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ABSTRACT
Face analysis in a real-world environment is a complex task as it should deal with challenging problems such as pose vari-
ations, illumination changes and complex backgrounds. The use of active appearance models for facial features detection
is often successful in restricted environments, but the performance decreases when applied in unconstrained environments.
Therefore, in this paper, we introduce a novel method that integrates the knowledge of a face detector inside the shape and
the appearance models by using what we call a ’virtual structuring element’ (VSE). In this way the possible settings of the
active appearance models are constrained in an appearance-driven manner. The use of a virtual structuring element in an
active appearance model provides increased performance in both accuracy and robustness over standard active appearance
models applied to different environments.
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1. INTRODUCTION
Automatic face analysis has attracted increasing interest in the research community mainly due to its many useful ap-
plications. Various approaches to facial feature detection exist in the literature. Some of the most common ones make
use of hand-crafted geometric features models,1 separate face and facial feature detectors,2 color segmentation,3 or neural
networks.4 Although these and related methods have been shown to achieve good results, they mainly focus on finding the
location of some facial features (e.g., eyes and mouth corners) in restricted environments (e.g., constant lighting, simple
background, etc.) and are not always suitable to obtain a complex and accurate system of features.

In recent years deformable model-based approaches for image interpretation have been proven to be successful, espe-
cially in images containing objects with large variability such as faces. These approaches are more appropriate to locate
a predefined set of features since they make use of a template (e.g., the shape of an object). Among the early deformable
template models is the Active Contour Model by Kass et al.5 in which a correlation structure between shape markers is
used to constrain local changes. Cootes et al.6 proposed a generalized extension, namely Active Shape Models (ASM),
where deformation variability is learned using a training set. Active Appearance Models (AAM) were later proposed in7

and are closely related to the simultaneous formulation of Active Blobs8 and Morphable Models.9 AAM can be seen as an
extension of ASM which includes the appearance information of an object.

While active appearance models have been shown to be successful, they suffer from important drawbacks such as
background handling and initialization. Therefore, in this paper, we want to go one step further and reduce the existing
AAM problems by considering the initialization information as part of the shape and appearance models. Our goal is to
enhance the AAMs so they can be used in uncontrolled environments. This comes at the cost of adding another constraint,
that is, the successful detection of the face by the face detector.

The rest of the paper is structured as follows. The next sections will briefly discuss the theory behind the used face
detector and the AAM. After analyzing the problems in the AAM search, we will introduce the VSE as a possible solution.
Finally, we will evaluate and discuss the results by using the VSE in a real system for real-time automatic facial expression
recognition.
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2. FACE DETECTOR
The used face detector is the one proposed by Viola and Jones10 and later improved by Lienhart et al.11 The detector
uses a method proposed by Papageorgiou et al.12 to analyze image features by using a subgroup of Haar-like features,
derived from the Haar transforms. The Haar-like features are the input to basic decision–trees classifiers. By means of
these features it is possible to account for relations in differences of pixel intensities over specific areas of the input image.

The success of detector is due to the following techniques:10

1. A new way to represent an image, called ’Integral Image’, easily generated by the cumulative sum of the pixels of
the original image and used to efficiently retrieve the Haar-like features in an image.

2. A method to construct a classifier by selecting a small number of relevant features using ’Adaboost’,13, 14 based on
the Probably Approximately Correct framework (PAC15). The algorithm is used to select which of the features in the
training set are actually relevant for the sought–after object, and to drastically reduce the number of features to be
analyzed in the test set.

3. A method to successively combine more complex classifiers: the first classifier (the most discriminative and less
complex) is applied to all the sub-windows of the image and at different scales. The second classifier (more com-
plex than the previous) will be applied only to the sub-windows where the first classifier succeeded. The cascade
continues, applying the all sequence of classifiers and discarding the negative sub–windows, concentrating the com-
putational power only on the promising areas.

3. ACTIVE APPEARANCE MODELS
The main idea behind the AAMs approach is to learn the possible variations of facial features exclusively on a probabilistic
and statistical basis of the existing observations (i.e. which relation holds in all the previously seen instances of facial
features). This can be defined as a combination of shape and appearance models.

3.1 Shape Models
We can define a 2D vector representation of the relevant points of a planar shape S as the coordinates of the n points that
make up the shape

Since the shapes in a dataset are often sampled with arbitrary translation, rotation and scale, all those attributes should
be removed. A common solution is to normalize the shapes using Procrustes Analysis and to apply Principal Component
Analysis to the normalized shapes. In statistics, procrustes analysis is a technique used to analyze the statistical distribution
of shapes. This consists of four steps: Compute the centroid of each shape, re-scale each shape to have equal size, align
the shapes position w.r.t. their centroids and finally rotate the shapes to align them w.r.t. their orientation.

After all the shapes are aligned it is possible to give an estimate of the prototype shape as a point-wise mean of all the
shape points.

Aligned shapes of the same objects will still have some inherent shape variance. A statistical method of dealing with
this redundancy is Principal Component Analysis (or PCA16, 17). In this specific case, PCA is performed as an Eigen
analysis of the dispersion matrix (the covariance matrix) of the aligned shapes, estimated with respect to the mean shape

x̄ = 1
N

N∑
i=1

xi, by the maximum likelihood

Σs =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T (1)

After performing PCA, an arbitrary shape S can be expressed as a base shape s̄ plus a linear combination of shape
vectors si

S = s̄ +
n∑

i=1

pisi (2)

where pi are the shape vector parameters.



3.2 Appearance Models
The appearance of an object is defined as the pixel values that represent the object. If we are interested in the appearance
of an object contained in a shape, its appearance is then defined as the pixel values contained by the convex hull of shape.
As we did for the shapes, the appearances are normalized by warping them to a reference shape (i.e. the mean shape s̄).
This is done by a piece-wise affine warping of the Delaunay triangulation of the shape. Once all the appearances of the
object are warped to the mean shape we should remove the influence from the global linear changes in pixel intensities by
applying photometric normalization.

A compact PCA representation is derived to deform the texture in a manner similar to what is observed in the training
set. After all of the N shape appearances are normalized the mean shape appearance can be computed as

ā =
1
N

N∑
i=1

ai (3)

while the estimate of the covariance matrix is

Σa =
1
N

N∑
i=1

(ai − ā)(ai − ā)T (4)

After a PCA is performed and appearance vectors found, every shape’s appearance A can be expressed as a base appearance
ā plus a linear combination of n appearance vectors a

A = ā +
n∑

i=1

piai (5)

where pi are the appearance parameters. Stegmann18 shows a way to reduce the computational load while calculating the
eigenvectors.

3.3 Combined Models
We can now generate an instance of a shape starting from a mean shape and a linear combination of shape vectors in the
same way that we can generate an appearance from a mean appearance and a linear combination of appearance vectors
(see equations 2 and 5).

Any training sample can be summarized by the parameter vectors ps and pa. The shape parameters have units of
distance, while the appearance parameters have units of intensity. This makes ps and pa not directly comparable, unless we
estimate the effects of using the shape parameters ps over the appearance A and consider a weighting factor of the shape
parameters to correct the differences.

As shown in,7 this can be done by systematically displacing each element of ps from its optimum value on each training
example, and consequently sample the image under the displaced shape. The Root Mean Square change in the appearance
per unit change in shape gives the sought-after weighting vector. Using this vector we can concatenate the shape and the
appearance parameters in a single vector c

c =
(
Wsps

pa

)
(6)

where Ws is the diagonal matrix of the obtained weights.

A third and final PCA is performed on the concatenated shape and texture parameters to remove the correlation between
the shape and the appearance parameters and to obtain the combined model parameters m.

c = Φm (7)

The shape and appearance parameters are linearly re-parameterized in terms of the new eigenvectors of the combined PCA.

Using linear algebra, a combined shape–appearance model is generated by

S = s̄ +
n∑

i=1

misi A = ā +
n∑

i=1

miai (8)



Note the use of the same model parameters m in both the equations. Another technique to instantiate a combined shape–
appearance model consists in warping the appearance obtained with pa to the shape obtained with ps. This technique will
not merge the models, but instead treats the shape and the appearance parameters independently. This technique is known
in literature as ’Independent AMMs’.

3.4 Basic Active Appearance Models
The basis of AAM search is to treat the fitting procedure of a combined shape-appearance model as an optimization
problem by minimizing the difference vector between image I and the generated model M of shape and appearance:
δI = I−M. Cootes et al.7 observed that each search corresponds to a similar class of problems where the initial and the
final model parameters are the same. This class can be learned offline (when we create the model), saving high-dimensional
computations during the search phase.Learning the class of problems means that we have to assume a relation R between
the current error image δI and the needed adjustments in the model parameters m. The common assumption is to use a
linear relation: δm = RδI. Despite the fact that more accurate models are proposed,19 the assumption of linearity was
shown to be sufficiently accurate to obtain good results.7 To find R we can conduct a series of experiments on the training
set, where the optimal parameters m are known. Each experiment consists of displacing a set of parameters by a know
amount and then measuring the difference between the generated model and the image under it. Note that when we displace
the model from its optimal position and calculate the error image δI, the image will surely contain parts of the background,
which will have high variance for uncontrolled environments.

For the iterative optimization procedure using the found predictions the following computational steps are taken: The
first step is to initialize the mean model in an initial position and the parameters within the reach of the parameter prediction
range (which depends on the perturbation used during training). Iteratively, a sample of the image under the initialization
is taken and compared with the model instance. The differences between the two appearances are used to predict the set of
parameters that would perhaps improve the similarity. In case a prediction fails to improve the similarity, it is possible to
damp or amplify the prediction several times and maintain the one with the best result.

(a) Unseen face (b) Initialization

(c) Model Optimizations (d) Converged Model
Figure 1. Results of an AAM search on an unseen face

For an overview of some possible variations to the original AAMs algorithm refer to.20 An example of the AAM search
is shown in Fig. 1 where a model is fitted to a previously unseen face.



4. VIRTUAL STRUCTURING ELEMENT
One of the main drawbacks of the AAM is that, when the algorithm learns how to solve the optimization offline, the per-
turbation applied to the model inevitably takes parts of the background into account. This means that instead of learning
how to generally solve the class of problems, the algorithm actually learns how to solve it only for the same or similar
background. This makes AMMs domain-specific, that is, the AAM trained for a shape in a predefined environment has dif-
ficulties when used on the same shape immersed in a different environment. To solve this drawback an uniform background
is often placed behind the test subjects, which resembles the one used during the training phase of the AAM. Another often
used idea is to constrain the shape deformation within predefined boundaries. Note that a shape constraint does not adjust
the deformation, but will only limit it when it is found to be invalid.

To overcome these deficiencies of AAMs, we propose a novel method to visually integrate the information obtained by
a face detector inside the AAM. This method is based on the observation that an object with a specific and recognizable
feature would ease the successful alignment of its appearance model.

Since faces have many highly relevant features, erroneously located ones could lead the optimization process to con-
verge to local minima. The novel idea is to add a virtual artifact in each of the appearances in the training and the test
sets, which will inherently prohibit some deformations. We call this artifact a virtual structuring element (or VSE) since it
adds structure to the data that was not available otherwise.

To be able to solve the aforementioned AAM problems, we should choose a VSE that: (1) Is big enough to steer the
optimization process; (2) Does not create additional uncertainty by covering relevant features (e.g., the eyes or nose); (3)
Scales accordingly to the dimension of the detected face; and (4) Completely or partially removes the areas with high
variance in the model, by replacing them with uniform ones (0 variance).

In our specific case, namely facial features detection, this element should add visual information about the position of
the face as obtained from the used face detector. If we assume that the face detector successfully detects a face, we can use
this additional information to build our artifact by using the following procedure: At first an AAM of the faces detected
in training set is built. The approximate shape of the VSE is then generated by considering the areas of high variance
in the model which are not covered by the average shape model (for uncontrolled environments, this will approximately
correspond to the background around the faces). After the rough VSE is found, it can be refined by using morphological
operators or by hand-crafting it. The refined VSE is then placed on the training data and the new AAM is trained.

In the used VSE, a black frame with width equal to 20% of the size of the detected face is built around the face itself.
Besides the regular markers that capture the facial features (see Fig. 2 and21 for details) four new markers are added in the
corners to stretch the convex hull of the shape to take in consideration the virtual structuring element. Around each of those
four points, a black circle with the radius of one third of the size of the face is added. The resulting annotation, shape, and
appearance variance are displayed in Fig. 2. Note that in the variance map the initialization variance of the face detector is
automatically included in the model (i.e. the thick white border delimitating the VSE).

Figure 2. The effect of a virtual structuring element to the annotation, appearance, and variance (white indicates a larger variance)

This virtual structuring element, included as a feature in the training samples and automatically superimposed by the
face detector to the test samples, visually passes information between the face detector and the AAM. In the experiments
we show that the VSE helps the basic AAMs in the model generalization and fitting performances.



5. EXPERIMENTS
5.1 Application
The proposed technique can be used in various applications. In our case, it was used as a component in a system for
real-time automatic facial expression recognition. The system involving such an analysis assumes that the face can be
accurately detected and tracked, the facial features can be precisely identified, and that the facial expressions, if any, can
be classified and interpreted.

The system developed in our previous work,21, 22 based on the face tracker proposed in,23 constructs an explicit 3D
wireframe model of the face starting from a generic face model consisting of 16 surface patches embedded in Bezier
volumes, which are warped to fit the user’s facial features. Once the model is constructed and fitted on the image of a face,
head motion and local deformations of the facial features such as the eyebrows, eyelids and mouth are tracked. Then, the
tracking measurements are fed into a Bayesian Network classifier that provides an estimation of the displayed expression.
While the tracker has been shown to be robust to head movements, pose, partial occlusion, and it was successfully used to
accurately classify facial expressions, the possibility to use the system in real applications is precluded by the requirement
of manual annotation of the user’s facial features in the first frame of the image sequence. As a case study, we use the
proposed technique to automate or at least minimize the human intervention during the initialization phase of the system.

5.2 Datasets and Measures
Two datasets are used for evaluation: (1) a part of the Cohn-Kanade24 dataset consisting of 53 male and female subjects,
showing neutral frontal faces in a controlled environment; (2) the Unilever dataset consisting of 50 females, showing
natural poses in indoor and outdoor uncontrolled environments. The idea is to investigate the influence of the VSE when
the background is unchanged (Cohn-Kanade) and when more difficult conditions are present (Unilever).

(a) Relevant (b) Inside
Figure 3. The annotations and their respective variance maps over the datasets

We evaluate two specific annotations: (1) ’relevant’ (Fig. 3(a)) describing the facial features that are relevant for
the facial expression classifiers including the face contours that are needed for face tracking; (2) ‘inside’ (Fig. 3(b))
describing the facial features without the face contours. Note that the ‘inside’ model is surrounded only by a face area so
its background variance is lower and the model is more robust. To assess the performance of the AAM we initialize the
mean model (i.e. the mean shape with the mean appearance) shifted in the Cartesian plane with a predefined amount. This
simulates some extremes in the initialization error obtained by the face detector.

The common approach to assess performances of an AAM is to compare the results to a ground truth (i.e. the annota-
tions in the training set). As a test tool, we used the AAM-API.25 The following measures are used:

• Point to Point Error(Fig. 4(a)): is the mean Euclidean distance between each point true shape and the corresponding
fitted shape:

1
n

n∑
i=1

√
(xi − xgt,i)2 + (yi − ygt,i)2 (9)



(a) Point to Point (b) Point to Curve
Figure 4. The graphical representation of the Point to Point and the Point to Curve Errors

• Point to Curve Error(Fig. 4(b)): is the Euclidean distance between a fitted shape point and the closest point on the
linear spline obtained from the true shape points

1
n

n∑
i=1

min
t

√
(xi − rx(t))2 + (yi − ry(t))2 (10)

• Mahalanobis Distance It is possible to learn how the model’s parameters are assuming a plausible configuration
by looking at the configurations in the training data: when a configuration is reached, it means that the model’s
optimization took a specific path. During the optimization iterations, every single step is considered possible but
that doesn’t guarantee that the model won’t assume impossible final configurations as a combination of every step.
In order to avoid this behavior, a distance D from an hyper ellipsoid Dmax could be used to restrict the possibility
for the model parameters mi (and the respective principal component λi) to assume certain values. This distance is
known as Mahalanobis distance and is defined as follows:

D2 =
t∑

i=1

m2
i

λi
≤ D2

max (11)

We can use this distance to an arbitrary threshold Dmax to assess the deformity of the obtained shapes with respect
to what we have seen in the training set. If the parameters configuration exceeds the threshold, then the deformation
is considered invalid.

5.3 Evaluation
We perform two types of experiments: person independent and generalized AAM. In the person independent test we
perform a leave-one-out cross validation over each dataset. For the second experiment, the generalized AAM test, we
merge the two datasets and we create a model which includes all the different lighting conditions, backgrounds, subject
features, and annotations (together with their respective errors). The cross validation is performed over the merged dataset.
The goal of this experiment is to test whether the generalization problems of AAMs could be solved just by using a larger
amount of training data.

5.3.1 Person Independent

Cohn-Kanade Unilever
Point-Point Point-Curve Mahalanobis Point-Point Point-Curve Mahalanobis

Relevant 16.72 (5.53) 9.09 (3.36) 47.93 (4.90) 54.84 (10.58) 29.82 (6.22) 79.41 (6.66)
Relevant VSE 6.73 (0.21) 4.34 (0.15) 26.46 (1.57) 10.14 (2.07) 6.53 (1.30) 24.75 (3.57)

Inside 9.53 (3.48) 6.19 (2.47) 39.55 (3.66) 25.98 (7.29) 17.69 (5.16) 38.20 (4.52)
Inside VSE 5.85 (0.24) 3.76 (0.13) 27.14 (1.77) 8.99 (1.90) 6.37 (1.46) 23.45 (2.81)

Table 1. Mean and standard error in the person independent test for the two datasets

Table 1 shows the results obtained in the two datasets in the person independent experiment. Important to notice
is that the results obtained with Cohn-Kanade datasets are in most cases better than the one obtained with the Unilever



dataset since, in the latter, the effect of the uncontrolled lighting condition and background change is more relevant and the
model fitting is more difficult. Furthermore, the ’inside model’ is always less affected by the VSE. This comes from the
property that an inside model is surrounded by the face, which is not so different from one environment to another, thus
the background variance problem is reduced. However, in both cases, it can be derived that the use of a VSE significantly
improves the results. An important aspect is that the use of VSE is more effective in the case of the uncontrolled Unilever
database since its inconsistent background is reduced to a larger extent. Finally, while the use of a VSE does not excessively
improve the accuracy of the ‘inside’ model, the use of the VSE on the ’relevant’ model drastically improves its accuracy
making it even better than the basic ‘inside’ model. This result is interesting since, in the ’relevant’ model, parts of the
markers are covered by the VSE (i.e. the forehead and chin markers) and we expected the final model to inherently generate
some errors. Instead, it seems that the inner parts of the face might steer the outer markers to the optimal position. This
means that there is a proportional relation between the facial countours and the inside features, which is a very interesting
property.

Figure 5. The graphical representation of the error distribution for the ’inside’ person independent test

Figure 6. The graphical representation of the error distribution for the ’relevant’ person independent test

The graphs in figure 5 and 6 were obtained by grouping the point to point and point to curve distance frequencies for
the Cohn-Kanade dataset. In this graphical representation of the results’ distribution it is clear that the VSE has the effect
of redistributing some of the outliers near a median result.

Besides the robustness obtained by having both good and bad results closer to an average solution point, getting rid
of the outliers diminishes the deviation from the mean accuracy. This kind of normalization effect is similar for every
measures on both dataset.



Point-Point Point-Curve Mahalanobis
Relevant 21.05 (0.79) 8.45 (0.27) 116.22 (3.57)
Relevant VSE 8.50 (0.20) 5.38 (0.12) 51.11 (0.91)
Inside 8.11 (0.21) 4.77 (0.10) 85.22 (1.98)
Inside VSE 7.22 (0.17) 4.65 (0.09) 52.84 (0.96)

Table 2. Mean and standard error for Generalized AAM

5.3.2 Generalized AAM

In the generalized AAM experiment (see Table 2), it can be observed that the results are generally worse when compared to
the person independent results on the ‘controlled’ Cohn-Kanade dataset, but better when compared to the same experiment
on the ‘uncontrolled’ Unilever dataset. Also in this case the VSE implementation shows remarkable improvements over
the basic AAM implementation. Note that the VSE implementation brings the results of the generalized AAM very close
to the dataset specific (person independent) results, improving the generalization of basic AAM.

While the ‘relevant VSE’ model is better than the normal ‘inside’ model, the ‘inside VSE’ is the model of choice to
obtain the best overall results on facial features detection. In our specific task (described in section 5.1), we could use
the ‘inside VSE’, but we would additionally need some heuristics to correctly position the other markers which are not
included in the model. These missing markers are relevant for robust face tracking and implicitly for facial expression
classification so their accurate positioning is important. Since in the ‘inside VSE’ model these markers are not explicitly
detected, we indicate the ‘relevant VSE’ model as the best choice for our purposes.

To better illustrate the effect of using a VSE, Fig. 7 shows an example of the difference in the results when using a
‘relevant’ model and a ‘relevant VSE’ model. While the first fails to correctly converge, the second result is optimal for
the inner facial features. Empirically, VSE model shows to always overlap to the correct annotation, avoiding the mistakes
generated by unsuccessful alignments like the one in Fig. 7(a).

(a) Relevant (b)Relevant VSE
Figure 7. An example of the difference in the results between a ‘relevant’ and a ‘relevant VSE’ model

6. CONCLUSIONS
In this paper we introduced a novel method to integrate the knowledge of a face detector inside the active appearance model,
using what we call a ’virtual structuring element’, which limits the possible settings of the AAM in an appearance-driven
manner.

We propose this visual component as a good solution for the background variance problems and respective generaliza-
tion problems of basic AAMs. We performed a comprehensive analysis of the accuracy of different Active Appearance
Models for the task of facial features matching. We also improved and extended the existing real-time emotion recognition
system21 by solving the requirements of human intervention during the initialization phase, allowing a fully automated use
of the system.



For future research we plan to allow VSEs to be used with any kind of objects, by automatically learning them from the
background variation in the used dataset. Furthermore, while different improvements for basic AAMs are already proposed
in literature,19, 20 we are planning to improve the accuracy of the system by adding more shape points (i.e. allowing finer
refinements of the appearance models where needed).
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