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Abstract
Periodicity is at the core of the recognition of many ac-

tions. This paper takes the following steps to detect and
measure periodicity. 1) We establish a conceptual frame-
work of classifying periodicity in 10 essential cases, the
most important of which are flashing (of a traffic light),
pulsing (of an anemone), swinging (of wings), spinning (of
a swimmer), turning (of a conductor), shuttling (of a brush),
drifting (of an escalator) and thrusting (of a kangaroo). 2)
We present an algorithm to detect all cases by the one and
the same algorithm. It tracks the object independent of the
object’s appearance, then performs probabilistic PCA and
spectral analysis followed by detection and frequency mea-
surement. The method shows good performance with fixed
parameters for examples of all above cases assembled from
the Internet. 3) Application of the method, completely un-
altered, to a random half hour of CNN news has led to an
80% score.

1. Introduction
Many natural objects exhibit periodicity in their mo-

tion. Examples include running athlete, flapping wings,
nodding, swimming, a beating heart and ironing. The no-
tion of periodicity has been used in Computer Vision for
object detection or segmentation [17, 18], tracking [7, 22]
and classification [1, 10, 19]. In sports like speed skating
and swimming, periodicity gives important measure on how
efficiently an athlete moves [24]. This paper develops a
model of the 10 essential cases of visual periodicity. Fur-
thermore, a method is devised to robustly analyze these dif-
ferent cases, by evaluating the object appearance over time.

Periodicity in a sequence can be caused by regularity in
the motion of the object. Alternatively, it can be caused by
the regularity in appearance of the object over time. Or,
it can be caused by the motion of the regular pattern on
the object. These categories are divided further until we
arrive at the 10 fundamental cases. This categorization is
important as a different model of computation may result in
the strive to good detection results.

We present a novel approach to periodic motion analysis
that is inspired by the method developed in [34]. The essen-
tial observation of which this paper rests is that the portions
of the image that vary (periodically) together also consti-
tute a part of one physical entity. Hence, avoiding explicit
and computationally expensive segmentation, we aim for
regions of maximum extend for which regions vary coher-
ently. By using Principal Component Analysis (PCA) over
time sequence after removal of the translational component
one can detect co-varying parts of the image. We prefer to
use probabilistic PCA (pPCA) as it delivers a more robust
estimate [30] and there is an incremental implementation
available (ipPCA) [20]. This approach avoids the burden of
many of the past methods.

The paper is organized as follows. Section 2 discusses
the classification of visual periodicity types mentioned ear-
lier in more details. We review the related work in sec-
tion 3. Section 4 describes the proposed periodicity anal-
ysis method. In section 5, various experimental results of
our method are compared to the results from our own im-
plementation of a recent method [26]. Finally, in section 6
we draw some conclusions.

2. Visual periodicity

Visual periodicity in the perception of an object may re-
sult from the appearance variation AO of the object (which
includes both intensity pattern fO and shape sO), the per-
ceived path pO of the object, or by the motion of a reg-
ular pattern on the object. From these general groups we
distinguish 10 fundamental cases of periodicity. This cate-
gorization we aim for encompasses many more cases than
in [11], which focusses on the perceived motion path only.
Apart from the two groups described above, the classifica-
tion of the periodicity cases is based on several other modes.
Firstly, the motion can either move forwardly, or create an
oscillating pattern, i.e. moving back and forth between two
states. Secondly, the flow field created by the variation can
be continuous or intermittent. This only holds for the for-
ward motion, since an oscillation will always has moments
where the motion stops briefly to change direction. Thirdly,
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(a) Flash case: railroad sign, bike lamp, car indicator, sirens

(b) Pulse case: anemone, accordeon, spring, heart

(c) Inflate case (d) Turn case: conducting

(e) Swing case: walking, galloping, toy nodding, flapping

(f) Spin case: swimming, spinning disc, windmill, spinning top

(g) Shuttle case: brushing, dribbling, sawing, ironing

(h) Drift case: escalator, bar-
ber’s pole

(i) Thrust case: jumping kangaroo, inter-
mittent conveyor

Figure 1. Several examples of visual periodicity grouped by case.
The annotated images will be used for evaluation. The smaller
rectangle indicates the part that was used for tracking; the larger
one is the input for the periodicity detector. The Intensify case
is missing since no representative example could be found. See
Table 1 for the complete list.

the periodicity can be induced either by the object motion or
the motion of the surrounding background. In other words,
one can make a recording of some child on a swing, or one
can record the background while fixing the child in the cen-
ter of the screen. Our periodicity detector will treat both

cases similarly (It would even generate the same frequency
of periodicity if the camera would be fixed to the swing and
record the background pattern). Several images of real-life
periodicity for every case are depicted in Figure 1.

Periodicity in the intensity pattern is described in its sim-
plest case by a repetitive intensity variation, either intrisi-
cally or by external illumination, with the smallest value of
τ > ε as the periodicity:

fO(t+ τ) = fO(t) (1)

This is object periodicity due to oscillation regardless of the
position x, we call it the Flash case. Other words that de-
scribes this case are blinking and shutter. The second case is
the Intensify case, when the intensity becomes stronger (or
weaker) with periodic pauses. Since the continuous version
of the forward intensity increase does not cause periodicity,
we only have two cases for this group.

An essentially different case is when the object rotates
with an axis perpendicular to the image plane and point-
ing towards the viewer. We arrive at the Swing, Spin and
Turn case. These three cases are caused either by texture
variation, usually whole body rotation with the axis going
through the object’s center of gravity, or by both texture and
shape, when the axis is not passing the center of gravity. A
few examples for Swing motion are: walking, nodding and
hand waving. The Spin case, the forward and continuous
rotation, includes spinning, rolling (without the translation)
and swimming. The Turn case is similar to Spin but with
periodic pausing. The Turn case is sometimes seen in man-
ufacturing but otherwise rare.

Due to lack of space, the complete discussion on other
cases will be included elsewhere. For the remaining of the
paper, the Intensify and Inflate case will not be considered
as they are very rare in real situations. The Turn case is
excluded since it appears very similar to Spin case.

3. Related work
The majority of the papers on periodicity analysis in the

literature can be categorized as appearance-based. Object
tracking is done first to align the image frames. The less
common method is to detect periodicity in shape deforma-
tion [13, 16]. Generally the shape-based approach is limited
only for the cases when the apparent object shape is varying,
i.e. the Pulse case and a subset of the Swing and Turn cases.
The more recent approaches are focussed on analyzing in-
tensity variations to detect periodicity [5, 6, 10, 18, 29].
The well-cited method of Cutler and Davis [10] calculates
the correlation of successive frames, resulting in a similar-
ity plot over time. Ran et al. [26] improved the results of
[10] by applying hypothesis testing (based on periodogram
maximizer) on individual pixels, to check whether a given
pixel is periodic. Only the periodic pixels are then used to
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Table 1. Classification of visual periodicity.
Type Periodicity abstraction Examples

Flash
(Oscillating)

Fig. 1(a)

In
te

ns
ity

va
r.

Intensify
(Forward in-
termittent)

None

Pulse
(Oscillating)

Fig. 1(b)

D
ef

or
m

at
io

n

Inflate
(Forward in-
termittent)

Fig. 1(c)

Swing
(Oscillating)

Fig. 1(e)

Spin
(Forward
continuous)

Fig. 1(f)

R
ot

at
io

n

Turn
(Forward in-
termittent)

Fig. 1(d)

Shuttle
(Oscillating)

Fig. 1(g)

Drift†
(Forward
continuous)

Fig. 1(h)

Tr
an

sl
at

io
n

Thrust
(Forward in-
termittent)

Fig. 1(i)

†Note: For a periodic appearance, this requires repetition of objects as in
a rolling staircase.

estimate the dominant period in the sequence. Next, vPLL
(video Phase-Locked Loops) approach [4] is used on the
edge images to improve the result, but this second part is
only specific for gait analysis. We implemented the first part
of Ran’s method and will use it for performance compari-
son. This method however, is based on two assumptions:
the motion must be quasi-periodic and no DC component
(i.e. shift of intensity value) is present in the pixel varia-
tions. Pixel correlations methods described above are sensi-
tive to noise. We propose the use of pPCA before detecting
the period to reduce the noise sensitivity. In [6] an online
filtering scheme to estimate temporal frequency of quasi-
periodic object motion is presented. The filter response
gives the location and a measure on how strong the peri-
odicity is at a certain pre-selected tuning frequency. How-
ever, the frequency range must be determined manually.
Our method requires no such a priori knowledge. Finally, a
method to find multiple periodic motions over static back-
ground without the need for object tracking is proposed in

[5]. By projecting the intensity in one direction and observ-
ing the repetitive patterns in the time-frequency distribution
of the video, this method is able to detect periodicity even if
it the motion is superimposed to translation. Summation in
one spatial axis, however, might eliminate the periodic in-
tensity we are trying to detect. Despite the minor drawbacks
discussed above, appearance-based method is the most suit-
able approach to detect periodicity in all fundamental cases.

Methods that analyze motion variation can be divided
further into two types: those that find point correspondences
[1, 2, 11, 17, 19, 27, 32] and those that analyze motion field
variation [8, 23, 31]. Among the first group, the method
described in [17] is most interesting. Periodic motion de-
tection is considered here as a sequence alignment, where
an image sequence is matched to itself over one or more
periods. This assumption combines both tracking and pe-
riodicity detector in the same optimization step. Generally,
point correspondences are difficult to achieve when the im-
ages of the object of interest are of low resolution, and if
the background as well as the foreground are strongly vary-
ing in appearance. In the second group, optic flow method
is used to estimate the motion field. In [8], SVD is used
as replacement for FFT in estimating the period of a dy-
namic texture. It is reported that SVD is superior to FFT
on quasi-periodic data, but data windowing can be applied
to FFT to cope with quasi-periodicity. Also, just as in [6]
the SVD method described here needs to test a range of
period lengths to find the best estimate. Both groups of
the motion-based approach cannot detect periodicity in the
Flash case, because point correspondences and motion field
are not available there. Furthermore, the Spin and Drift case
produce a constant flow field, so the second group will have
difficulties to detect the periodicity in those cases. In gen-
eral, appearance-based method such as ours can detect pe-
riodicity in a broader range of cases.

PCA has been used before to model object appearance
[9, 33]. The use of PCA to analyze periodic motion has
also been independently proposed [12], but for the purpose
of reconstructing 3D animation. Functional PCA has been
used to represent human gait motion [22]. Two other papers
[14, 25] used PCA to learn a model for behavior and action
classification. In this paper, we use pPCA instead, which
provides better robustness to outliers and missing data [30].

In conclusion, the appearance-based method is more
generally applicable than the motion-based approach, since
it can detect periodicity in more cases. However, none of
the methods described above has considered the object of
interest as one physical entity. Usually, an ensemble of esti-
mation from parts of the images are produced, and the best
period estimation that represents the periodicity is chosen.
This would make the methods susceptible to noise by align-
ment error, occlusion or changing illumination. We will ad-
dress this issue by applying pPCA on the data.
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Figure 2. Block diagram of our method. The input is two bounding
boxes that is determined manually (See Figure 1). The output is a
frequency estimate and the degree of periodicity of the sequence.

4. Periodicity analysis
Our approach is appearance-based compatible to [6, 26]

discussed above. Just as most of the approaches, tracking
is performed first to align the object in the center of the
frame. The key novelty is that by using PCA, the input data
that are spatially correlated are grouped together. If the ob-
ject of interest causes a periodic variation in intensity and
shape, PCA models the variation with one or more unob-
served variables. Unlike previous approaches, PCA consid-
ers these pixels as one physical entity, not as individually
varying pixel. Hence the method is compatible with all of
the above types and at the same time robust to noise.

Figure 2 shows the block diagram of our method. The
process is initialized manually by giving two bounding
boxes as input (See Figure 1). The first smaller one is used
for tracking. After the image is aligned, we enlarge the re-
gion of interest with the second box and pass the cropped
sequence to the periodicity detector. At the heart of our
method, we use pPCA to detect the maximum spatially co-
herent changes over time in the object’s appearance without
the need of segmentation. The online version [20] might
be considered if online computation is needed. In the final
output we describe the periodicity of the input data by two
indicators: the estimated period and the degree of periodic-
ity. Note that the first part of Ran et al. [26] is similar to
our method, except that no PCA calculation is done and no
degree of periodicity estimation is given.

4.1. The hole-in-the-background tracking

We have selected the method in [21] to track the object
of interest. This method makes no assumptions on the ap-
pearance of the object other than its distinction from the
background. So even if the object’s appearance changes
drastically over time due to its periodicity or otherwise, the
tracker is still able to lock on to the object.

The tracking result plays an essential role in the perfor-
mance of the periodicity detector. Better tracking allows the
periodic components to be modeled by the first few prin-
cipal components. If severe misalignment occurs during
tracking, the first few components would be dominated by
a non-periodic variation instead.

4.2. pPCA for periodicity detection

Let X = [x1 x2 . . . xN ] be a D ×N matrix that repre-
sents the input video datacube, withN the number of image
frames and D the number of pixels in one frame. The rows

Figure 3. An example of the pPCA analysis: Visualization of the
pPCA analysis of a swimmer sequence. Only two components are
shown here. The first component models the gradual shift of the
swimmer. The second component is dominated by the motion of
his arms and legs.

of an aligned image frame are concatenated to form the vec-
tor xn. The optimal linear reconstruction X̂ of the datacube
is given by:

X̂ = WU +X (2)
with D × Q matrix W = [w1 w2 . . . wQ] as the set of
orthonormal basis vectors (Q � D) onto which the re-
tained variance under projection is maximal, Q × N ma-
trix U = [u1 u2 . . . uN ] as a set of Q-dimensional vec-
tors of unobserved variables and X the set of mean vectors
x̄. The vectors wq are also called the eigen images since
each represents an image. Some textbooks also refer to the
vectors un as principal components. The amount of varia-
tion contained in each component is indicated in pPCA by
the eigenvalues Λ = diag(λ1, λ2, . . . , λd) of the covariance
matrix S of the input data X:

S = V ΛV T (3)

which is calculated by Eigenvalue decomposition. The di-
mension Q is selected by setting the maximum percentage
of retained variance we want to have in the reconstructed
matrix X̂ . See [30] for the complete derivation of pPCA
and the estimation of W and U in equation (2).

Figure 3 shows a selection of the pPCA output of a se-
quence with a swimmer. As we can see, the eigen image wq

accounts for the motion variation, and the change in the time
is captured in the unobserved variable uT

q , in time axis di-
rection. Furthermore, if the periodic and non-periodic vari-
ations are not correlated, PCA breaks down the data into
either periodic or non-periodic components and describes
these variations separately. The reorganization of the data
by PCA is quite effective since each unobserved variable
vector uT

q provides a compact representation of the periodic
variation in a group of spatially-correlated pixels, which we
will use for spectrum estimation.

4.3. Frequency analysis

In principle, there are two approaches to estimate the
power spectrum of a time series: parametric and non-
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parametric methods [15]. Non-parametric methods are
based on the idea of estimating the autocorrelation func-
tion of a random process, and taking the Fourier transform
to estimate the power spectrum. The periodogram and its
modifications belongs to this class, which need no a priori
information about the random process. Parametric methods,
on the other hand, need some knowledge on the generation
of the random process. Some examples of methods that be-
long to this class are Burg Algorithm, Modified Covariance
method and MUSIC [15]. Although parametric methods
can give a higher resolution estimate, in our case knowl-
edge about the input data is in most cases not available. For
this reason, we have chosen the modified periodogram of
the non-parametric class, which provides a better estimate
than plain periodogram with only 1 additional parameter,
the window type w(n) to be used [15]:

Pq(f) =
1
N

∣∣∣∣∣
N−1∑
n=0

w(n)x(n) exp(−jn2πf)

∣∣∣∣∣
2

(4)

Spectrum estimation is performed for each principal
component vector uT

q from the pPCA. By weighing the
spectra Pq(f) with the relative percentages λ∗q of the re-
tained variance and summing them together, a spectrum is
obtained:

P (f) =
Q∑

q=1

λ∗qPq(f), λ∗q =
λq∑D

d=1 λd

(5)

To detect the dominant frequency component in the spec-
trum P (f), we use a similar approach to the one used in
[18]. Local maxima detection using a dilation operator is
used to detect peaks in the spectrum. Local minima are
also detected to define the peak’s supports (see Figure 4).
The peaks with a frequency lower than fs

N are discarded,
with fs being the sampling rate of the video and N the
frame length. This value is the frequency resolution of the
periodogram and the smallest frequency value that can be
detected. Afterwards, starting from the lowest found fre-
quency to the highest, each peak is checked against the oth-
ers for its harmonicity, i.e. if its frequency can be expressed
as a linear combination of the existing fundamental frequen-
cies. We require that a fundamental frequency have a higher
peak than its harmonics and a tolerance of fs

N is used in the
matching process. Since multiple fundamentals may exist,
we select the one group k with the highest total energy to
represent the dominant frequency component in the data.
The total energy is the sum of the area between the left and
right supports E(.) of the fundamental frequency peak f0

k

and its harmonics f i
k:

fest = argmax
f0

k

{
E
(
f0

k

)
+
∑

i

E
(
f i

k

)}
(6)

As long as there is some minor peaks present in the spec-
trum P (f) the above method may still give a frequency

0 1 2 3 4 5 6 7 8 9 10
0
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10

15

20

25

30

Frequency (Hz)

P(f)

Figure 4. The weighted spectrum P (f) with the detected spectral
harmonics peaks (�) and their supports (×).

estimate, even if there is no periodicity in the data. It is
therefore important to separate those cases by measuring
the strength of the periodic component. Ideally, low value
should be assigned for non-periodic motion, e.g. transla-
tional movement. To this end, we propose to compare the
energy of all peaks found in P (f) with the total energy:

perest =
∑

K E∆(fk)∑
f P (f)

(7)

with M as the number of peaks detected and E∆(fk) as the
area of a triangle formed by the peak and its left and right
support (see Figure 4). Note that the peak supports should
have zero energy for the spectrum of periodic signal. By
only using the triangle area for the nominator in eq. (7), we
assign a lower perest value for quasi-periodic signal.

For pure periodic motion, the above analysis is sufficient.
However, for quasi-periodic motion, we use data window-
ing. The window length depends on the rate of the instanta-
neous frequency changes and is given by [3, Ch. 2.3]:

∆ =
√

2
∣∣∣∣dfi(t)
dt

∣∣∣∣−1/2

(8)

The equations (2), (5)-(7) give the core of our method,
leading to the periodic frequency fest in eq. (6). The al-
gorithm is applied with the following parameters: pPCA
retained variance 75%, Hanning window for periodogram
smoothing, dilation operator with size 7 to find frequency
peaks and peak difference threshold of 0.1 to ignore small
peaks. It is applied to all test data without alteration.

5. Experimental results

We designed two experiments to evaluate our method’s
performance. In the first experiment, seven short sequences
are used to assess the accuracy of the period estimation. A
30 minutes CNN news sequence is used in the second ex-
periment to evaluate the degree of periodicity measure.

For accuracy evaluation we picked seven sequences from
the Internet, each representing a fundamental case described
in section 2. Our dataset, as summarized in Table 2, repre-
sents more cases than the ones discussed previously [e.g.
6, 10, 26]. All sequences are converted to grayscale prior
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Table 2. Overview of the dataset per case (See also Figure 1). The
dataset size is given as the frame size and the number of frames.

Dataset name Size Ground truth period
(w × h × #frames) mean ± std (fr/cl)

Flash - railroad sign 111× 127× 152 20.07 ± 0.93
Pulse - anemone 80× 64× 160 18.88 ± 0.99
Swing - walking 96× 172× 118 12.20 ± 0.45
Spin - swimming 136× 72× 474 53.94 ± 0.56
Shuttle - brushing 142× 120× 150 13.57 ± 0.79
Drift - escalator 88× 72× 250 21.27 ± 0.47
Thrust - kangaroo 96× 66× 200 18.00 ± 0.50
Spinning disc 244× 208× 250 5.00 - 20.00

to the processing. As some objects have translational mo-
tion, tracking is applied on all sequences except for the mo-
tion of regular pattern case like the escalator sequence. The
appearance variation in each sequence after tracking is sta-
tionary and quasi-periodic. The spinning disc sequence is
added to evaluate the performance of our method against
non-stationary periodicity. In this sequence the disc rota-
tion speed reduces slowly toward the end of the sequence.
The ground truth of all sequences are determined by visual
inspection (represented in frames/cycle).

The results of our method applied to the sequences de-
scribed above are summarized in Figure 5 and Table 3.
To improve the frequency detection, zero-padding with
NFFT = 2048 is applied on the modified periodogram.
The theoretical uncertainty measure of the estimation re-
sults is derived from the frequency resolution of the original
sequence length εf = fs/N :

εp =
∣∣∣∣dpdf

∣∣∣∣ εf =
(

1
2f2

est

)(
fs

N

)
=

fs

2Nf2
est

(9)

As expected, on videos with cluttered background (the last
four) more components are needed to capture 75% of the
variations. We observe that the first few components cap-
tured the periodic variation, even if the tracking is not per-
fect. This is illustrated in Figure 5(b) where the camera is
shifted in the middle of the sequence, and in Figure 5(d)
where a gradual camera viewpoint change is observed. This
effect is also represented by the lower degree of periodicity
perest of those cases. In the case of non-stationarity (spin-
ning disc), the windowing method is able to track the grad-
ual deceleration of the rotation. In general, when compared
to the ground truth, an error of less than 0.5 frame/cycle is
achieved.

We have implemented and improved the first part of Ran
et al.’s method [26] and applied it to the same dataset. Al-
though not described in the original paper, we also applied
the same amount of zero-padding as in our method to per-
form correct comparison. Ran’s method is based on two im-
portant assumptions: the motion must be quasi-periodic and
no DC component (i.e. shift of intensity value) is present in
the pixel variations. The estimation results of Ran’s method
is included in Table 3 after ignoring the first few values of

Table 3. The quantitative results of our method applied on the
datasets in Table 2, compared to the results from our improved
implementation of Ran’s method. #PC is the number of principal
components used to reach 75% retained variance. (†average value)

Dataset Our method Improved Ran method
#PC Estimated period perest Estimated period

pest ± εp (fr/cl) pest ± εp (fr/cl)

Flash 1 20.08 ± 1.32 0.99 20.08 ± 1.32
Pulse 5 18.79 ± 1.10 0.20 18.96 ± 1.10
Swing 15 12.49 ± 0.66 0.28 12.49 ± 0.66
Spin 33 53.89 ± 3.06 0.50 55.35 ± 3.06
Shuttle 11 13.65 ± 0.62 0.78 14.22 ± 0.62
Drift 5 21.33 ± 0.91 0.99 21.33 ± 0.91
Thrust 16 17.96 ± 0.81 0.41 18.62 ± 0.81
Sp. disc 9 4.82 - 20.48 0.73† -

the periodogram, just as in our method. Without this step,
the DC peak would have been selected.

As we can see, the estimation of both our method
and our improved Ran implementation is comparable since
both methods used periodogram-based frequency analysis
(Hence the same uncertainties). The difference lies in where
it is applied. Ran’s method applied periodogram analysis on
every pixel, while we applied it a lot less frequent; only on
the Q principal components. Our method seems to perform
better (given in bold in Table 3) for complex data such as the
Spin, Shuttle and Thrust cases, owing to PCA who separates
spatially co-varying parts of the image.

The algorithm was also applied on a randomly selected
30 minutes sequence of CNN news from TRECVID 2005
dataset [28] without any parameters adjustment. The goal
here is to detect general periodicity in the full frames, so
unlike the first experiment tracking is not applied. Visual
inspection yields 69 instances of periodicity in the whole se-
quence. Detecting periodicity in this sequence is very chal-
lenging as the periodic motion is often a tiny fraction of the
whole frame and only a short number of cycles is present in
each instance. A window of 4 seconds is used, but no fur-
ther training, tuning or testing of the algorithm was done.
We consider perest > 0.1 as a positive detection. With
this non-adaptive whole screen algorithm, we detected 58
events of periodicity (80% of 69). The remaining 20% were
too small where the periodic component is overpowered by
non-periodic variation. False detection is invoked in 13 in-
stances when non-periodic abrupt changes produce ringing
in the frequency spectrum. These figures compare very fa-
vorably to common object detector rates. Figure 6 shows a
4 minutes interval of the sequence. Events A, B and D are
people shaking their heads. The weak response of event C
shows a Drift case when the camera pans 3 standing boys.
Event E shows some flashing as quick camera shot changes
occur during advertisement. And event F is the flashing of
a white patch.
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(a) Flash - railroad sign
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(b) Pulse - anemone
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(c) Swing - walking
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(d) Spin - swimming
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(e) Shuttle - teeth brushing
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(f) Drift - escalator
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(g) Thrust - jumping kangaroo
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(h) Spinning disc

Figure 5. The results of the proposed approach applied on the datasets in Table 2. Only the first 2 components are visualized here. For each
component, the eigen image wq and the principal component in time axis direction uT

q is plotted, along with the percentage of retained
variance λ∗q . The weighted spectrum of all components is shown at the bottom of each figure.

Figure 6. Results of the degree of periodicity estimation applied to a 4 minutes segment of CNN news sequence.

6. Conclusions
Visual periodicity is an important cue for many applica-

tions such as detection of gait and performance measure-
ment of top athletes. This paper takes the following steps to
investigate the topic:

1. We propose a conceptual framework for the catego-
rization of visual periodicity in 10 fundamental cases.

2. We present a model to detect all these types of period-
icity by one and the same algorithm. The method is
based on tracking the hole in the background and on

probabilistic Principal Component Analysis (pPCA).
By spectral analysis on the principal components we
estimate the frequency and the degree of periodicity.
Due to the nature of PCA to group spatially coherent
changes over time, our method has performed favor-
ably to a recently developed method [26], especially
on cluttered sequences.

3. The method, which is tuned on the small data set of
10 cases, is also applied without any alteration on a
random half hour of CNN news to detect periodicity
successfully.

Authorized licensed use limited to: UVA Universiteitsbibliotheek SZ. Downloaded on December 22, 2009 at 08:31 from IEEE Xplore.  Restrictions apply. 



We have good reasons to assume that periodicity is an
important indicator for the attention arousal as illustrated in
Figure 6. In a sequel study we will evaluate the attention
of periodicity as detected by our algorithm in a quantitative
manner.
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