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ABSTRACT

We identify scene categorization as the first step towards efficient
and robust depth estimation from single images. Categorizing the
scene into one of the geometric classes greatly reduces the possibil-
ities in subsequent phases. To that end, we introduce 15 typical 3D
scene geometries, called stages, each having a unique depth profile
and roughly corresponding to a large majority of all images. In this
work, we do not attempt to derive a precise depth map, but only to
decide on the appropriate stage. The subsequent phase of parameter
estimation would result in a more detailed background depth profile.

Index Terms— Depth estimation, 2D to 3D conversion, scene
geometry, scene classification, surface layout, stages

1. INTRODUCTION

Extracting depth from single images is important for many applica-
tions, including three-dimensional television (3DTV). The images
themselves can be separated into two constituent parts that require
different treatment in this process: the physical scene and the objects
acting in it. The objects of the world come with almost infinite vari-
ation in appearance as well as in their geometry. Scenes, on the other
hand, show a much more regular pattern. In fact, the vast majority of
images depicts a scene by only a limited number of different geom-
etry types. There are rough classes of such geometries, or stages as
we prefer to call them, which consist of a straight background (like
a curtain, a wall, the facade of a building, a remote mountain range),
or others showing walls at all three sides of the picture (a corridor, a
tunnel, a narrow street). When television broadcasts are considered,
there is also a specific stage for anchor-type images, correspond-
ing to news-reader sequences, interviews, talk-shows, etc. Figure 1
shows a few prototypes together with their stage models. The im-
portant observation is that whereas a precise geometry is requested
for objects, it suffices to build a rough model for the geometry of the
scene. The structure of scenes poses the question of this paper. More
specifically, we aim to discover whether stages as models of scene
geometry can be derived from a single arbitrary image.

There is a good reason why the geometry of the scene can be
represented by one of very few classes. Human observers almost
always stand with their feet on the ground, walls are almost always
perpendicular to the ground, they are to the side of the object or
behind it, and so on. Moreover, there is an advantage of knowing
just the stage type. The stage may reveal to the observer the type of
the scene, the information about relative distances to scene elements,
the locations in the field of view where objects may appear, etc.
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Fig. 1. Example frames and their stage categories; top two rows,

from left to right: sky+ground, table+person+background,
diagonal background; bottom two rows: box, corner,
sky+background+ground.

We are targeting an application in 3D television, and thus we
aim for a pleasant 3D viewing impression rather than a precise re-
construction of scene geometry. Accurate techniques have been de-
signed for object geometry via shape from shading, shape from mo-
tion or shape from stereo, when these options are available. The
scene geometry, in contrast, is the stage on which the objects of the
picture act, hence limited accuracy frequently suffices. In this pa-
per, we consider stages as very rough models of the scene, with the
objects ignored.

In the presented work, we limit ourselves to the determination
of the stage type, following closely the work from [1], but with an
emphasis on 3DTV applications. In the next phase, further depth es-
timation can be performed, by estimating the stage parameters from
the data. Here we present stage classification results for the domain
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Fig. 2. Stage hierarchy: the classes at the intermediate level are represented by Roman numerals I-V, whereas those at the lowest level are
represented by Arabic numerals 1 through 12. Note that the symmetry of certain stages is represented by an additional division of the stage

type.

of TRECVID news videos [2].

2. RELATED WORK

Many recent attempts to estimate absolute scene depth from single
images use machine learning methods to directly infer image depth
from simple features. Torralba and Oliva [3] use global Fourier
transform and local wavelet transforms to capture scene structure;
Saxena et al. [4] use features of multiple depth cues; and Delage et
al. [5] attempt to learn the wall-ground boundaries.

For convincing visual 3D quality, derivation of exact distances
to elements in the scene may not be necessary as long as relative
order of those elements is established. However, classical methods
for relative depth estimation provide only local estimates and require
high-quality images, as is the case for texture gradients [6], shape
from shading (e.g. [7]), from edges and junctions [8], etc.

Scene classification approaches [9, 10, 11, 12, 13] attempt to
capture the complex statistics of natural images. However, they suf-
fer from two drawbacks that render them unsuitable for depth esti-
mation. The first is that they model semantic scene categories (such
as kitchen, forest, street, etc.), whose potential number is very large.

The second drawback is that all the approaches consider only the 2D
image, without attempting to recover the 3D scene. To that regard,
geometric image context has recently been used instead by Hoiem et
al. [14, 15]. They learn classes of image surfaces and derive the ori-
entation of each such class; the subsequent combination of surface
orientations leads to the reconstruction of the 3D scene model.

2.1. Contribution of the paper

We draw inspiration from the work of Hoiem et al. [14] and attempt
to derive the 3D geometry of the scene, and recover depth informa-
tion. However, instead of individual surfaces, we model geometric
scene classes. We believe that the recognition of the scene as a whole
into a limited number of typical stages is a simpler problem than im-
age segmentation and subsequent reconstruction.

Our work on depth estimation is also similar to that of Torralba
and Oliva [3], who showed that depth can also be derived from mod-
els of natural image statistics. But where they propose to utilize
average absolute depth in order to facilitate scene categorization, we
attempt to do the opposite, and propose to derive a global depth pro-
file based on stage types. In addition to relying on natural image



statistics, we take into account the viewpoint of the observer. This
greatly reduces the number of categories that we need to model.

3. STAGE TYPE CLASSIFICATION

We rely on the structure of the visual data to arrive at a limited num-
ber of stage types. This structure is a consequence of three phenom-
ena: natural images exhibit statistical regularities; viewpoint charac-
teristics (including the camera height typically at 1.5 — 2m) govern
the perspective; and film rules ensure the proper order of elements
(e.g. that ground is at the bottom) and the “uprightness” of image
structures.

We have looked at thousands of TRECVID keyframes [2] and
noted the frequency with which various scene categories appear. The
structure that we observed limited all possible surface combinations
to 15 categories only. Retaining only the stage types corresponding
to more than 5% of the observed video frames, they were sufficient
for a large majority of all the frames.

When one represents semantic scene classes, the natural top-
level categorization is into indoor and outdoor images. However,
when geometrical classes are considered, the 3D constraints (such
as e.g. perspective) cause certain stage types to be represented by
the same 3D model, regardless of whether they belong to indoor or
outdoor scenes. Thus we have concluded that stage hierarchy should
be based on geometry and arrived at the representation shown in
Figure 2.

3.1. Depth from Weibull texture gradients

There exists a direct relation between image statistics, scene struc-
ture and depth pattern. When scene depth is small, larger surfaces
merge into coarser structures, showing finer details. In that case,
gradient histogram typically follows a decaying power-law distri-
bution. When scene depth increases, the texture of the image will
be fragmented into various patches, each associated with a differ-
ent power-law. The integration over various power-laws results in a
Weibull distribution [16], whose parameters are indicative of depth
direction. This is shown in Figure 3 for two example surfaces.

We follow [16] and model histograms of gradient magnitude by
an integrated Weibull distribution, also known as Generalized Lapla-
cian,
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The parameters p, 3 and -y represent the center, width and “peak-

ness” of the distribution, respectively, and x is an edge response of a

derivative filter. Furthermore, I" denotes the complete Gamma func-
tion.

Using Gaussian derivative filters, we extract texture information
that is subsequently summarized in histograms. We use a maximum
likelihood estimator (MLE) to estimate the parameters u, 0 and -y
of the integral Weibull distribution. The position of the distribution
mean g is influenced by uneven illumination, and thus the values of
w are ignored in order to eliminate illumination effects.

Since our stages often contain oriented surfaces with continu-
ously increasing depth, we perform local measurements. For each
image, we extract features from consecutive image regions spanning
2 x %, where w and h denote image width and height, respectively.
The integral Weibull distribution is then fitted to histograms of in-
tensity filter responses in x and y directions.
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Fig. 3. Weibull parameter values as a function of depth for textures
of grass (left) and wall bricks (right): § decreases from the point of
fixation, whereas ~y increases with depth.

4. EXPERIMENTS

4.1. Experimental setup

For the evaluation of our stage classification algorithms, we have
used the key-frames of the 2006 TRECVID video benchmark dataset.
This benchmark provides nearly 170 hours of news videos of various
channels and languages.

In the initial result phase, we have annotated 1241 key-frames
into one of the 15 stage categories. Samples of each category are
split before classification into two halves, one for training and an-
other for testing purposes. We choose Support Vector Machines
(SVM) for learning, and utilize its LIBSVM imp]ementation1 with
radial basis functions as kernels.

We design a generic, I vs. I-based classifier that uses features
from all the regions and outputs a single stage label. Multi-class
classifiers based on a I vs. I approach involve K (K — 1)/2 different
binary classifiers on all possible pairs of classes; test points are then
classified according to which class has the highest number of ‘votes’.

4.2. Results

Our stage classification results are shown in tables below for indi-
vidual stages and stage groups, respectively. They are presented to-
gether with the relative occurrence (i.e. prior probability) of each

ILIBSVM: a  library  for
http://www.csie.ntu.edu.tw/"cjlin/libsvm

support vector machines.



type in the ground truth. Note that, for reasons of clarity, the results
for symmetrical variants of some stages have been combined. The
correct classification performance is given by the total number of
correctly classified images divided by the total number of images.

class name % in dataset % correct
1 sky+bkg+gnd 6.3% 16.7%
2 gnd+bkg 7.1% 8.2%
3 sky+gnd 8.7% 60.7%
4 end 7.4% 44.7%
5 gnd+diagBkg 10.75% 26.9%
6 diagBkg 6.4% 14.3%
7 box 5.5% 8.1%
8 1 side-wall 9% 13.6%
9 corner 10.75% 34.3%
10 tab+pers+bkg 7.4% 48%
11 pers+bkg 13.1% 42.5%
12 no depth 7.4% 22.4%
AVG: 28.4%
group name % in dataset % correct
1 straight/no bkg. 29.5% 69.5%
I tilted bkg. 17.15% 35.2%
I box 14.5% 19.6%
v corner 10.75% 13.2%
v person+bkg 20.5% 63.1%
AVG: 40.1%

The results indicate that some simple stages (as well as their
super-stages) can be detected robustly. This is true for those classes
which typically appear with small variations and without object clut-
ter. Thus in the experiment with 12 stages, we correctly distinguish
class sky+ground in more than 60% of the cases. On some other
stages, however, our detector performance is low. This is due to the
lower number of training samples, amount of variation within the
class, significant occlusion and object clutter, etc. Similar observa-
tions can be made with respect to the hierarchy level with 5 stage
groups. However, in all cases the performance is significantly better
than chance level, indicating the usefulness of the approach.

5. CONCLUSIONS

In this paper, we describe how the problem of depth estimation from
single images can be approached by first performing scene classifi-
cation. To that end, we describe a small number of typical 3D scene
geometries, or stages, each with a unique depth model and providing
a geometric context for scene objects.

By relying on inherent structure of real-world images, resulting
from natural image statistics, viewpoint constraints and film rules,
we arrive at only 15 geometric stages (preliminary experiments on a
different dataset show that these stage types are not specific to news
videos). We introduce category descriptors based on natural image
statistics, and show that they are indeed indicative of depth informa-
tion. Quantitative classification results are presented for the data of

the TRECVID 2006 benchmark, indicating that some simple stages
can be detected with up to 60% success rate.

In the presented work, we do not attempt to derive a precise
depth map for the input image, but only decide on the appropriate
stage. For that reason, we only provide scene classification results,
without comparing our models to depth map ground truth. However,
the stage information helps the next phase, in which corresponding
stage parameters are estimated. Once these parameters are available,
a background depth map is obtained and it can be aligned with the
original image in a complete depth estimation system.
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