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Abstract

This paper presents a strategy to improve the AdaBoost algorithm with a quadratic combination of base classifiers. We observe that learning
this combination is necessary to get better performance and is possible by constructing an intermediate learner operating on the combined
linear and quadratic terms. This is not trivial, as the parameters of the base classifiers are not under direct control, obstructing the application
of direct optimization. We propose a new method realizing iterative optimization indirectly. First we train a classifier by randomizing the labels
of training examples. Subsequently, the input learner is called repeatedly with a systematic update of the labels of the training examples in each
round. We show that the quadratic boosting algorithm converges under the condition that the given base learner minimizes the empirical error.
We also give an upper bound on the VC-dimension of the new classifier. Our experimental results on 23 standard problems show that quadratic
boosting compares favorably with AdaBoost on large data sets at the cost of training speed. The classification time of the two algorithms,
however, is equivalent.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Combining classifiers by boosting algorithms, especially the
AdaBoost [1] method, is currently in frequent use in machine
learning and pattern recognition [2,3]. These methods convert
a weakly performing base learner into one with better perfor-
mance. One of the main characteristics of boosting algorithms
is that they treat the base learner as a black box. They do not
require access to the parameters of the base classifiers. This
model of learning is flexible since knowledge about the prob-
lem can be incorporated in the base learner while it performs
with moderate accuracy. Viola and Jones [4] use a space of fea-
tures designed to ensure fast calculation, while the use of Ad-
aBoost results in a face classifier that is both fast and accurate.
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Other typical application fields of AdaBoost are image retrieval
[5], part-based object classifiers [6], and dynamic Bayesian
network classifiers for event detection in video [7].

The AdaBoost algorithm uses a linear combination f of the
base classifiers h(·),

f (x) =
∑

t

�t ht (x), (1)

where �t is the weight of the base classifier ht . The index t
denotes the iteration of the algorithm. The algorithm learns
classifiers by exploiting the fact that the given learner can be
used with different versions of the training set. In each round the
AdaBoost algorithm employs a complex scheme of reweighting
of training examples.

The limitation of the linear combination in Eq. (1) has not
received much attention partly because the choice of the base
learner is flexible. Virtually any learning algorithm can be used.
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Fig. 1. The exclusive OR problem. A classifier space H = {h1, h2}, where
each classifier is represented by a straight line boundary in 2D. The input
space X consists of four points in 2D. The filled circles are labeled +1 while
the empty circles −1. The two classes cannot be separated by any (threshold)
linear combination of the two classifiers [8].

This can lead to very complex decision boundaries. However,
there are cases where the choice of the base learner is restricted.
For example, apart from accuracy the base classifiers may be
subject to other design constraints such as classification time
or integration with other modules of a larger system.

Under these circumstances the limitation of the linear com-
bination is well studied. A standard example is the exclusive
OR problem [8]. Given a space consisting of two classi-
fiers H = {h1, h2} as in Fig. 1, there is no (threshold) linear
combination of h1 and h2 that can separate the two classes
denoted by the empty and filled circles. Several practical lim-
itations of the linear combination are also given in Ref. [8].
For instance in visual recognition, when each base classi-
fier draws its input from a local region in the image, the
combined classifier belongs to the class of diameter-limited
perceptrons which cannot recognize global concepts such as
connectedness.

In this paper we consider a quadratic combination of two-
class classifiers

fq(x) =
∑

i

�ihi(x) +
∑
ij

�ij hi(x)hj (x). (2)

While it seems that this is a simple generalization of the core
of AdaBoost in Eq. (1), learning this form of combination is
nontrivial. Replacing Eq. (1) of AdaBoost by Eq. (2) in a func-
tional minimization strategy as introduced by Breiman [9] (to
be discussed later) would lead to the task of selecting a pair of
classifiers together minimizing the empirical error, which can-
not be solved by simply invoking the base learner as in linear
boosting. An equivalent view of this derivation is to treat the
quadratic combination as linear in an extended classifier space.
The learner to operate on the combined linear and quadratic
terms inherits a fundamental difficulty of a boosting method,
namely the base classifiers are not available directly. The real-
ization of standard optimization techniques becomes impossi-
ble since we do not have direct access to the parameters of the
base classifiers.

We will show that learning in the extended classifier space
is possible by at first randomizing the labels of the train-
ing examples and subsequently steering the performance of
the new learner in an indirect way with a systematically up-
dated set of labels. Thus learning the quadratic combination is
done effectively by both reweighting and relabeling of training
data.

We provide an analysis of the generalization power of the
new algorithm. We also discuss the computational aspects of
the new combination in learning and classification. We perform
extensive experiments on synthetic data, on standard machine
learning data sets, as well as on data sets for the object recog-
nition problem in computer vision. The experimental results
show that the new combination outperforms the existing linear
boosting in most cases, specifically on large data sets. Signif-
icantly, while the new algorithm requires more training time
to learn the decision boundary better, it does not require more
classification time.

The paper is organized as follows. In the next section we
formulate the problem. In Section 3 we provide detail of the
AdaBoost algorithm and related theoretical background. Sec-
tion 4 presents the new algorithm and our analysis of its perfor-
mance. The experiments are given in Section 5. Finally, Section
6 concludes the paper.

2. Problem statement

Let {(xn, yn)} be the training set of N labeled examples
drawn randomly from an unknown distribution P(x, y), where
x ∈ X denotes a pattern and y ∈ Y is the class label. We
only consider the two-class case, that is Y = {−1, +1}. A clas-
sifier h ∈ H predicts the class label y of an input pattern
x, y = h(x). A learning algorithm LH is a functional tak-
ing the training data as input and returning a classifier, h =
LH ({(xn, yn)}). The aim of the learning algorithm LH is to find
the optimal classifier h∗ ∈ H , or an approximation to it, that
makes the least number of mistakes in predicting class labels
of future patterns. The error rate of a classifier h is denoted
by �(h).

Given the set of classifiers H and the learner LH , one can
train a combined classifier F(x; {hi}, �), where {hi} ⊂ H

is a finite subset of base classifiers, � is a set of addi-
tional parameters and F(x; ·) is some combination function
that may perform better than each of the classifiers learned
by LH .

We consider a combination rule F(x; ·) which is the sign of
a quadratic combination of classifiers fq as in Eq. (2):

F(x; ·) =
{+1 if fq(x) > 0,

−1 otherwise.
(3)

For Eq. (2), fq(x) is linear in the space G = H ∪ H 2, where
H 2 = {hihj |hi, hj ∈ H }. As a result, it can be learned by
existing methods for linear combination with a base learner in
the space G. We choose the AdaBoost algorithm as the learner
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for this linear combination. Based on the argument of Breiman
[9] presented in the next section, an optimization criterion for
the base learner is to minimize the error on the training data.
Thus, the first problem we address is to construct from the input
learner LH an intermediate learner LG aiming at minimizing
the empirical error.

The second issue we address is that of the generalization
error. By going from the classifier space H to G we effectively
increase the degree of freedom of the combined classifier. In
case H is finite with C classifiers, the number of free parameters
increases from C to C + C2. Thus care must be taken with
regard to overtraining the combined classifier. Our analysis is
based on the concept of the capacity of learning algorithms
and the theory of error bound [1,10,11] as reviewed in the next
section.

3. Background

We present the AdaBoost algorithm and related theoreti-
cal studies that characterize its performance. The first study
treats the AdaBoost algorithm as a minimization procedure,
which motivates our choice of optimal criterion for LG. The
second analyzes the generalization capability of the algo-
rithm, which provides a basis for the analysis of the new
algorithm.

3.1. The AdaBoost algorithm

Input: Base learner LH

Training data {(xn, yn)}, n = 1, . . . , N .
Initialize: w(1)

n = 1/N

Do for t = 1, . . . , T

(1) Learn a classifier ht and its weight �t with the aid of
the learner LH

ht = LH ({(xn, yn, w
(t)
n )}), (4)

�̂t =
∑

n,yn �=ht (xn)

w(t)
n , (5)

�t = 1
2 ln

(
1 − �̂t

�̂t

)
, (6)

(2) update weights

w(t+1)
n = w

(t)
n e−�t ynht (xn)

Zt

, (7)

where Zt is a normalization factor.
Output:

f (x) =
∑

t

�t ht (x).

Box 1. The AdaBoost algorithm.

The AdaBoost algorithm is described in Box 1. (Note that in
implementation one has to take care of the case �̂t is zero.) The
central aspect of the algorithm is to maintain and to update a
weight w

(t)
n associated with each example xn in each iteration

t. In each round a classifier ht is learned from the weighted
training set and �t is computed based on the performance of ht .
In this algorithm T is a pre-defined number of iterations. The
algorithm stops when this number is reached, or the empirical
error �̂t is 0.5.

3.2. Optimization criterion for a base learner

To construct a base learner from the input learner, we need
a design criterion. In Ref. [9], the author shows that under the
condition that the base learner returns a classifier with minimal
empirical error, the AdaBoost algorithm coincides with the so-
called Gauss Southwell method [12] to solve the following
minimization problem:

�∗ = arg min
�

F(�), (8)

where

F(�) =
∑
n

e−ynf (xn). (9)

� is the vector containing all �t and f is the linear combination
of classifiers in Eq. (1). Thus the learned classifiers are ht with
�t �= 0.

Optimizing this criterion is reasonable because on average
we want yf (x) as large as possible. It is shown in Ref. [13]
that F(�)/N is an upper bound on the empirical error. This
is because for an incorrect prediction we have ynf (xn)�0;
hence, e−ynf (xn) �1. This implies that F(�) is at least equal
to the total number of incorrect predictions on the training set.
Thus minimizing F(�) drives down the training error. Fried-
man et al. [14] provide another argument for minimizing F(�).
They show that minimizing this criterion is equivalent to a
stagewise fitting of the so-called additive logistic regression
model.

Specifically, Breiman [9] shows that the AdaBoost algorithm
minimizes F(�) by first starting with all �t equal zero. Let ft

be the combined classifier after t rounds. Let w
(t)
n and Zt be

defined in each round t of the AdaBoost algorithm as in Box
1 with Z0 = 1. In the following rather than using t as we have
so far for indexing classifiers and weights by iteration, now we
use i for indexing all classifiers and weights. Let �(t)

i denote the
values of �i in round t. In round t, consider the partial derivative
with respect to the coordinate �i :

�F

��i

∣∣∣∣
�i=�(t−1)

i

=
∑
n

e−ynft−1(xn)(−yn)hi(xn). (10)

By expanding the weight updating rule (Eq. (7)) of the
AdaBoost algorithm up to and including round (t − 1),
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we have

�F

��i

∣∣∣∣
�i=�(t−1)

i

=
∑
n

⎧⎨
⎩

t−1∏
j=0

Zj

⎫⎬
⎭w(t)

n (−yn)hi(xn) (11)

=
⎧⎨
⎩

t−1∏
j=0

Zj

⎫⎬
⎭ (2�̂i − 1), (12)

where �̂i is the empirical error of hi . The absolute value of the
gradient |�F/��i | at �i = �(t−1)

i is proportional to |�̂i − 0.5|.
Thus, in round t the learner LH helps to select a classifier hi∗
as far from a random predictor as possible

i∗ = arg max
i

|�̂i − 0.5|. (13)

The AdaBoost algorithm selects the classifier ht to be hi∗ , and
�t to be the optimal increase in �(t−1)

i∗ (again, the subscript t of
ht and �t indicates boosting iteration):

�t = �(t)
i∗ − �(t−1)

i∗ (14)

= arg min
��(t−1)

i∗

∑
n

e−yn(ft−1(xn)+��(t−1)

i∗ hi∗ (xn)). (15)

This optimization problem has an analytic solution by setting
the derivative to zero. Canceling out the nonzero constant we
have∑
n

e−yn��(t−1)

i∗ hi∗ (xn)w(t)
n (−yn)hi∗(xn) = 0. (16)

Note that ynhi∗(xn) = 1 indicates a correct prediction and
ynhi∗(xn) = −1 an incorrect prediction. This leads to

e��(t−1)

i∗ �̂i∗ − e−��(t−1)

i∗ (1 − �̂i∗) = 0, (17)

which, in turn, leads to Eq. (6) of the AdaBoost algorithm.
In short, when the base learner returns the classifier with

minimal empirical error the AdaBoost algorithm can be seen as
selecting the coordinate with maximal gradient magnitude to
descent in each round. In this view we design the new learner
LG to aim at minimizing the empirical error.

3.3. VC-dimension and bounds on generalization error

Let �̂(h, S) denote the empirical error of a classifier h ∈ H

on a training set S. We have seen that the AdaBoost algorithm
drives down the empirical error. The goal of a learning algo-
rithm, however, is to minimize the error made on future data,
�(h). In most cases �(h) cannot be computed.

To control the generalization error, Vapnik and Chervo-
nenkis [15] introduced a measure of capacity of H. We
will use the notations as in Ref. [16]. Let S be a set of m
points in X. A dichotomy of S induced by h ∈ H is a par-
tition of S into two disjoint subsets S+ and S− such that
h(x) = +1 for x ∈ S+ and h(x) = −1 for x ∈ S−. Let �H (S)

denote the number of distinct dichotomies of S induced by
classifiers of H. Let �H (m) denote the maximum of �H (S)

over all S ∈ X of size m. The Vapnik and Chervonenkis (VC)
dimension of H, denoted by VCdim(H), is the largest m such
that �H (m) = 2m. Vapnik shows that for any training set S of
size N and for any h ∈ H , with probability 1 − � one can
assert

�(h) < �̂(h, S)

+ 2

√
VCdim(H)(ln(2N/VCdim(H)) + 1) − ln(�/9)

N
.

(18)

This bound indicates that as we minimize the empirical error
the true error will also go down if the second term is sufficiently
small. In particular, the smaller the VC-dimension, the smaller
is the second term of the bound.

To analyze the generalization error of classifiers learned by
the AdaBoost algorithm, Freund and Schapire [1] derive an up-
per bound on the VC-dimension of this class of classifiers. Let
�T (H) be the class of all classifiers defined by thresholding of
a linear combination of T classifiers in H. Clearly, the classifier
learned by the AdaBoost algorithm after T iterations belongs to
�T (H). Freund and Schapire show that if d =V Cdim(H)�2,
then

VCdim(�T (H))�2(d + 1)(T + 1) log2(e(T + 1)), (19)

where e is the base of the natural logarithm.
Another bound, which does not depend on the number of

iterations T, is derived by Schapire et al. [11]

�(h) < PS[yf (x)��]

+ O

(
1√
N

(
d log2(N/d)

�2 + log(1/�)

)1/2
)

(20)

for all � > 0, where PS denotes the probability over the finite set
S and the notation O(·) means that constant factors are ignored.
Again, this bound depends on the VC-dimension of the class of
the base classifiers H. If all other terms are equal, the smaller
the VC-dimension, the closer the true error is to the empirical
margin error PS[yf (x)��].

It is noted by the authors in Refs. [1,11] that, in general,
both bounds (19) and (20) are quite loose. However, it remains
of theoretical interest to derive bounds on the generalization
error. Furthermore, for a fixed value of the VC-dimension of
the hypothesis space (< ∞), a large value of N leads to a
small value of the second term in both bounds. Hence, the true
error rate will follow the empirical error rate closely for large
data set.

In conclusion, the VC-dimension of the base classifiers plays
a central role in analyzing the generalization error of the clas-
sifier learned by the AdaBoost algorithm. We will derive an
upper bound on the VC-dimension of the class of classifiers G.
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Since fq(x) is a linear combination of classifiers in G, we can
control the generalization error using the above results as they
are for a linear combination as well.

4. Quadratic boosting

We will first present a base learner that aims at minimizing
the empirical error. We show that under the condition that the
given learner LH minimizes the empirical error, the new al-
gorithm converges to a local minimum. The new algorithm is
summarized in Section 4.2. Finally we derive an upper bound
for the VC-dimension of the classifier space G.

4.1. Derivation of the intermediate base learner

Our purpose is to design a base learner g∗ = LG({(xn, yn,

wn)}) returning the best classifier on the training data

g∗ = arg min
g∈G

�̂(g, {(xn, yn, wn)}), (21)

where {(xn, yn, wn)} is a labeled weighted training set and
�̂(g, {(xn, yn, wn)}) denotes the empirical error

�̂(g, {(xn, yn, wn)}) =
∑

n,yn �=g(xn)

wn.

Recall that G = H ∪ H 2. The case g ∈ H is dealt with using
the original learner LH . For the case g ∈ H 2 we follow an
iterative coordinate descent approach. The method consists of
selecting an initial value and repeatedly descending along the
two coordinates in turn. When the parameter set of the classi-
fier space is known, one can easily initialize a random value
and possibly implement a gradient descent algorithm, rather
than coordinate descent. However, in boosting the parameter
set is unknown. We will show that both selecting an initial
value and performing coordinate descent are possible by call-
ing LH with different training sets obtained from the original
training set by relabeling of examples. Consider the following
procedure:

Procedure 1. (1) First, set k = 0 and let h0 be a classifier
resulting from randomly relabeling yn:

h0 = LH ({(xn, ynrn, wn)}),

where rn is a random value in {−1, +1}.
(2) Subsequently, learn classifiers by systematically relabel-

ing yn while incrementing k

hk = LH ({(xn, ynhk−1(xn), wn)}),

�̂(k) = �̂(hk, {(xn, ynhk−1(xn), wn)}).

We will prove the following convergence result of �̂(k).

Lemma 1. Under the condition that LH always achieves min-
imal empirical error, �̂(k) converges.

Proof. We have that hk is learned by LH . Therefore hk ∈ H .
Since LH always finds the best h ∈ H in terms of empirical
error and hk−1 ∈ H for k > 0, hk+1=LH ({(xn, ynhk(xn), wn)})
will perform better than or equal to hk−1 on the data set it is
trained on

�̂(hk+1, {(xn, ynhk(xn), wn)})

� �̂(hk−1, {(xn, ynhk(xn), wn)}) (22)

=
∑

n,ynhk(xn)�=hk−1(xn)

wn (23)

=
∑

n,ynhk−1(xn)�=hk(xn)

wn (24)

= �̂(hk, {(xn, ynhk−1(xn), wn)}). (25)

In short, �̂(k+1) � �̂(k). In addition, �̂(k) �0. Thus �̂(k) converges.
�

Assign g = hkhk+1, we have

�̂(g, {(xn, yn, wn)}) =
∑

n,yn �=hk(xn)hk+1(xn)

wn (26)

=
∑

n,ynhk(xn)�=hk+1(xn)

wn (27)

= �̂(k+1). (28)

Thus, Procedure 1 effectively finds a local minimum for
Eq. (21) by iterative coordinate descent. To avoid local minima,
the practical implementation of the intermediate base learner
LG invokes this procedure several times (with different set of
random values {rn}) and compares the relative improvement in
performance.

Note that the nature of the combination rules as well as
the optimization criteria employed by AdaBoost and LG are
different. As a result, while both algorithms use a special
type of coordinate descent, the optimization procedure leads
to relabeling in case of LG and to reweighting in case of
AdaBoost.

Procedure 1 can be extended to accommodate a poly-
nomial combination of degree d with d > 2. Instead of re-
labeling yn by multiplying it with the classification result
of the previously learned classifier as in Eq. (22), we now
multiply it with the product of d − 1 previously learned
classifiers. A similar convergence result as Lemma 1 can be
obtained.
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4.2. The algorithm

Input: Base learner LH , training data {(xn, yn)},
n = 1, . . . , N .
Number of restarts R, number of maximum
inner iterations K.

Initialize: w
(1)
n = 1/N

Do for t = 1, . . . , T

(1) Learn a classifier gt and its weight �t

(a) Learn a single classifier with the aid of
LH , g(0) = LH ({(xn, yn, w

(t)
n )}).

(b) Learn several compound classifiers g(i) = h
(i)
k

h
(i)
k−1, i = 1, . . . , R, to avoid local minima

(i) First, set k = 0 and let h
(i)
0 be a classifier

resulting from randomly relabeling yn.

h
(i)
0 = LH ({(xn, ynr

(i)
n , w(t)

n )}),

where r
(i)
n are random values in {−1, +1}.

(ii) Subsequently, learn classifiers by systemati-
cally relabeling yn while incrementing k

until �̂(h(i)
k h

(i)
k−1, {(xn, yn, w

(t)
n )})

converges [or k = K]

h
(i)
k = LH ({(xn, ynh

(i)
k−1(xn), w

(t)
n )}).

(c) Assign the best classifier to gt and
compute �t

gt = arg min
g(i),i �0

�̂(g(i), {(xn, yn, w
(t)
n )}),

�̂t = �̂(gt , {(xn, yn, w
(t)
n )}),

�t = 1
2 ln

(
1 − �̂t

�̂t

)
.

(2) Update example weights

w(t+1)
n = w

(t)
n e−�t yngt (xn)

Zt

where Zt is a normalization factor.

Output: fq(x) =∑
t�t gt (x)

Box 2. The quadratic boosting algorithm.

Box 2 summarizes the quadratic boosting algorithm. In this
algorithm R is the number of initial starting points to have a
better chance to end up in the global minimum of (21). The
maximum number of iterations of the inner most loop is K. It is
needed because in practice certain base learners do not achieve

minimal empirical error. In this situation the convergence result
as derived in Lemma 1 is not guaranteed. The algorithm invokes
the base learner R × K + 1 times at most. This provides a
worse case estimate for the training time of the algorithm. By
increasing the value of R and K one can look for a better solution
at the cost of more training time.

The learner LG fits well with the AdaBoost algorithm. Ef-
fectively the AdaBoost algorithm employs the base learner LH

by calling it repeatedly with a new set of weights, while LG

exploits the input base learner LH by changing the labels of the
training set. As a result, the new quadratic boosting algorithm
makes more intensive use of the base learner than the original
AdaBoost algorithm.

4.3. Generalization error

For the generalization error of the quadratic boosting we
prove the following lemma.

Lemma 2. Let d be the VC-dimension of H. The VC-dimension
of G is less than 10d.

Proof. This proof follows the approach in Ref. [16] for bound-
ing the VC-dimension of a linear threshold network. Let S be
a set of m points in data space X. Recall from the definitions
in Section 3.3 that �H (m) is the maximum number of distinct
dichotomies that can be induced by the classifiers in H over all
subsets of X of size m. Hence there are at most �H (m) differ-
ent dichotomies that can be induced on S by the classifiers in
H. Consider the space of classifiers H 2. Because h(x)h(x) is
constant for all h ∈ H and h0(x)h1(x) = h1(x)h0(x) for all
h0, h1 ∈ H , the number of distinct dichotomies of S by classi-
fiers in H 2 is at most �H (m)(�H (m) − 1)/2 + 1. Thus

�G(m)� �H (m)(�H (m) − 1)

2
+ 1 + �H (m) (29)

��H (m)2. (30)

Furthermore, by the result of Sauer [17,18] we have, whenever
VCdim(F ) = k < ∞, �F (m)�(em/k)k for all m�k where e
is the base of the natural logarithm. Hence, �G(m)�(em/d)2d

for all m�d.
It is simple to verify that c = 10 is the smallest integer satis-

fying the inequality (ec)2 < 2c, for c�1. For m=10d, we have
�G(m)�(e10)2d < 210d = 2m. Thus for any set S of m = 10d

points, �G(m) < 2m. Therefore, the VC-dimension of G is less
than 10d. �

Theoretically, this result can be used together with the bounds
in Section 3.3 to control the generalization error.

5. Experiments

We perform three sets of experiments to compare quadratic
boosting with the AdaBoost algorithm. The first experiment is
done on synthetic data. Our purpose is to highlight the differ-
ence between quadratic boosting and AdaBoost. The next set
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Fig. 2. Three synthetic data sets. (A) A straight boundary between classes. (B) XOR pattern in the boundary. (C) Band classes.

of experiments is carried out on 18 standard machine learning
data sets previously used to evaluate the AdaBoost algorithm.
Finally, we perform the comparison on two very large data sets
for the object classification problem.

5.1. On synthetic data

The following three data sets were generated to visualize
the difference between the two methods. The patterns x are
uniformly random points in the square (0, 1) × (0, 1). Each
data set has 300 examples. The labels of y are depicted in
Fig. 2. The first data set has a straight boundary between the
two classes. The second data set has an XOR pattern in the class
boundary. Finally, the third data set has a band class separation.

The classifier space H consists of classifiers parallel with
one of the two coordinates. Let x = (u, v) be a data point. The
classifiers are sign(i/10−u), −sign(i/10−u), sign(i/10−v),
and −sign(i/10 − v) for i = 0, 1, . . . , 10. Overall, H consists
of 44 classifiers. The base learner LH returns the best classifier
in terms of empirical error for any set of weights.

Note that the AdaBoost algorithm using this learner has a
staircase decision boundary on the first data set [19]. This stan-
dard example shows the power of the AdaBoost algorithm to
approximate more complex decision boundaries using simpler
rules [19].

Fig. 3 shows the result on the first data set. The AdaBoost
algorithm produces the staircase approximation as expected.
The quadratic boosting algorithm performs only slightly worse
than AdaBoost, but still produces a good approximation in spite
of the fact that it has more degrees of freedom.

The improvement offered by the new algorithm is clearly
seen in Figs. 4 and 5. On the last two data sets AdaBoost
performs poorly. In contrast, quadratic boosting approximates
well the true class boundary because of a richer classifier space.

5.2. On standard machine learning data sets

The next set of experiments is performed on standard ma-
chine learning data sets. All data sets are obtained from the
UCI machine learning repository [20]. There are 18 data sets
in total; all of which are two-class data sets. Table 1 lists the
detail of these data sets, ordered by the number of examples.

AdaBoost

20 base classifires 20 base classifires

quadratic boosting

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Fig. 3. Results on data set A (300 data points) with single-coordinate base
classifiers. A straight edge between two classes is the most favorable case
for linear boosting and an extreme case for quadratic boosting. Nevertheless,
the performance is more or less similar.
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Fig. 4. Results on data set B (300 data points) with single-coordinate base
classifiers. As expected, quadratic boosting performs better than AdaBoost in
this case.

Most of these data sets have been used in previous studies of
the AdaBoost algorithm [9,21–23].

We use decision stump [24,25] as the base learner. This
learner produces a decision tree with only one level. In par-
ticular, we use the implementation available in the Weka
machine learning package [25]. We leave the handling of
discrete/continuous attributes and missing values to the base
learning algorithm.
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Fig. 5. Results on data set C (300 data points) with single-coordinate base
classifiers. Again, quadratic boosting outperforms AdaBoost on this type of
class separation.

Table 1
The 18 two-class data sets used in our experiment

# Data set # Examples #Attributes Missing
values

Disc. Cont.

1 labor 57 8 8 x
2 promoters 106 57 – –
3 hepatitis 155 13 6 x
4 sonar 208 – 60 –
5 cleve 303 7 6 x
6 ionosphere 351 – 34 –
7 house-votes-84 435 16 – x
8 vote1 435 15 – x
9 crx 690 9 6 x
10 breast-cancer-w 699 – 9 x
11 pima-indians-di 768 – 8 –
12 german 1000 13 7 –
13 hypothyroid 3163 18 7 x
14 sick-euthyroid 3163 18 7 x
15 kr-vs-kp 3196 36 – –
16 clean2 6598 2 166 –
17 agaricus-lepiota 8124 22 – –
18 adult 48 842 12 2 x

For evaluation we use tenfold cross validation [25,26]. Each
data set is split into 10 disjoint partitions of (approximately)
equal sizes. Both training and evaluation are repeated 10 times
for each data set. Each time a different partition is used for
testing and the rest (nine partitions) are used for training. The
error rates are averaged over 10 runs to obtain the final estimate.

Table 2 gives the test error of AdaBoost and quadratic boost-
ing on the 18 data sets after 250 base classifiers were learned.
The quadratic boosting algorithm outperforms AdaBoost on
four large data sets (14–17). On data set number 17 “agaricus-
lepiota” although both algorithms reach an error rate of 0%
quadratic boosting does so with many fewer base classifiers
than AdaBoost, 16 in comparison with 74.

Quadratic boosting performs consistently better than the Ad-
aBoost algorithm on training data (data not shown). However,
on data sets with less than 1000 samples, overfitting occurs

Table 2
The generalization error (%) using tenfold cross validation after 250 classifiers
have been learned

# Data set N Test error (%)

Decision AdaBoost Quadratic
stump boosting

1 labor 57 19.67 ± 14.64 9.00 ± 9.07 7.33 ± 9.04
2 promoters 106 30.18 ± 8.43 11.36 ± 7.20 9.45 ± 7.53
3 hepatitis 155 21.88 ± 3.80 18.04 ± 7.26 17.96 ± 6.60
4 sonar 208 28.40 ± 8.51 14.95 ± 9.02 16.38 ± 5.03
5 cleve 303 26.80 ± 7.50 18.54 ± 5.73 24.49 ± 7.99
6 ionosphere 351 17.39 ± 5.36 7.13 ± 4.10 7.40 ± 3.39
7 house-votes-84 435 4.38 ± 2.42 3.69 ± 1.86 5.06 ± 3.07
8 vote1 435 15.85 ± 3.97 9.65 ± 3.18 11.03 ± 2.66
9 crx 690 14.49 ± 3.67 13.62 ± 3.73 12.03 ± 2.43
10 breast-w 699 8.30 ± 3.78 4.29 ± 2.86 4.43 ± 3.16
11 pima-indians-di 768 27.99 ± 4.22 24.21 ± 4.73 26.17 ± 4.37
12 german 1000 30.00 ± 0.00 25.60 ± 4.34 27.10 ± 2.91
13 hypothyroid 3163 2.62 ± 0.97 0.92 ± 0.52 0.95 ± 0.43
14 sick-euthyroid 3163 5.56 ± 0.65 2.75 ± 0.63 2.34 ± 0.60
15 kr-vs-kp 3196 33.95 ± 1.29 4.26 ± 1.19 1.50 ± 0.46
16 clean2 6598 12.96 ± 1.36 0.75 ± 0.27 0.24 ± 0.15
17 agaricus- 8124 11.32 ± 0.61 0.00 ± 0.00 0.00 ± 0.00

lepiota
18 adult 48 842 23.93 ± 0.00 14.85 ± 0.62 14.48 ± 0.62
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Fig. 6. Performance curve with respect to the number of base classifiers for
data set vote1 (435 examples).

more often with the new algorithm than it does with the Ad-
aBoost algorithm (see Fig. 6 for data set “vote1”). This can be
explained by the fact that the larger VC-dimension of the new
base learner in this case does not guarantee the decrease of
the test error as the training error goes down. When the num-
ber of samples is large as of data sets from 15 to 18, the test
error follows the training error closely (see Fig. 7 for data set
“kr-vs-kp”). This can be explained by the fact that the second
terms of both error bound Eqs. (18) and (20) are small because
a large value of N overwhelms the VC-dimension of the base
learner.
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Fig. 7. Performance curve with respect to the number of base classifiers for
data set kr-vs-kp (3196 examples).
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Fig. 8. Performance curve with respect to size of the data set for kr-vs-kp.

Fig. 9. Examples of the MIT pedestrian data set, courtesy of Ref. [27].

The next run of the experiment examines the relative perfor-
mance of quadratic boosting and AdaBoost with respect to the
amount of training data. Fig. 8 shows the performance curve
on the data set “kr-vs-kp”. For this data set, when the size is
less than about 400, both AdaBoost and quadratic boosting do

Fig. 10. Examples of the MIT car data set, courtesy of Ref. [27].

not perform well. The two methods are equivalent. For a larger
size the result is stable, and quadratic boosting achieves better
result than the AdaBoost algorithm.

In this experiment, the training time of quadratic boosting
varies from approximately 5–20 times longer than that of the
AdaBoost algorithm. Note that we compare the two methods
with the same number of base classifiers. Assume the evalua-
tion of each base classifier is equal, the classification time of
quadratic boosting is not more than that of the AdaBoost algo-
rithm. In the linear combination (Eq. (1)) one addition and one
multiplication are required for each base classifier. Whereas
for each compound term (with two classifiers) in the quadratic
combination (Eq. (2)) one addition and two multiplications are
required.

5.3. On data sets for learning in vision

The next set of experiments is performed on the pedestrian
and car data sets for the object detection problem [27]. Figs. 9
and 10 show four examples of each data set, respectively. The
task is to distinguish target objects from the background. For
each data set in addition to the object examples, we generate
400 000 background patterns by sampling uniformly over a set
of images containing no target object. Each data set is split into
two equal partitions, one for training and one for testing.

In Ref. [4], the authors use the AdaBoost algorithm with set
of features designed to be computed very fast. A two-rectangle
feature is the difference between values of two vertically or
horizontally adjacent regions, where the value of a region is
the sum of all pixel values within that region. A three-rectangle
feature is the difference between the sum of the values of the
two outside rectangles and the value of the middle one. Finally
a four-rectangle feature is the difference between two diagonal
pairs. The base learner used is also the single-coordinate learner
as described in previous experiments.

Figs. 11 and 12 show the result on the two data sets after 150
classifiers have been learned. The quadratic boosting algorithm
performs better than the AdaBoost algorithm on both data sets.
With 150 classifiers, the AdaBoost algorithm has an error rate of
0.33% on the pedestrian data set, while the quadratic boosting
algorithm achieves 0.17%. On the car data set, the error is
0.31% for the AdaBoost algorithm and 0.15% for the quadratic
boosting algorithm.

In both experiments the training time of the quadratic boost-
ing algorithm is about 10 times that of the AdaBoost algorithm.
Again, as we have discussed, the runtime of the two methods
are equivalent. Note that in both Figs. 11 and 12, 100 base clas-
sifiers combined by quadratic boosting can achieve the same
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Fig. 11. Result on the MIT pedestrian data set. For better visualization we provide the figure on the right with the number of classifiers ranges from 50 to 150.
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Fig. 12. Result on the MIT car data set. Again, the figure on the right shows the curve with the number of classifiers ranges from 50 to 150.

accuracy as combining 150 base classifiers by linear boosting.
Thus at this level of accuracy, substantial gain in classification
time is obtained by quadratic boosting.

6. Discussion and conclusion

We addressed the problem of improving the accuracy of
learning algorithms with a quadratic combination of base
classifiers. This type of combination can be achieved with
the construction of an intermediate base learner minimizing
the empirical error. This step is difficult because as with other
boosting methods, we face the problem that the base classi-
fiers are not available directly. Thus it is not possible to use
standard techniques for the minimization problem.

We derive a new algorithm solving the above problem. The
method consists of calling the input learner after randomizing
the labels of the data set in the first round and subsequently

calling it with a systematic update of the labels. This method
is in contrast to the AdaBoost algorithm that uses reweighting
of training examples. Together they form a powerful combina-
tion that makes intensive use the given base learner by both
reweighting and relabeling the original training set.

We analyzed the algorithm, showing that under the condition
that the input base learner minimizes the empirical error for
any set of weights, the new base learner converges to a local
minimum. We also study the generalization error of the new
algorithm by upper bounding the VC-dimension of the new
classifier space.

We performed extensive experiment with the quadratic boost-
ing algorithm. It takes more time to train with the quadratic
boosting algorithm than with the AdaBoost algorithm, typically
from 5–20 times. This factor is dependent on the internal cor-
relation of the data, but independent of the data size. The dif-
ference in classification time of the two algorithms, however,
is marginal.
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The experiment on synthetic data sets shows the clear im-
provement of the quadratic combination. In the experiment
on standard machine learning data sets, we observed that the
training error is almost always smaller for the quadratic boost-
ing algorithm. For small data sets, however, quadratic boosting
tends to overfitting more often than the AdaBoost algorithm.
Nevertheless, the result on large data sets shows that quadratic
boosting outperforms AdaBoost. The experiment on object
recognition data sets shows the error of quadratic boosting is
approximately half that of the AdaBoost algorithm, which is a
significant improvement.

We also performed an experiment with a third order polyno-
mial combination on 18 machine learning data sets (data not
shown). As expected, the experimental results show a worse
performance than quadratic boosting on small size data sets.
On large data sets, we observe a minor improvement in com-
parison with the result of the quadratic combination.

In conclusion, we have developed a new boosting algorithm
with a quadratic combination of base classifiers. The algorithm
is particularly suited for large data sets. The algorithm requires
more time than the AdaBoost algorithm in training, but not in
classification, which provides an attractive choice for practical
application.
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