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Abstract

The objective of this work is classifying texture from
a single image under unknown lighting conditions. The
current and successful approach to this task is to treat it
as a statistical learning problem and learn a classifier
from a set of training images, but this requires a suffi-
cient number and variety of training images.

We show that the number of training images re-
quired can be drastically reduced (to as few as three) by
synthesizing additional training data using photometric
stereo. We demonstrate the method on the PhoTex and
ALOT texture databases. Despite the limitations of pho-
tometric stereo, the resulting classification performance
surpasses the state of the art results.

1. Introduction

Material classification from single images has re-
ceived extensive theoretical and experimental treatment
[5, 7, 8, 15, 18, 19]. Several material databases have
been created [1, 2, 3, 8], providing materials under mul-
tiple illumination directions. Since the appearance of
a surface texture is highly dependent on the illumina-
tion direction, statistical learning techniques have been
applied to capture this appearance variation from a suf-
ficient number of training examples.

Material recognition as a 3D texton modeling prob-
lem was introduced by Leung and Malik [18], triggered
by the availability of the CURET collection [8]. Varma
and Zisserman [19] improved upon their method and
classification performance by constructing a rotational
invariant filter set and using multiple training samples
per material. Broadhurst [4] continued their work and
replaced the texton based classifier with a multivariate
Gaussian classifier, further boosting performance on the
CURET collection.

Apart from the above appearance based methods, a
physical model for texture classification may be used.
Chantler and co-workers [6] use photometric stereo to
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derive a method for material classification invariant un-
der illuminant tilt or, similarly, material rotation. By es-
timating surface normals, they derive an invariant from
surface properties rather than from image properties.
We continue on this line of research and combine both
physical and statistical models, where we aim at classi-
fication of materials from single images taken under ar-
bitrary illumination direction and viewpoint, and com-
bine both physical and statistical models. We improve
upon the experimental results of [6] by obtaining per-
fect recognition rates for two relevant datasets.

The central question posed in this paper is the fol-
lowing: can we reduce the number of training im-
ages (taken under different illumination directions) and
reach the same or even a better classification rate? 1If
we can, then the necessity for a large number of training
images, and the labor involved in producing these, can
be avoided. We show using a quite simple model, Lam-
bertian photometric stereo [20], that additional training
examples can be generated starting from a small set of
original images. Despite the shortcomings of the gen-
eration method, these synthesized training images are
sufficient to surpass the classification performance of
methods trained on the original real images.

This idea of generating additional training images to
improve classification is not novel, though using a phys-
ical model for texture is novel to the best of our knowl-
edge. In other domains, for example, additional train-
ing images have been generated in the case of eigen-
space representations for object recognition [16], for
template-based shape matching of pedestrians [11], and
for feature point matching in tracking [?]. Recent suc-
cesses in face recognition rely on the physical modeling
of the surface geometry [17]. We show similar method-
ology for a completely different recognition problem.

2. Augmenting by Rendered Data

The state-of-the-art in classification of material tex-
tures is the method proposed by Broadhurst [4]. The
classifier takes the marginal responses of the MR8 filter



bank [19] and builds a multivariate Gaussian classifier
which takes into account the variance between the fil-
ter responses of each material class. We reproduce his
classification rates of 98% on the CURET database for
61 material samples, using the same setup as [19] of 46
training and 46 test images per sample. This rate dif-
fers slightly from the reported rate of over 99% in [4],
a difference we attribute to small variations in the con-
struction of the MRS filter set.

We aim to improve on the results of Broadhurst [4]
by including rendered data in the training set. We apply
photometric stereo to reconstruct the material surface
from the training samples, and render views with pre-
viously unseen illumination (and viewing) directions to
augment the learning data.

2.1. Surface Reconstruction

Photometric stereo uses several images of the same
view of a surface (or object) captured under different
illumination directions to determine the local surface
orientation and albedo at each pixel. The traditional
photometric stereo method [20] assumes that surface re-
flectance behaves according to Lambert’s law where the
intensity [ of a pixel varies as

I' = ppnL (1

where p is the albedo which represents how much
light is reflected in the form of diffuse reflection,
w is the light source intensity, n = (ng,ny,n;)
is the wunit surface normal vector, and L =
(cos(7)sin(c), sin(T)cos(c), cos(a))T is the light
source direction. We choose the coordinate system in
which the image plane is parallel to the = — y plane and
the z axis coincides with the viewing direction. Given
three or more images, [ = [I1, I, ..., I,] obtained un-
der light sources L = [Lq,. .., Ly,], one can invert (1)
to solve for the surface normal and albedo at every pixel.
See the textbook of Forsyth and Ponce [10] for a more
elaborate treatment of the method. Preferably one uses
many more than three light sources and Singular Value
Decomposition to robustly recover the surface normal
and albedo [21].

2.2. Material Rendering

We render images by applying Lambert’s law (1) to
the computed normal and albedo map. Furthermore, for
values I < 0, we clip the result to I = 0, effectively
implementing self-shadows or attached shadows. More
complex photometric effects, like cast shadows, high-
lights and inter-reflections [10], are not taken into ac-
count in this simplistic model. Examples of generated
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Figure 1: Examples of generated images from the Pho-
Tex database using photometric stereo. Images are ren-
dered after surface reconstruction using 3 illuminations
of a paper surface (material ACD). The first pair shows
the images with light slant direction 45° and tilt 0°, and
the second pair with slant 75° and tilt 0°.

images are shown in Fig. 1. Note that, due to the nor-
malization of the images in [19], the representation is
unaffected by an affine transformations of the intensi-
ties (I — al + () constant across the image.

3. Experiments

The PhoTex database [3] consists of images of sur-
face textures which are observed from a constant view-
point for different illumination directions. We follow
[9] and select the same 20 materials from the PhoTex
database. Each material contains 40 samples taken un-
der different slant and tilt light directions. From the
40 illumination directions available, we use one half as
the test set, such that illumination directions are equally
spaced and maximally cover the hemisphere. The other
half being the training set 7/. Furthermore, we ran-
domly draw subsets 72 of 3 images from training set
T1, this being the minimal number of images needed
for photometric stereo. Note that all random draws are
repeated 5 times to yield average performance numbers.

The ALOT database [1] consists of 250 materials,
see Fig. 2 for examples. The creators of this data set
systematically varied viewing angle and illumination
angle in order to capture the sensory variation in tex-
ture recordings. This collection is similar in spirit to the
CURET collection [8]. However, for CURET, photo-
metric stereo cannot be applied due to the absence of
3 (or more) images acquired under similar viewpoint
but varying illumination. The acquisition setup for the
ALOT [1] is very similar to the ALOI collection of ob-
jects [12], see the respective websites [1] for technical
details on the setup. For ALOT there are 8 high quality
images available, from cameras c2 and c4, with vary-
ing illumination direction and similar, but not identical,
viewpoint. Since photometric stereo requires the same
viewpoint, it is necessary to introduce a registration step
to perfectly align them — a potential further source of
error in the generated training images. Here, the zero



Figure 2: Sample materials from ALOT [1]. In reading
order, with ALOT class number between brackets: tea-
wafers (9), brown bread (26), cotton (43), terry cloth
(48), punched plastic (56); cork (57), cotton (60), ribbed
cotton (64), sponge (176), and chamois (196).

degrees views for the two cameras are used as the train-
ing set and for the photometric stereo reconstruction,
and the 60 and 120 degree views are used as the test
set. The test set then consists of 20 images per material.
Again we select a training set 7/, which here consists
of 8 images per material, and a minimal training set 72
as a random sample of 3 images from T1.

3.1. Image Registration for ALOT images

Due to small misalignments between the two cam-
eras, the viewpoints are not perfectly (pixel accuracy)
identical. For materials with not too much depth varia-
tion, the distortion can be well approximated by a planar
rotation and translation between the two views. Hence,
we apply image homography registration! [14] to align
the images between the two cameras. To minimize
the effects of shadows on the calibration procedure, we
choose the condition with all five lights turned on as the
calibration pair. The other images are aligned using the
estimated homography.

We applied the Harris corner detector [13] and sub-
sequently correlation matching to find matching sets of
points between images. A RANSAC sampling strategy
is applied to deal with noise and outliers, yielding a ro-
bust estimate of the correspondences between cameras
c2 and c4 for each material. The final maximum like-
lihood estimate of the homography matrix is computed
using singular value decomposition [14]. An example
of the resulting correspondences is given in Fig. 3.

The registration method is only valid for near planar
surfaces. For surfaces with large relief other registration
methods (such as dense stereo) need to be used. There-
fore, we have selected materials with limited depth vari-
ation, see Fig. 2.

I'Software from Peter Kovesi:http://www.csse.uwa.edu.au/~pk

reference target

Figure 3: Example of registration of ALOT images us-
ing a planar homography. The correspondences be-
tween the reference and target are superimposed on the
reference image.

Train Test Classification %
Real Rendered Real | Rendered
T1 20 20 20 96.00 72.00
T2 3 3 20 82.75 68.25

Table 1: Classification performance for the real training
data versus rendered exemplars of the training images.

3.2. Results

We will first test how well the rendered data mim-
ics the real images. Therefore, we compare the per-
formance using the original Photex training data with
the performance when substituting the training images
with rendered data. The experiment demonstrates how
accurately one can render the original image data from
photometric stereo using our simple Lambertian pho-
tometric model. Table 1 gives the results. As ex-
pected, the photometric stereo reconstruction together
with Lambertian rendering of synthetic images is far
from ideal. Despite this, the simple Lambertian model
is good enough to achieve a far above chance level cate-
gorization, which for 20 material classes is at 5%. This
is even the case when only three training images are
available. Hence, we expect improved categorization
performance when augmenting the real training images
with such simply rendered images.

We next test how far generated data aids in classifi-
cation, using photometric stereo to augment the training
set. Here, we take the original training data and aug-
ment it with generated views of random illumination di-
rections. Adding more and more data is expected to im-
prove recognition rate until saturation. Result are given
in Fig. 4. The graphs start at the baseline for the real
training images of T1 (20 for PhoTex and 8 for ALOT)
and T2 (3 images), respectively, and show performance
when adding rendered images to the training data.
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Figure 4: Results for augmenting training data, showing
performance improvement as a function of the number
of augmented images.

For the PhoTex dataset, the initial points of the
curves in Fig. 4 correspond to the results given in Ta-
ble 1 for the training data. The results for both Pho-
Tex and ALOT show a consistent performance increase
when adding more data, and saturates at perfect recog-
nition. Regarding the three-images case (T2, red line),
standard deviation is not too large for the initial (ran-
dom) choice of real training images; then increases
when adding Lambertian rendered images of random il-
lumination directions; to decrease again as performance
gets closer to 100%. Note that our results improve upon
the state of the art for PhoTex [6], while we are doing a
harder classification task. Even when having as few as 3
training images, materials are perfectly classified when
augmenting the data to a total of 45 images for PhoTex
and 90 for ALOT.

4. Conclusions

Interestingly, and despite the considerable body of
prior art, our work shows that there is still room to im-
prove in the learning of texture classifiers. Using photo-
metric stereo to obtain a physical model of the texture,
in combination with Lambertian rendering to augment
the training data, classification performance increased
considerably. Indeed, a perfect classification perfor-
mance was obtained from as few as three original im-

ages of each material class for state of the art datasets.
Note that these datasets contain non-lambertian mate-
rials; there are specularities and unmodelled cast shad-
ows in the images. Apparently, Lambert’s law is already
descriptive enough to capture many aspects of material
surface reflectance.

References

[1] ALOT. www.science.uva.nl/~mark/ALOT.

[2] KTH-TIPS2. www.nada.kth.se/cvap/databases/kth-tips.
[3] PhoTex. www.cee.hw.ac.uk/texturelab/database/photex.
[4] R. E. Broadhurst. Statistical estimation of histogram

variation for texture classification. Texture, 2005.
[5] B. Caputo, E. Hayman, and P. Mallikarjuna. Class-

specific material categorisation. /CCV, 2005.
[6] M. Chantler, M. Petrou, A. Penirsche, M. Schmidt, and

G. McGunnigle. Classifying surface texture while si-
multaneously estimating illumination direction. IJCV,

2005.
[71 O. G. Cula and K. J. Dana. Compact representation of

bidirectional texture functions. CVPR, 2001.
[8] K.J.Dana, B. van Ginneken, S. K. Nayar, and J. J. Koen-

derink. Reflectance and texture of real-world surfaces.

ACM Transactions on Graphics, 1999.
[9] O. Drbohlav and M. J. Chantler. Illuminant-invariant

texture classification using single training images. Tex-

ture05, 2005.
[10] D. A. Forsyth and J. Ponce. Computer Vision: A Modern

Approach. Prentice Hall Professional Technical Refer-

ence, 2002.
[11] D. M. Gavrila and J. Giebel. Virtual sample generation

for template-based shape matching. CVPR, 2003.
[12] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeul-

ders. The Amsterdam library of object images. 1JCV,

2005.
[13] C.Harris and M. Stephens. A combined corner and edge

detection. Proceedings of The Fourth Alvey Vision Con-

ference, 1988.
[14] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. 2004.
[15] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh.

On the significance of real-world conditions for material

classification. ECCV, 2004.
[16] P.Jain, K. Rao, and C. Jawahar. Computing eigen space

from limited number of views for recognition. /CVGIP,

2006.
[17] R. Jenkins and A. M. Burton. 100% accuracy in auto-

matic face recognition. Science, 2008.
[18] T.LeungandJ. Malik. Representing and recognizing the

visual appearance of materials using three-dimensional

textons. IJCV, 2001.
[19] M. Varma and A. Zisserman. A statistical approach to

texture classification from single images. IJCV, 2005.
[20] R.J. Woodham. Photometric method for determining

surface orientation from multiple images. Optical Engi-

neering, 1980.
[21] A. Yuille, D. Snow, R. Epstein, and P. Belhumeur. Deter-

mining generative models of objects under varying illu-
mination: Shape and albedo from multiple images using
svd and integrability. ZJCV, 1999.



