by normalizing each Gabor filtered
color channel by the intensity. Finally, a histogram is con-
structed for each Gabor filtered color channel, where we use
histogram intersection as a similarity measure between his-
tograms. Again, we divide an input frame into multiple over-
lapping regions, and compute for each region the similarity to
15 proto-concepts [6].

2.3. Machine learning of emotional categories

The extracted features for each ground truth image are used
to train a classifier to distinguish between the various emo-
tional valences. We use the popular Support Vector Machine
(SVM) framework for supervised learning of emotion cate-
gories. Here we use the LIBSVM implementation with radial
basis functions. We obtain good SVM parameter settings by
using an iterative search on a large number of SVM param-
eter combinations. We optimize SVM C and γ parameters.
Furthermore, we select the best features per class, being the
Gabor features, the Wiccest features, or both. We estimate
performance of all parameter and feature combinations based
on 8-fold cross validation on the IAPS training set, and aver-
age 3 times to yield consistent performance indications.

3. RESULTS

In order to evaluate how well our method expresses emotions,
we apply the trained system to the IAPS test set, and to a set
of masterpieces from the Rijksmuseum, Amsterdam, website.

3.1. Evaluation on IAPS

Our system is trained on 70% of the images per IAPS cate-
gory, and tested on the remaining 30%. As the IAPS dataset
is relatively small, we repeat the training and testing 25 times.
Performance is measured by the percentage of correctly clas-
sified images per category. Average performances are given in
Fig. 3. Overall, the system performs a bit better than chance
level (50% for one-versus-all), which can be expected for this
challenging task approached with such a small set of training
images. For anger, only 8 samples constituted the training set,
making machine learning an undoable challenge. However,
we obtain encouraging results for some categories, as can be
derived from a detailed analysis of the performance. Awe and
disgust can be identified by the color distribution of the input
image. The emotions are linked to specific scene categories,
like landscapes or insects. In future work, one could exploit
the learning of smaller and more coherent sub categories to
boost performance for these emotions. Similarly, sadness and
undifferentiated positive are linked to textures in the scene.

3.2. Generalization to masterpieces

To see whether we can express realistic emotions for master-
pieces, we use all of the IAPS images as training data, and
tried the system on a set of master paintings. Figure 4 shows
some typical results, and a few failure cases. Note that in
the case of masterpieces the painting techniques as well as
the colors chosen by the artist contribute significantly to the
emotional effect and therefore our low-level features perform
better than in the case of the IAPS dataset.



4. CONCLUSIONS

We have shown initial results for a scene categorization sys-
tem aiming to distinct between emotional categories. Our sys-
tem is trained on the IAPS dataset, and we applied it to a col-
lection of masterpieces. Although the results are preliminary,
they demonstrate the potential of machines to elicit realistic
emotions as can be derived from visual scenes.
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