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In recent years there has been a growing interest in improving all aspects of the in-
teraction between humans and computers with the clear goal of achieving a natural
interaction, similar to the way human-human interaction takes place. The most ex-
pressive way humans display emotions is through facial expressions. Humans detect
and interpret faces and facial expressions in a scene with little or no effort. Still,
development of an automated system that accomplishes this task is rather difficult.
There are several related problems: detection of an image segment as a face, extrac-
tion of the facial expression information, and classification of the expression (e.g.,in
emotion categories).A system that performs these operations accurately and in real
time would be a major step forward in achieving a human-like interaction between
the man and machine. In this chapter, we present several machine learning algo-
rithms applied to face analysis and stress the importance of learning the structure
of Bayesian network classifiers when they are applied to face and facial expression
analysis.

1 Introduction

Information systems are ubiquitous in all human endeavors including scientific, med-
ical, military, transportation, and consumer. Individual users use them for learning,
searching for information (including data mining), doing research (including visual
computing), and authoring. Multiple users (groups of users, and groups of groups
of users) use them for communication and collaboration. And either single or mul-
tiple users use them for entertainment. An information system consists of two com-
ponents: Computer (data/knowledge base, and information processing engine), and
humans. It is the intelligent interaction between the two that we are addressing in
this chapter.

Automatic face analysis has attracted increasing interest in the research commu-
nity mainly due to its many useful applications. A system involving such an analy-
sis assumes that the face can be accurately detected and tracked, the facial features
can be precisely identified, and that the facial expressions, if any, can be precisely
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classified and interpreted. For doing this, in the following, we present in detail the
three essential components of our automatic system for human-computer interaction:
face detection, facial feature detection, and facial emotion recognition. This chapter
presents our real time facial expression recognition system [10] which uses a fa-
cial features detector and a model based non-rigid face tracking algorithm to extract
motion features that serve as input to a Bayesian network classifier used for recog-
nizing the different facial expressions. Parts of this system has been developed in
collaboration with our colleagues from the Beckman Institute, University of lllinois

at Urbana-Champaign, USA. We present here the components of the system and give
reference to the publications that contain extensive details on the individual compo-
nents [9, 40].

2 Background

2.1 Face Detection

Images containing face are essential to intelligent vision-based human-computer in-
teraction. The rapidly expanding research in face processing is based on the premise
that information about user’s identity, state, and intend can be extracted from images
and that computers can react accordingly, e.g., by observing a person'’s facial expres-
sion. Given an arbitrary image, the goal of face detection is to automatically locate a
human face in an image or video, if it is present. Face detection in a general setting is
a challenging problem for various reasons. The first set of reasons are inherent: there
are many types of faces, with different colors, texture, sizes, etc. In addition, the face
is a non-rigid object which can change its appearance. The second set of reasons are
environmental: changing lighting, rotations, translations, and scales of the faces in
natural images.

To solve the problem of face detection, two main approaches can be taken. The
first is a model based approach, where a description of what is a human face is used
for detection. The second is an appearance based approach, where we learn what
faces are directly from their appearance in images. In this work, we focus on the
latter.

There have been numerous appearance based approaches. We list a few from
recent years and refer to the reviews of Yang et al. [46] and Hjelmas and Low [23] for
further details. Rowley et al. [37] used Neural networks to detect faces in images by
training from a corpus of face and non-face images. Colmenarez and Huang [11] used
maximum entropic discrimination between faces and non-faces to perform maximum
likelihood classification, which was used for a real time face tracking system. Yang
et al. [47] used SNoW based classifiers to learn the face and non-face discrimination
boundary on natural face images. Wang et al. [44] learned a minimum spanning
weighted tree for learning pairwise dependencies graphs of facial pixels, followed by
a discriminant projection to reduce complexity. Viola and Jones [43] used boosting
and a cascade of classifiers for face detection.
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Very relevant to our work is the research of Schneiderman [38] who learns a
sparse structure of statistical dependecies for several object classes including faces.
While analyzing such dependencies can reveal useful information, we go beyond
the scope of Schneiderman’s work and present a framework that not only learns the
structure of a face but also allows the use of unlabeled data in classification.

Face detection provides interesting challenges to the underlying pattern classifi-
cation and learning techniques. When a raw or filtered image is considered as input
to a pattern classifier, the dimension of the space is extremely large (i.e., the number
of pixels in normalized training images). The classes of face and non-face images
are decidedly characterized by multimodal distribution functions and effective deci-
sion boundaries are likely to be non-linear in the image space. To be effective, the
classifiers must be able to extrapolate from a modest number of training samples.

2.2 Facial Feature Detection

Various approaches to facial feature detection exist in the literature. Although many
of the methods have been shown to achieve good results, they mainly focus on find-
ing the location of some facial features (e.g., eyes and mouth corners) in restricted
environments (e.g., constant lighting, simple background, etc.). Since we want to
obtain a complex and accurate system of feature annotation, these methods are not
suitable for us.

In recent years deformable model-based approaches for image interpretation
have been proven very successful, especially in images containing objects with large
variability such as faces. These approaches are more appropriate for our specific case
since they make use of a template (e.g., the shape of an object). Among the early de-
formable template models is the Active Contour Model by Kass et al. [26] in which
a correlation structure between shape markers is used to constrain local changes.
Cootes et al. [14] proposed a generalized extension, namely Active Shape Models
(ASM), where deformation variability is learned using a training set. Active Appear-
ance Models (AAM) were later proposed in [12] and they are closely related to the
simultaneous formulation of Active Blobs [39] and Morphable Models [24]. AAM
can be seen as an extension of ASM which includes the appearance information of
an object.

While active appearance models have been shown to be very successful, they suf-
fer from important drawbacks such as background handling and initialization. Previ-
ous work tried to solve the latter by using an object detector to provide an acceptable
model initialization. In Section 5.2, we bring this concept one step further and we
reduce the existing AAM problems by considering the initialization information as a
part of the active appearance model.

2.3 Emotion Recognition Research

Ekman and Friesen [17] developed the Facial Action Coding System (FACS) to code
facial expressions where movements on the face are described by a set of action
units (AUs). Each AU has some related muscular basis. This system of coding facial
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expressions is done manually by following a set of prescribed rules. The inputs are
still images of facial expressions, often at the peak of the expression. This process is
very time-consuming.

Ekman’s work inspired many researchers to analyze facial expressions by means
of image and video processing. By tracking facial features and measuring the amount
of facial movement, they attempt to categorize different facial expressions. Recent
work on facial expression analysis and recognition has used these “basic expres-
sions” or a subset of them. The two recent surveys in the area [35, 19] provide an in
depth review of many of the research done in automatic facial expression recognition
in recent years.

The work in computer-assisted quantification of facial expressions did not start
until the 1990s. Black and Yacoob [2] used local parameterized models of image
motion to recover non-rigid motion. Once recovered, these parameters were used as
inputs to a rule-based classifier to recognize the six basic facial expressions. Essa
and Pentland [18] used an optical flow region-based method to recognize expres-
sions. Oliver et al. [32] used lower face tracking to extract mouth shape features and
used them as inputs to an HMM based facial expression recognition system (rec-
ognizing neutral, happy, sad, and an open mouth). Chen [5] used a suite of static
classifiers to recognize facial expressions, reporting on both person-dependent and
person-independent results. Cohen et al. [10] describe classification schemes for fa-
cial expression recognition in two types of settings: dynamic and static classification.
In the static setting, the authors learn the structure of Bayesian networks classifiers
using as input 12 motion units given by a face tracking system for each frame in a
video. For the dynamic setting, they used a multi-level HMM classifier that combines
the temporal information and allows not only to perform the classification of a video
segment to the corresponding facial expression, as in the previous works on HMM
based classifiers, but also to automatically segment an arbitrary long sequence to the
different expression segments without resorting to heuristic methods of segmenta-
tion.

These methods are similar in that they first extract some features from the images,
then these features are used as inputs into a classification system, and the outcome
is one of the preselected emotion categories. They differ mainly in the features ex-
tracted from the video images and in the classifiers used to distinguish between the
different emotions.

3 Learning Classifiers for Human-Computer Interaction

Many pattern recognition and human-computer interaction applications require the
design of classifiers. Classification is the task of systematic arrangement in groups
or categories according to some set of observations, e.g., classifying images to those
containing human faces and those that do not or classifying individual pixels as be-
ing skin or non-skin. Classification is a natural part of daily human activity and is
performed on a routine basis. One of the tasks in machine learning has been to give
the computer the ability to perform classification in different problems. In machine
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classification, a classifier is constructed which takes as input a set of observations
(such as images in the face detection problem) and outputs a prediction of the class
label (e.g., face or no face). The mechanism which performs this operation is the
classifier

We are interested in probabilistic classifiers, in which the observations and class
are treated as random variables, and a classification rule is derived using probabilistic
arguments (e.g., if the probability of an image being a face given that we observed
two eyes, nose, and mouth in the image is higher than some threshold, classify the
image as a face). We consider two aspects. First, most of the research mentioned
in the previous section tried to classify each observable independent from each the
others. We want to take a different approach: can we learn the dependencies (the
structure) between the observables (e.g., the pixels in an image patch)? Can we use
this structure for classification? To achieve this we use Bayesian Networks. Bayesian
Networks can represent joint distributions in an intuitive and efficient way; as such,
Bayesian Networks are naturally suited for classification. Second, we are interested
in using a framework that allows for the usage of labeled and unlabeled data (also
called semi-supervised learning). The motivation for semi-supervised learning stems
from the fact that labeled data are typically much harder to obtain compared to unla-
beled data. For example, in facial expression recognition it is easy to collect videos
of people displaying emotions, but it is very tedious and difficult to label the video
to the corresponding expressions. Bayesian Networks are very well suited for this
task: they can be learned with labeled and unlabeled data using maximum likelihood
estimation.

Is there value to unlabeled data in supervised learning of classifiers? This fun-
damental question has been increasingly discussed in recent years, with a general
optimistic view that unlabeled data hold great value. Due to an increasing number of
applications and algorithms that successfully use unlabeled data [31, 41, 1] and mag-
nified by theoretical issues over the value of unlabeled data in certain cases [4, 33],
semi-supervised learning is seen optimistically as a learning paradigm that can re-
lieve the practitioner from the need to collect many expensive labeled training data.
However, several disparate empirical evidences in the literature suggest that there are
situations in which the addition of unlabeled data to a pool of labeled data, causes
degradation of the classifier's performance [31, 41, 1], in contrast to improvement of
performance when adding more labeled data. Intrigued by these discrepancies, we
performed extensive experiments, reported in [9]. Our experiments suggested that
performance degradation can occur when the assumed classifier's model is incorrect.
Such situations are quite common, as one rarely knows whether the assumed model
is an accurate description of the underlying true data generating distribution. More
details are given below (for the sake of consistency we keep the same notations as
the one introduced in [9]).

The goal is to classify an incoming vector of observatesEach instantiation
of X is asample There exists &lass variableC; the values ofC are theclasses
Let P(C, X) be thetruejoint distribution of the class and features from which any a
sample of some (or all) of the variables from the{g8t X } is drawn, and lep(C, X)
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be the density distribution associated with it. We want to beigdsifiershat receive
a samplex and output either one of the values@f

Probabilities of(C, X)) are estimated from data and then are fed into the optimal
classification rule. Also, a parametrical moget, X|6) is adopted. An estimate of
6 is denoted by and we denote throughout W the assimptotic value df. If the
distributionp(C, X) belongs to the family(C, X|6), we say the “model is correct”;
otherwise, we say the “model is incorrect”. We use “estimation bias” loosely to mean

the expected difference betweg{C, X) and the estimateﬁ(C, X|é).

The analysis presented in [9] and summarized here is based on the work of
White [45] on the properties of maximum likelihood estimators without assum-
ing model correctness. White [45] showed that under suitable regularity condi-
tions, maximum likelihood estimators converge to a parametep’séhat mini-
mizes the Kullback-Leibler (KL) distance between the assumed family of distri-
butions, p(Y'|0), and the true distributiornp(Y"). White [45] also shows that the
estimator is asymptotically Normal, i.e/ N(0y — 6*) ~ N(0,Cy(6)) as N
(the number of samples) goes to infinityy (9) is a covariance matrix equal to
Ay (0)"1By(0)Ay ()™}, evaluated av*, where Ay () and By () are matrices
whose(i, j)'th element {,j = 1,...,d, whered is the number of parameters) is
given by:

Ay (0) = E[0°logp(Y|0) /00:0;] ,
By (0) = E[(9logp(Y|0) /90:)(01og p(Y'|0) /06;)] -

Using these definitions, in [9] the following theorem was introduced:

Theorem 1. Consider supervised learning where samples are randomly labeled with
probability A\. Adopt the regularity conditions in Theorems 3.1, 3.2, 3.3 from [45],
with'Y replaced by(C, X) and byX, and also assume identifiability for the marginal
distributions ofX. Then the value of*, the limiting value of maximum likelihood
estimates, is:

arg max (AE[log p(C, X|0)] + (1 — A) Eflog p(X[6)]) , @)

where the expectations are with respecptd’, X). Additionally, /N (0 — 0*) ~
N(0,Cx(0)) asN — oo, whereCy (6) is given by:

Cx(0) = Ax(0)"' Bx(0) Ax(0) " with, 2
A)\(g) = (AA(C,X) (9) + (]. — )\)Ax(a)) and
Bx(0) = (ABe,x)(0) + (1 — X\)Bx(0)) ,

evaluated at*. O

For a proof of this theorem we direct the interested reader to [9]. Here we restrict
only to a few observations. Expression (1) indicates that semi-supervised learning
can be viewed asymptotically as a “convex” combination of supervised and unsu-
pervised learning. As such, the objective function for semi-supervised learning is a
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combination of the objective function for supervised learniBif¢g p(C, X|0)]) and
the objective function for unsupervised learnidglpg p(X|6)]).

Denote byd; the value off that maximizes Expression (1) for a givanThen,
07 is the asymptotic estimate éffor supervisedearning, denoted bg;. Likewise,
0§ is the asymptotic estimate 6ffor unsupervisedearning, denoted by .

The asymptotic covariance matrix is positive definiteRs(9) is positive defi-
nite, Ay (0) is symmetric for any’, and

OAH) By (0)A(6) 10T = w(0)By (0)w(9)T > 0,

wherew(f) = Ay (6)~*. We see that asymptotically, an increasévinthe number

of labeled and unlabeled samples, will lead to a reduction in the variafc&Sath a
guarantee can perhaps be the basis for the optimistic view that unlabeled data should
always be used to improve classification accuracy. In [9] it was shown that this ob-
servation holds when the model is correct, and that when the model is incorrect this
observation might not always hold.

3.1 Model Is Correct

Suppose first that the family of distributiof3(C, X|¢) contains the distribution
P(C,X); that is, P(C,X|0) = P(C,X) for somefr. Under this condition, the
maximum likelihood estimator is consistent, thés,= 6;; = 61 given identifiabil-
ity. Thus,0% = 6+ forany0 < A < 1.

Additionally, using White’s results [45]4(6%) = —B(0%) = 1(0}), wherel()
denotes the Fisher information matrix. Thus, the Fisher information matrix can be
written as:

1(6) = AL(0) + (1 — ML, (6), @3)

which matches the derivations made by Zhang and Oles [48]. The significance of
Expression (3) is that it allows the use of the Cramer-Rao lower bound (CRLB) on
the covariance of a consistent estimator:

Comlly) > - (1(0))"" @
where N is the number of data (both labeled and unlabeled) and @Govis the
estimator’s covariance matrix witN' samples.

Consider the Taylor expansion of the classification error ardun@s suggested
by Shahshahani and Landgrebe [41], linking the decrease in variance associated with
unlabeled data to a decrease in classification error, and assume the existence of nec-
essary derivatives:

(é - 9T> 4l ( 82‘;29)

(o-0) (o-07)")- ®

o+
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Take expected values on both sides. Asymptotically the expected value of the
second term in the expansion is zero, as maximum likelihood estimators are asymp-
totically unbiased when the model is correct. Shahshahani and Landgrebe [41] thus
argue that

E[e(é)] ~ep + (1/2)tr ((a2e(9) 196%)]5- CO\/(é))

wheree; = e(f1) is the Bayes error rate. They also show that if B0y > Cov(0")

for somef’ and#”, then the second term in the approximation is largefahan

for 0”. Becausd,, (0) is always positive definitel;(6) < I(6). Thus, using the
Cramer-Rao lower bound (Expression (4)) the covariance with labeled and unlabeled
data is smaller than the covariance with just labeled data, leading to the conclusion
thatunlabeled data must cause a reduction in classification error when the model is
correct It should be noted that this argument holds as the number of records goes to
infinity, and is an approximation for finite values.

3.2 Model Is Incorrect

A more realistic scenario desribed in detail in [9] is when the distribuifd@’, X)

does not belong to the family of distributiod¥C, X|¢). In view of Theorem 1, it

is clear that unlabeled data can have the deleterious effect observed occasionally in
the literature. Suppose thé} # 6; and thate(8;) > e(6;) (for the difficulties in
estimatinge(#;) and a solution for this please see [9]). If a large number of labeled
samples is observed, the classification error is approximateg(d}y. If we then

have more samples, most of which unlabeled, we eventually reach a point where the
classification error approache&;). So, the net result is that we started with clas-
sification error close te(d;), and by adding a large number of unlabeled samples,
classification performance degraded (see again [9] for more details). The basic fact
here is that estimation and classification bias are affected differently by different val-
ues of \. Hence, a necessary condition for this kind of performance degradation is
thate(9;,) # e(6;); a sufficient condition is that(6;) > e(6;).

The focus on asymptotics is adequate as we want to eliminate phenomena that
can vary from dataset to datasete(;) is smaller thare(6};), then a large enough
labeled dataset can be dwarfed by a much larger unlabeled dataset — the classifica-
tion error using the whole dataset can be larger than the classification error using the
labeled data only.

3.3 Discussion

Despite the shortcomings of semi-supervised learning presented in the previous sec-
tions, we do not discourage its use. Understanding the causes of performance degra-
dation with unlabeled data motivates the exploration of new methods attempting
to use positively the available unlabeled data. Incorrect modeling assumptions in
Bayesian networks culminate mainly as discrepancies in the graph structure, sig-
nifying incorrect independence assumptions among variables. To eliminate the in-
creased bias caused by the addition of unlabeled data we can try simple solutions,
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such as model switching (Section 4.2) or attempt to learn better structures. We de-
scribe likelihood based structure learning methods (Section 4.3) and a possible alter-
native: classification driven structure learning (Section 4.4). In cases where relatively
mild changes in structure still suffer from performance degradation from unlabeled
data, there are different approaches that can be taken: discard the unlabeled data, give
them a different weight (Section 4.5), or use the alternative of actively labeling some
of the unlabeled data (Section 4.6).

To summarize, the main conclusions that can be derived from our analysis are:

e Labeled and unlabeled data contribute to a reduction in variance in semi-supervised
learning under maximum likelihood estimatidrhis is true regardless of whether
the model is correct or not

e If the model is correct, the maximum likelihood estimator is unbiased and both
labeled and unlabeled data contribute to a reduction in classification error by
reducing variance.

o If the model is incorrect, there may be different asymptotic estimation biases
for different values of\ (the ratio between the number of labeled and unlabeled
data). Asymptotic classification error may also be different for different values
of \. An increase in the number of unlabeled samples may lead to a larger bias
from the true distribution and a larger classification error.

In the next section, we discuss several possible solutions for the problem of perfor-
mance degradation in the framework of Bayesian network classifiers.

4 Learning the Structure of Bayesian Network Classifiers

The conclusion of the previous section indicates the importance of obtaining the cor-
rect structure when using unlabeled data in learning a classifier. If the correct struc-
ture is obtained, unlabeled data improve the classifier; otherwise, unlabeled data can
actually degrade performance. Somewhat surprisingly, the option of searching for
better structures was not proposed by researchers that previously witnessed the per-
formance degradation. Apparently, performance degradation was attributed to unpre-
dictable, stochastic disturbances in modeling assumptions, and not to mistakes in the
underlying structure — something that can be detected and fixed.

4.1 Bayesian Networks

Bayesian Networks [36] are tools for modeling and classification. A Bayesian Net-
work (BN) is composed of a directed acyclic graph in which every node is associated
with a variableX; and with a conditional distributiop(X;|11;), wherell; denotes

the parents ofX; in the graph. The joint probability distribution is factored to the
collection of conditional probability distributions of each node in the graph as:

n

p(X1, s Xp) = [ [ (XI5 6)

i=1
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The directed acyclic graph is ttstructure and the distributions(X;|I1;) represent

the parametersof the network. We say that the assumed structure for a network,
S’, is correctwhen it is possible to find a distributiop(C, X|S’), that matches the
distribution that generates dajd(, X); otherwise, the structure iscorrect In the
above notationsX is an incoming vector of features. The classifier receives a record
x and generates a labélx). An optimal classification rule can be obtained from the
exact distributiorp(C, X) which represents the a-posteriori probability of the class
given the features.

Maximum likelihood estimation is one of the main methods to learn the param-
eters of the network. When there are missing data in training set, the Expectation
Maximization (EM) algorithm [15] can be used to maximize the likelihood.

As a direct consequence of the analysis in Section 3, a Bayesian network that
has the correct structure and the correct parameters is also optimal for classification
because the a-posteriori distribution of the class variable is accurately represented
(see [9] for a detailed analysis on this issue). As pointed out in [9] and [8] to solve
the problem of performance degradation in BNs, there is a need to carefull analyze
the structure of the BN classifier used in the classification.

4.2 Switching between Simple Models

One attempt to overcome the performance degradation from unlabeled data could be
to switch models as soon as degradation is detected. Suppose that we learn a classi-
fier with labeled data only and we observe a degradation in performance when the
classifier is learned with labeled and unlabeled data. We can switch to a more com-
plex structure at that point. An interesting idea is to start with a Naive Bayes classifier
in which the features are assumed independent given the class. If performance de-
grades with unlabeled data, switch to a different type of Bayesian Network classifier,
namely the Tree-Augmented Naive Bayes classifier (TAN) [21].

In the TAN classifier structure the class node has no parents and each feature
has the class node and at most one other feature as parents, such that the result is
a tree structure for the features. Learning the most likely TAN structure has an effi-
cient and exact solution [21] using a modified Chow-Liu algorithm [7]. Learning the
TAN classifiers when there are unlabeled data requires a modification of the original
algorithm to what we named the EM-TAN algorithm [10].

If the correct structure can be represented using a TAN structure, this approach
will indeed work. However, even the TAN structure is only a small set of all possible
structures. Moreover, as the examples in the experimental section show, switching
from NB to TAN does not guarantee that the performance degradation will not occur.

Very relevant is the research of Baluja [1]. The author uses labeled and unlabeled
data in a probabilistic classifier framework to detect the orientation of a face. In
his results, he obtained excellent classification results, but there were cases where
unlabeled data degraded performance. As a consequence, he decided to switch from
a Naive Bayes approach to more complex models. Following this intuitive direction,
we explain Baluja’'s observations and provide a solution to the problem: structure
learning.
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4.3 Beyond Simple Models

A different approach to overcome performance degradation is to learn the structure
of the Bayesian network without restrictions other than the generativé Ghere

are a number of such algorithms in the literature (among them [20, 3, 6]). Nearly
all structure learning algorithms use the ‘likelihood based’ approach. The goal is to
find structures that best fit the data (with perhaps a prior distribution over different
structures). Since more complicated structures have higher likelihood scores, penal-
izing terms are added to avoid overfiting to the data, e.g, the minimum description
length (MDL) term. The difficulty of structure search is the size of the space of pos-
sible structures. With finite amounts of data, algorithms that search through the space
of structures maximizing the likelihood, can lead to poor classifiers because the a-
posteriori probability of the class variable could have a small effect on the score [21].
Therefore, a network with a higher score is not necessarily a better classifier. Fried-
man et al. [21] suggest changing the scoring function to focus only on the posterior
probability of the class variable, but show that it is not computationally feasible.

The drawbacks of likelihood based structure learning algorithms could be mag-
nified when learning with unlabeled data; the posterior probability of the class has a
smaller effect during the search, while the marginal of the features would dominate.
Therefore, we decided to take a different approach presented in the next section.

4.4 Classification Driven Stochastic Structure Search

As pointed out in [8] one ellegant solution is to find the structure that minimizes the
probability of classification error directly. To do so the classification driven stochastic
search algorithm (SSS) was proposed in [9]. The basic idea of this approach is that,
since one is interested in finding a structure that performs well as a classifier, it is
natural to design an algorithm that use classification error as the guide for structure
learning. For completness we summarize the main observation here and we direct
the interested reader to [8] for a complete analysis.

One important observation is that unlabeled data can indicate incorrect struc-
ture through degradation of classification performance. Additionally, we also saw
previously that classification performance improves with the correct structure. As a
consequence, a structure with higher classification accuracy over another indicates
an improvement towards finding the optimal classifier.

To learn structure using classification error, it is necessary to adopt a strategy for
efficiently searching through the space of all structures while avoiding local maxima.
As there is no simple closed-form expression that relates structure with classification
error, itis difficult to design a gradient descent algorithm or a similar iterative method
which would be in any case prone to find local minima due to the size of the search
space.

In [8] the following measure was proposed to be maximized:

3 A Bayesian network classifier isgenerativeclassifier when the class variable is an ances-
tor (e.g., parent) of some (or all) features.
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Definition 1. Theinverse error measufer structureS’ is

1
. TEXVZC
inve(S') = M7 @)
225 ps(e(XI£0)

where the summation is over the space of possible structureg gaX) # C) is
the probability of error of the best classifier learned with structfre

Metropolis-Hastings sampling [30] can be used to generate samples from the
inverse error measure, without the need to compute it for all possible structures.
For constructing the Metropolis-Hastings sampling, a neighborhood of a structure is
defined as the set of directed acyclic graphs to which we can transit in the next step.
Transition is done using a predefined set of possible changes to the structure; at each
transition a change consists of a single edge addition, removal, or reversal. In [8] the
acceptance probability of a candidate structdig,,, to replace a previous structure,

S; is defined as follows:

. inve(5")\ VT g(stsme)\ Phrvor TN
i (1’ (s q(Snewwf)) i (1’ ) wn) ®

whereq(S’|S) is the transition probability fron$ to S’ and N; and N,,.,, are the
sizes of the neighborhoods 6f and S,...,, respectively; this choice corresponds
to equal probability of transition to each member in the neighborhood of a structure.
This choice of neighborhood and transition probability creates a Markov chain which
is aperiodic and irreducible, thus satisfying the Markov chain Monte Carlo (MCMC)
conditions [27].

The parametef is used as a temperature factor in the acceptance probability. As
such,T" close tol would allow acceptance of more structures with higher probability
of error than previous structures.close tod mostly allows acceptance of structures
that improve probability of error. A fixed” amounts to changing the distribution
being sampled by the MCMC, while a decreasifigs a simulated annealing run,
aimed at finding the maximum of the inverse error measures. The rate of decrease of
the temperature determines the rate of convergence. Asymptotically in the number
of data, a logarithmic decrease Bfguarantees convergence to a global maximum
with probability that tends to one [22].

The SSS algorithm, with a logarithmic cooling schediilecan find a structure
that is close to minimum probability of error. The estimate of the classification error
of a given structure is obtained by using the labeled training data. Therefore, to avoid
overfitting, a multiplicative penalty term is required. This penalty term, derived from
the Vapnik-Chervonenkis (VC) bound on the empirical classification error, penalizes
complex classifiers thus keeping the balance between bias and variance (for more
details we refer the reader to [9]).
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4.5 Should Unlabeled Be Weighed Differently?

An interesting strategy, suggested by Nigam et al. [31] is to change the weight of the
unlabeled data (reducing their effect on the likelihood). The basic idea in Nigam et
al’'s estimators is to produce a modified log-likelihood that is of the form:

N'Ly(0) + (1= X)Lu(9) 9)

where L;(0) and L, (0) are the likelihoods of the labeled and unlabeled data, re-
spectively. For a sequence df, maximize the modified log-likelihood functions to
obtaind,, (9 denotes an estimate 6f, and choose the best one with respect to cross-
validation or testing. This estimator is simply modifying the ratio of labeled to unla-
beled samples for any fixed. Note that this estimator can only make sense under
the assumption that the model is incorrect. Otherwise, both terms in Expression (9)
lead to unbiased estimators@f

Our experiments in [8] suggest that there is then no reason to impose different
weights on the data, and much less reason to search for the best weight, when the
differences are solely in the rate of reduction of variance. Presumably, there are a
few labeled samples available and a large number of unlabeled samples; why should
we increase the importance of the labeled samples, giving more weight to a term that
will contribute more heavily to the variance?

4.6 Active Learning

All the methods presented above consider a “passive” use of unlabeled data. A differ-
ent approach is known as active learning, in which an oracle is queried as to the label
of some of the unlabeled data. Such an approach increases the size of the labeled data
set, reduces the classifier’s variance, and thus reduces the classification error. There
are different ways to choose which unlabeled data to query. The straightforward ap-
proach is to choose a sample randomly. This approach ensures that the data distribu-
tion p(C, X) is unchanged, a desirable property when estimating generative classi-
fiers. However, the random sample approach typically requires many more samples
to achieve the same performance as methods that choose to label data close to the de-
cision boundary. We note that, for generative classifiers, the latter approach changes
the data distribution therefore leading to estimation bias. Nevertheless, McCallum
and Nigam [29] used active learning with generative models with success. They pro-
posed to first actively query some of the labeled data followed by estimation of the
model’s parameters with the remainder of the unlabeled data.

We performed extensive experiments in [8]. Here we present only the main con-
clusions. With correctly specified generative models and a large pool of unlabeled
data, “passive” use of the unlabeled data is typically sufficient to achieve good per-
formance. Active learning can help reduce the chances of numerical errors (improve
EM starting point, for example), and help in the estimation of classification error.
With incorrectly specified generative models, active learning is very profitable in
quickly reducing the error, while adding the remainder of unlabeled data might not
be desirable.
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4.7 Summary

The idea of structure search is particularly promising when unlabeled data are
present. It seems that simple heuristic methods, such as the solution proposed by
Nigam et al. [31] of weighing down the unlabeled data, are not the best strategies for
unlabeled data. We suggest that structure search, and in particular stochastic struc-
ture search, holds the most promise for handling large amount of unlabeled data and
relatively scarce labeled data for classification. We also believe that the success of
structure search methods for classification increases significantly the breadth of ap-
plications of Bayesian networks.

In a nutshell, when faced with the option of learning with labeled and unlabeled
data, our discussion suggests following the following path. Start with Naive Bayes
and TAN classifiers, learn with only labeled data and test whether the model is correct
by learning with the unlabeled data, using EM and EM-TAN. If the result is not
satisfactory, then SSS can be used to attempt to further improve performance with
enough computational resources. If none of the methods using the unlabeled data
improve performance over the supervised TAN (or Naive Bayes), active learning can
be used, as long as there are resources to label some samples.

5 Experiments

For the experiments, we used our real time facial expression recognition system [10].
This is composed of a face detector which is used as an input to a facial feature de-
tection module. Using the extracted facial features, a face tracking algorithm outputs
a vector of motion features of certain regions of the face. The features are used as
inputs to a Bayesian network classifier.

The face tracking we use in our system is based on a system developed by Tao
and Huang [42] called the piecewis&Ber volume deformation (PBVD) tracker.

The face tracker uses a model-based approach where an explicit 3D wireframe model
of the face is constructed. A generic face model is then warped to fit the detected
facial features. The face model consists of 16 surface patches embeddezién B
volumes. The surface patches defined in this way are guaranteed to be continuous
and smooth. The shape of the mesh can be changed by changing the locations of the
control points in the Bzier volume. A snap shot of the system, with the face tracking
and the corresponding recognition result is shown in Figure 1.

In Section 5.1, we start by investigating the use Bayesian network classifiers
learned with labeled and unlabeled data for face detection. We present our results
on two standard databases and show good results even if we use a very small set
of labeled data. Subsequently, in Section 5.2, we present our facial feature detection
module which uses the input given from the face detector and outputs the location
of relevant facial features. Finally, in Section 5.3, we discuss the facial expression
recognition results obtained by incorporating the facial feature detected inside the
PBVD tracker.
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Fig. 1. A snap shot of our realtime facial expression recognition system. On the left side is a

wireframe model overlayed on a face being tracked. On the right side the correct expression,
Happy, is detected (the bars show the relative probability of Happy compared to the other
expressions). The subject shown is from the Cohn-Kanade database.

5.1 Face Detection Experiments

In our face detection experiments we propose to use Bayesian network classifiers,
with the image pixels of a predefined window size as the features in the Bayesian
network. Among the different works, those of Colmenarez and Huang [11] and Wang
et al. [44] are more related to the Bayesian network classification methods for face
detection. Both learn some ‘structure’ between the facial pixels and combine them to
a probabilistic classification rule. Both use the entropy between the different pixels
to learn pairwise dependencies.

Our approach in detecting faces is an appearance based approach, where the in-
tensity of image pixels serve as the features for the classifier. In a natural image,
faces can appear at different scales, rotations, and location. For learning and defining
the Bayesian network classifiers, we must look at fixed size windows and learn how
a face appears in such windows, where we assume that the face appears in most of
the window’s pixels.

The goal of the classifier is to determine if the pixels in a fixed size window
are those of a face or non-face. While faces are a well defined concept, and have
a relatively regular appearance, it is harder to characterize non-faces. We therefore
model the pixel intensities as discrete random variables, as it would be impossible to
define a parametric probability distribution function (pdf) for non-face images. For
8-bit representation of pixel intensity, each pixel has 256 values. Clearly, if all these
values are used for the classifier, the number of parameters of the joint distribution
is too large for learning dependencies between the pixels (as is the case of TAN clas-
sifiers). Therefore, there is a need to reduce the number of values representing pixel
intensity. Colmenarez and Huang [11] used 4 values per pixel using fixed and equal
bin sizes. We use non-uniform discretization using the class conditional entropy as
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the mean to bin the 256 values to a smaller number. We use the MLC++ software for
that purpose as is described in [16].

Note that our methodology can be extended to other face detection methods
which use different features. The complexity of our methodis), wheren is
the number of features (pixels in our case) considered in each image window.

We test the different approaches described in Section 4, with both labeled and
unlabeled data. For training the classifier we used a dataset consisting of 2,429 faces
and 10,000 non-faces obtained from the MIT CBCL Face databds&*%amples of
face images from the database are presented in Figure 2. Each face image is cropped
and resampled to &9 x 19 window, thus we have a classifier with 361 features.
We also randomly rotate and translate the face images to create a training set of
10,000 face images. In addition we have available 10,000 non-face images. We leave
out 1,000 images (faces and non-faces) for testing and train the Bayesian network
classifiers on the remaining 19,000. In all the experiments we learn a Naive Bayes,
TAN, and a general generative Bayesian network classifier, the latter using the SSS
algorithm.
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Fig. 2. Randomly selected face examples.

In Table 1 we summarize the results obtained for different algorithms and in the
presence of increasing nhumber of unlabeled data. We fixed the false alarm to 1%,
5%, and 10% and we computed the detection rates. We first learn using all the train-
ing data being labeled (that i®, 000 labeled images). The classifier learned with
the SSS algorithm outperforms both TAN and NB classifiers, and all perform quite
well, achieving high detection rates with a low rate of false alarm. Next we remove
the labels of some of the training data and train the classifiers. In the first case, we
remove the labels of 97.5% of the training data (leaving only 475 labeled images).

4 http://www.ai.mit.edu/projects/cbcl
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Table 1. Detection rates (%) for various numbers of false positives

False positives 1% | 5% | 10%

Detector
19,000 labeled 74.3189.2192.72
475 labeled 68.3786.5589.45
NB 475 labeled + 18,525 unlabel&®.0585.7386.98
250 labeled 65.5984.1387.67
250 labeled + 18,750 unlabel&®.1583.8186.07
19,000 labeled 91.8296.4299.11
475 labeled 86.5990.8494.67
TAN |475 labeled + 18,525 unlabel®$.7790.8194.21
250 labeled 75.37187.9792.56
250 labeled + 18,750 unlabeléd.1989.0891.42
19,000 labeled 90.2798.2699.87
555475 labeled + 18,525 unlabel@8.6696.8998.77
250 labeled + 18,750 unlabel®®.6495.2997.93
19,000 labeled 87.7893.8494.14
SVM 475 labeled 82.6189.6691.12
250 labeled 77.6487.1789.16

We see that the NB classifier using both labeled and unlabeled data performs very
poorly. The TAN based only on the 475 labeled images and the TAN based on the
labeled and unlabeled images are close in performance, thus there was no significant
degradation of performance when adding the unlabeled data. When only 250 labeled
data are used (the labels of about 98.7% of the training data were removed), NB with
both labeled and unlabeled data performs poorly, while SSS outperforms the other
classifiers with no great reduction of performance compared to the previous cases.
For benchmarking, we also implemented a SVM classifier (we used the implemen-
tation of Osuna et al. [34]). Note that this classifier starts off very good, but does not
improve performance.

In summary, note that the detection rates for NB are lower than the ones obtained
for the other detectors. Overall, the results obtained with SSS are the best. We see
that even in the most difficult cases, there was sufficient amount of unlabeled data to
achieve almost the same performance as with a large sized labeled dataset.

We also tested our system on the CMU test set [37] consisting of 130 images
with a total of 507 frontal faces. The results are summarized in Table 2. Note that
we obtained comparable results with the results obtained by Viola and Jones [43]
and better than the results of Rowley et al. [37]. Examples of the detection results on
some of the images of the CMU test are presented in Figure 3. We noticed similar
failure modes as Viola and Jones [43]. Since, the face detector was trained only on
frontal faces our system failes to detect faces if they have a significant rotation out
of the plane (toward a profile view). The detector has also problems with the images
in which the faces appear dark and the background is relatively light. Inevitably, we
also detect false positive especially in some texture regions.
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l:- MF=s=0 FDs=0

B: MFs—DkFas— ﬁ

E: MF=s=4,K FDs=2

F:MF==0 FO=s=3

Fig. 3. Output of the system on some images of the CMU test using the SSS classifier learned
with 19,000 labeled data. MFs represents the number of missed faces and FDs is the number
of false detections.

5.2 Facial Feature Detection

In this section, we introduce a novel way to unify the knowledge of a face detector
inside an active appearance model [12], using what we call a 'virtual structuring
element’, which limits the possible settings of the AAM in an appearance-driven
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Table 2. Detection rates (%) for various numbers of false positives on the CMU test set.

False positives 10% | 20%
Detector

19,000 labeled 91.7(92.84
559475 labeled + 18,525 unlabel@$.6791.03
250 labeled + 18,750 unlabel®®.6489.17
Viola-Jones [43] 92.1]193.2
Rowley et al. [37] - 189.2

manner. We propose this visual artifact as a good solution for the background linking
problems and respective generalization problems of basic AAMs.

The main idea of using an AAM approach is to learn the possible variations
of facial features exclusively on a probabilistic and statistical basis of the existing
observations (i.e., which relation holds in all the previously seen instances of facial
features). This can be defined as a combination of shapes and appearances.

At the basis of AAM search is the idea to treat the fitting procedure of a com-
bined shape-appearance model as an optimization problem in trying to minimize the
difference vector between the imagieand the generated modBll of shape and
appearanceil =1 — M.

Cootes et al. [12] observed that each search corresponds to a similar class of
problems where the initial and the final model parameters are the same. This class can
be learned offline (when we create the model) saving high-dimensional computations
during the search phase.

Learning the class of problems means that we have to assume a r&akien
tween the current error imagd and the needed adjustments in the model parame-
tersm. The common assumption is to use a linear relatdon:= RJI. Despite the
fact that more accurate models were proposed [28], the assumption of linearity was
shown to be sufficiently accurate to obtain good results. TolRngle can conduct a
series of experiments on the training set, where the optimal parametaesknown.

Each experiment consists of displacing a set of parameters by a know amount and in
measuring the difference between the generated model and the image under it. Note
that when we displace the model from its optimal position and we calculate the error
imagedl, the image will surely contain parts of the background.

What remains to discuss is an iterative optimization procedure that uses the found
predictions. The first step is to initialize the mean model in an initial position and
the parameters within the reach of the parameter prediction range (which depends
on the perturbation used during training). Iteratively, a sample of the image under
the initialization is taken and compared with the model instance. The differences
between the two appearances are used to predict the set of parameters that would
perhaps improve the similarity. In case a prediction fails to improve the similarity, it
is possible to damp or amplify the prediction several times and maintain the one with
the best result. For an overview of some possible variations to the original AAMs
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algorithm refer to [13]. An example of the AAM search is shown in Fig. 4 where a
model is fitted to a previously unseen face.

(a) Unseen face (b) Initialization (c) Converged model

Fig. 4. Results of an AAM search on an unseen face

One of the main drawbacks of the AAM is coming from its very basic concept:
when the algorithm learns how to solve the optimization offline, the perturbation
applied to the model inevitably takes parts of the background into account. This
means that instead of learning how to generally solve the class of problems, the al-
gorithm actually learns how to solve it only for the same or similar background. This
makes AMMs domain-specific, that is, the AAM trained for a shape in a predefined
environment has difficulties when used on the same shape immersed in a different
environment. Since we always need to perturbate the model and to take into account
the background, an often used idea is to constrain the shape deformation within pre-
defined boundaries. Note that a shape constraint does not adjust the deformation, but
will only limit it when it is found to be invalid.

To overcome these deficiencies of AAMs, we propose a novel method to vi-
sually integrate the information obtained by a face detector inside the AAM. This
method is based on the observation that an object with a specific and recognizable
feature would ease the successful alignment of its model. As the face detector we
can choose between the one proposed by Viola and Jones [43] and the one presented
in Section 5.1.

Since faces have many highly relevant features, erroneously located ones could
lead the optimization process to converge to local minima. The novel idea is to add a
virtual artifact in each of the appearances in the training and the test sets, that would
inherently prohibit some deformations. We call this artifactirfual structuring
element(or VSE) since it adds structure in the data that was not available otherwise.

In our specific case, this element adds visual information about the position of the
face. If we assume that the face detector successfully detects a face, we can use that
information to build this artifact.

After experimenting with different VSEs, we propose the following guideline to
choose a good VSE. We should choose a VSE that: (1) Is big enough to steer the
optimization process; (2) Does not create additional uncertainty by covering relevant
features (e.g., the eyes or nose); (3) Scales accordingly to the dimension of the de-
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tected face; and (4) Completely or partially removes the high variance areas in the
model (e.g., background) with uniform ones.

Fig. 5. The effect of a virtual structuring element to the annotation, appearance, and variance
(white indicates a larger variance)

In the used VSE, a black frame with width equa2@¥; of the size of the detected
face is built around the face itself. Besides the regular markers that capture the facial
features (see Fig. 5 and [10] for details) four new markers are added in the corners to
stretch the convex hull of the shape to take in consideration the structuring element.
Around each of those four points, a black circle with the radius of one third of the
size of the face is added. The resulting annotation, shape, and appearance variance
are displayed in Fig. 5. Note that in the variance map the initialization variance of
the face detector is automatically included in the model (i.e., the thick white border
delimitating the VSE).

This virtual structuring element visually passes information between the face
detection and the AAM. We show in the experiments that VSE helps the basic AAMs
in the model generalization and fitting performances.

Two datasets were used during the evaluation: (1) a part of the Cohn-Kanade [25]
dataset consisting of 53 male and female subjects, showing neutral frontal faces in a
controlled environment; (2) the Unilever dataset consinsting of 50 females, showing
natural poses in an outdoor uncontrolled environment. The idea is to investigate the
influence of the VSE when the background is unchanged (Cohn-Kanade) and when
more difficult conditions are present (Unilever).

We evaluate two specific annotations, one named ‘relevant’ (Fig. 6(a)) describ-
ing the facial features that are relevant for the facial expression classifiers including
the face contours that are needed for face tracking, and the other one named ‘in-
side’ (Fig. 6(b)) describing the facial features without the face contours. Note that
the ‘inside’ model is surrounded only by face area (so not by not by background)
S0 its variance is lower and the model is more robust. To assess the performance of
the AAM we initialize the mean model (i.e., the mean shape with the mean appear-
ance) shifted in the Cartesian plane with a predefined amount. This simulates some
extremes in the initialization error obtained by the face detector.
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(a) Relevant (b) Inside

Fig. 6. The annotations and their respective variance maps over the datasets

The common approach to assess performance of AAM is to compare the results
to a ground truth (i.e., the annotations in the training set). The following measures are
used:Point to Point Error is the Euclidean distance between each point of the true
shape and the corresponding fitted sh&jment to Curve Error is the Euclidean dis-
tance between a fitted shape point and the closest point on the linear spline obtained
from the true shape points; aiMbhalanobis Distancedefined as:

t
=%
25

=N

- (10)

7
wherem; represents the AAM parameters akgdtheir respective principal compo-
nents.

We perform two types of experiments. In the person independent case we per-
form a leave-one-out cross validation. For the second experiment, the Generalized
AAM test, we merge the two datasets and we create a model which includes all
the different lighting conditions, backgrounds, subject features, and annotations (to-
gether with their respective errors). The goal of this experiment is to test whether the
generalization problems of AAMs could be solved just by using a greater amount of
training data.

Cohn-Kanade Unilever
Point-PoinPoint-CurvéMahalanobig Point-Poin{Point-CurvéMahalanobis

Relev.  ||16.72 (5.53) 9.09 (3.36) 47.93 (4.90]54.84 (10.58)29.82 (6.22) 79.41 (6.66
Relev. VSE| 6.73 (0.21) 4.34 (0.15) 26.46 (1.57) 10.14 (2.07) 6.53 (1.30) 24.75 (3.57

Inside 9.53 (3.48) 6.19 (2.47) 39.55 (3.66)] 25.98 (7.29)17.69 (5.16) 38.20 (4.52
Inside VSE| 5.85 (0.24) 3.76 (0.13) 27.14 (1.77) 8.99 (1.90) 6.37 (1.46) 23.45 (2.81

Table 3. Mean and standard error in the person independent test for the two datasets

Table 3 shows the results obtained for the two datasets in the person independent
experiment. Important to notice that the results obtained with Cohn-Kanade datasets
are in most of the cases better than the one obtained with the Unilever dataset. This
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has to do with the fact that, in the Unilver dataset, the effect of the uncontrolled
lighting condition and background change is more relevant and the model fitting is
more difficult. However, in both cases one can see that the use of VSE improved
significantly the results. Another important aspect is that the use of VSE is more
effective in the case of Unilever database and this is because the VSE is reducing the
background influence to a larger extend. Interesting to note is that, while the use of
a VSE does not excessively improve the accuracy of the ‘inside’ model, the use of
VSE on the 'relevant’ model drastically improves its accuracy making it even better
than the basic ‘inside’ model. This result is surprising since in the relevant’ model
parts of the markers are covered by the VSE (i.e., the forehead and chin markers) we
expected the final model to inherently generate some errors. Instead, it seems that
the inner parts of the face might steer the outer markers to the optimal position. This
could only mean that there is a proportional relation between the facial countours
and the inside features, which is a very interesting and unexpected property.

In the generalized AAM experiment (see Table 4), we notice that the results are
generally worse when compared with the person independent results on the ‘con-
trolled’ Cohn-Kanade dataset, but better when compared with the same experiment
on the ‘uncontrolled’ Unilever dataset. Also in this case the VSE implementation
shows very good improvements over the basic AAM implementation. What is im-
portant to note is that the VSE implementation brings the results of the generalized
AAM very close to the dataset specific results, improving the generalization of basic
AAM.

Generalized AAM
Point-PointPoint-Curveé Mahalanobis
Relevant  ||21.05 (0.79) 8.45 (0.27)116.22 (3.57
Relevant VSH 8.50 (0.20) 5.38 (0.12) 51.11 (0.91
Inside 8.11 (0.21) 4.77 (0.10) 85.22 (1.98
Inside VSE || 7.22 (0.17) 4.65 (0.09) 52.84 (0.96

Table 4. Mean and standard error for Generalized AAM

While the ‘relevant VSE' model is better than the normal ‘inside’ model, the
‘inside VSE' is the model of choice to obtain the best overall results on facial features
detection. In our specific task, we can use the ‘inside VSE’ model to obtain the best
results but we will additionally need some heuristics to correctly position the other
markers which are not included in the model. These missing markers are relevant
for robust face tracking and implicitly for facial expression classification so their
accurate positioning is very important. Since in the case of ‘inside VSE’ model these
markers are not detected explicitly, we indicate the ‘relevant VSE’ model as the best
choice for our purposes.

To better illustrate the effect of using a VSE, Fig. 7 shows an example of the
difference in the results when using a ‘relevant’ model and a ‘relevant VSE’ model.
While the first failed to correctly converge, the second result is optimal for inner
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(a) Relevant (b)Relevant VSE

Fig. 7. An example of the difference in the results between a ‘relevant’ and a ‘relevant VSE’
model

facial features. Empirically, VSE models showed to always overlap to the correct
annotation, avoiding the mistakes generated by unsuccessful alignments like the one
in Fig. 7(a).

5.3 Facial Expression Recognition Experiments

As mentioned previously, our system uses a generic face model consisting of 16 sur-
face patches embedded i@Ber volumes which is warped to fit the detected facial
features. This model is used for tracking the detected facial features. The recovered
motions are represented in terms of magnitudes of some predefined motion of the fa-
cial features. Each feature motion corresponds to a simple deformation on the face,
defined in terms of the &ier volume control parameters. We refer to these motions
vectors as motion-units (MU’s). Note that they are similar but not equivalent to Ek-
man’s AU’s [17], and are numeric in nature, representing not only the activation of
a facial region, but also the direction and intensity of the motion. The 12 MU’s used
in the face tracker are shown in Figure 8. The MU’s are used as the features for the
Bayesian network classifiers learned with labeled and unlabeled data.

There are seven categories of facial expressions correspondimeutal, joy,
surprise, anger, disgust, saandfear. For testing we use two databases, in which all
the data is labeled. We removed the labels of most of the training data and learned
the classifiers with the different approaches discussed in Section 4.

The first database was collected by Chen and Huang [5] and is a database of
subjects that were instructed to display facial expressions corresponding to the six
types of emotions. All the tests of the algorithms are performed on a set of five
people, each one displaying six sequences of each one of the six emotions, starting
and ending at the Neutral expression. The video sampling rate was 30 Hz, and a
typical emotion sequence is about 70 samples lengsj. The second database is
the Cohn-Kanade database [25] introduced in the previous section. For each subject
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Fig. 8. The facial motion measurements

Table 5. The experimental setup and the classification results for facial expression recogni-
tion with labeled data (L) and labeled + unlabeled data (LUL). Accuracy is shown with the
corresponding 95% confidence interval.

Train
# Iab.‘# unlab
Chen-Huang 300 | 11,982|3,55571.25+-0.75%58.54+0.81% 72.45+0.74%4 62.874+-0.79%9 74.99+0.71%
Cohn-Kanade 200 | 2,980 |1,00072.50+1.409469.10+1.44%72.90+-1.39%4 69.30+ 1.44% 74.80+-1.36%

Dataset Test NB-L NB-LUL TAN-L TAN-LUL SSS-LUL

there is at most one sequence per expression with an average of 8 frames for each
expression.

We measure the accuracy with respect to the classification result of each frame,
where each frame in the video sequence was manually labeled to one of the expres-
sions (including Neutral). The results are shown in Table 5, showing classification
accuracy with 95% confidence intervals. We see that the classifier trained with the
SSS algorithm improves classification performance to about 75% for both datasets.
Model switching from Naive Bayes to TAN does not significantly improve the per-
formance; apparently, the increase in the likelihood of the data does not cause a
decrease in the classification error. In both the NB and TAN cases, we see a per-
formance degradation as the unlabeled data are added to the smaller labeled dataset
(TAN-L and NB-L compared to TAN-LUL and NB-LUL). An interesting fact arises
from learning the same classifiers with all the data being labeled (i.e., the original
database without removal of any labels). Now, SSS achieves about 83% accuracy,
compared to the 75% achieved with the unlabeled data. Had we had more unlabeled
data, it might have been possible to achieve similar performance as with the fully
labeled database. This result points to the fact that labeled data are more valuable
than unlabeled data (see [4] for a detailed analysis).



26 Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen

6 Conclusion

In this work we presented a complete system that aimes at human-computer inter-
action applications. We considered several instances of Bayesian networks and we
showed that learning the structure of Bayesian networks classifiers enables learning
good classifiers with a small labeled set and a large unlabeled set.

Our discussion of semi-supervised learning for Bayesian networks suggests the
following path: when faced with the option of learning Bayesian networks with la-
beled and unlabeled data, start with Naive Bayes and TAN classifiers, learn with only
labeled data and test whether the model is correct by learning with the unlabeled data.
If the result is not satisfactory, then SSS can be used to attempt to further improve
performance with enough computational resources. If none of the methods using the
unlabeled data improve performance over the supervised TAN (or Naive Bayes), ei-
ther discard the unlabeled data or try to label more data, using active learning for
example.

In closing, it is possible to view some of the components of this work indepen-
dently of each other. The theoretical results of Section 3 do not depend on the choice
of probabilistic classifier and can be used as a guide to other classifiers. Structure
learning of Bayesian networks is not a topic motivated solely by the use of unlabeled
data. The three applications we considered could be solved using classifiers other
than Bayesian networks. However, this work should be viewed as a combination of
all three components; (1) the theory showing the limitations of unlabeled data is used
to motivate (2) the design of algorithms to search for better performing structures of
Bayesian networks and finally, (3) the successful applications to an human-computer
interaction problem we are interested in solving by learning with labeled and unla-
beled data.
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