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8.1 Introduction
Query-by-keyword is the paradigm on which machine-based text search is
still based. Elaborating on the success of text-based search engines, query-
by-keyword also gains momentum in multimedia retrieval. For multimedia
archives it is hard to achieve access, however, when based on text alone. Mul-
timodal indexing is essential for effective access to video archives. For the
automatic detection of specific concepts, the state-of-the-art has produced so-
phisticated and specialized indexing methods. Other than their textual coun-
terparts, generic methods for semantic indexing in multimedia are neither
generally available, nor scalable in their computational needs, nor robust in
their performance. As a consequence, semantic access to multimedia archives
is still limited. Therefore, there is a case to be made for a new approach to
semantic video indexing.

The main problem for any semantic video indexing approach is the seman-
tic gap between data representation and their interpretation by humans, as
identified by Smeulders et al. [32]. In efforts to reduce the semantic gap, many
video indexing approaches focus on specific semantic concepts with a small
intra-class and large inter-class variability of content. Typical concepts and
their detectors are sunsets by Smith and Chang [33] and the work by Zhang et
al. on news anchors [43]. These concepts have become icons for video index-
ing. Although they have aided in achieving progress, this approach is limited
when considering the plethora of concepts waiting to be detected. It is simply
impossible to bridge the semantic gap by designing a tailor-made solution for
each concept.

In this chapter we present a generic semantic video indexing method, which
builds on the observation that produced video is the result of an authoring
process. When producing a video, an author departs from a conceptual idea.

∗ © 2006 IEEE. Reprinted, with permission, from IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10):1678–1689, October 2006 [38].
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The semantic intention is then articulated in (sub) consciously selected con-
ventions and techniques for the purpose of emphasizing aspects of the content.
The intention is communicated in context to the audience by a set of com-
monly shared notions. We aim to link the knowledge of years of media science
research to semantic video analysis, see for example Boggs and Petrie [7] and
Bordwell and Thompson [9]. We use the authoring-driven process of video
production as the leading principle for generic video indexing.

Viewing semantic video indexing from an authoring perspective has the
advantage that the most successful existing video indexing methods may be
combined in one architecture. We first consider the vast amount of work per-
formed in developing detection methods for specialized concepts [2, 5, 16, 18,
33, 43, 41]. If we measure the success of these methods in terms of benchmark
detection performance, Informedia [18, 41] stands out. They focus on com-
bining techniques from computer vision, speech recognition, natural language
understanding, and artificial intelligence into a video indexing and retrieval
environment. This has resulted in a large set of isolated and specialized con-
cept detectors [18]. We build our generic indexing approach in part on the
outputs of their detectors, but we do not use them in isolation.

In comparison to specialized detection methods, generic semantic indexing
is rare. We discuss three successful examples of generic semantic indexing ap-
proaches [3, 13, 39]. Firstly, Fan et al. [13] propose the ClassView framework.
The framework combines hierarchical semantic indexing with hierarchical re-
trieval. At the lowest level, the framework supports indexing of shots into
concepts based on a large set of low-level visual features. At the second level
a Bayes classifier maps concepts to semantic clusters. By assigning shots to
a hierarchy of concepts, the framework supports queries based on semantic
and visual similarity. As the authors indicate, the framework will provide
more meaningful results if it would support multimodal content analysis. We
aim for generic semantic indexing also, but we include multimodal analysis
from the beginning. Secondly, Amir et al. [3] propose a system for semantic
indexing using a detection pipeline. The pipeline starts with feature extrac-
tion, followed by consecutive aggregations on features, multiple modalities,
and concepts. The pipeline optimizes the result by rule-based post filtering.
We interpret the success of the system by the fact that all modules in the
pipeline select the best of multiple hypotheses, and the exhaustive use of ma-
chine learning. Moreover, the authors were among the first to recognize that
semantic indexing profits substantially from context. We adopt and extend
their ideas related to hypothesis selection, machine learning, and the use of
context for semantic indexing. All of the above generic methods ignore the
important influence of the video production style in the analysis process. In
addition to content and context, we identify layout and capture in [39] as im-
portant factors for semantic indexing of produced video. We propose in [39]
a generic framework for produced video indexing combining four sets of style
detectors in an iterative semantic classifier. Results indicate that the method
obtains high accuracy for rich semantic concepts, rich meaning that concepts
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share many similarities in their video production process. The framework is
less suited for concepts that are not stylized. In the current paper, we gener-
alize the idea of using style for semantic indexing.

We propose a generic approach for semantic indexing, we call the seman-
tic pathfinder. It combines the most successful methods for semantic video
indexing [3, 18, 39, 41] into an integrated architecture. The design princi-
ple is derived from the video production process, covering notions of content,
style, and context. The architecture is built on several detectors, multimodal
analysis, hypothesis selection, and machine learning. The semantic pathfinder
combines analysis steps at increasing levels of abstraction, corresponding to
well-known facts from the study of film and television production [7, 9]. Its
virtue is its ability to learn the best path, from all explored analysis steps, on a
per-concept basis. To demonstrate the effectiveness of the semantic pathfinder,
the semantic indexing experiments are evaluated within a case study, using
85 hours of broadcast news video [30, 31].

8.1.1 Relation to Other Chapters
Chapter 2 discussed the important issue of multimedia management using
metadata standards. An overview of basic machine learning techniques for
recognizing patterns in multimedia content was presented in Chapter 3. Chap-
ters 4, 5, and 7 presented an in-depth coverage of unimodal media analysis
approaches on text, image, and speech respectively. In this chapter we present
a unifying view to automatic extraction of metadata from multimedia sources,
specifically focusing on multimodal video analysis in combination with ma-
chine learning.

8.1.2 Outline
The organization of this chapter is as follows. First, we introduce the broadcast
news case study in Section 8.2. We highlight the data set used and elaborate
on the lexicon of concepts that we index in a generic fashion. Our system
architecture for semantic video indexing is presented in Section 8.3. We discuss
its general machine learning architecture and its successive analysis steps. We
present results in Section 8.4.

8.2 A Case Study on Broadcast News Video
8.2.1 Multimedia Archive
We focus on news video as a case study to study the problem of generic
semantic indexing. The archive of choice is composed of 184 hours of ABC
World News Tonight and CNN Headline News and is recorded in MPEG-
1 format. The training data contains approximately 120 hours covering the
period of January until June 1998. The 2004 test data contains the remaining
64 hours, covering the period of October until December 1998. Together with
this video archive, CLIPS-IMAG [26] provided a camera shot segmentation.
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We evaluate our semantic indexing approach on this data set to demonstrate
the effectiveness of the semantic pathfinder for semantic access to multimedia
archives.

8.2.2 Concept Lexicon
Before we elaborate on the video indexing architecture, we first define a lexicon
ΛS of 32 semantic concepts. The lexicon is indicative for future efforts to detect
as much as 1000 concepts [17]. At present, it serves as a non-trivial illustration
of concept possibilities. The semantic concept lexicon consists of the following
concepts:

ΛS = {airplane take off, American football, animal, baseball, basket scored,
beach, bicycle, Bill Clinton, boat, building, car, cartoon, financial news
anchor, golf, graphics, ice hockey, Madeleine Albright, news anchor, news
subject monologue, outdoor, overlayed text, people, people walking, physical
violence, road, soccer, sporting event, stock quotes, studio setting, train,
vegetation, weather news}.

Instantiations of the concepts in the lexicon are portrayed in Figure 8.1. The
lexicon contains both general concepts, like building, boat, and outdoor, as well
as specific concepts such as news subject monologue and people walking. We
aim to detect all 32 concepts with the proposed system architecture.

8.3 Semantic Pathfinder
The semantic pathfinder is composed of three analysis steps. It follows the
reverse authoring process. Each analysis step in the path detects semantic
concepts. In addition, one can exploit the output of an analysis step in the
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Fig. 8.1. Instances of the 32 concepts in the lexicon, which we aim to detect with
the semantic pathfinder.
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Fig. 8.2. Data flow conventions as used in this chapter. Different arrows indicate
difference in data flows.

path as the input for the next one. The semantic pathfinder starts in the
content analysis step. In this analysis step, we follow a data-driven approach
of indexing semantics. The style analysis step is the second analysis step. Here
we tackle the indexing problem by viewing a video from the perspective of
production. This analysis step aids especially in indexing of rich semantics.
Finally, to enhance the indexes further, in the context analysis step, we view
semantics in context. One would expect that some concepts, like vegetation,
have their emphasis on content where the style (of the camera work that is)
and context (of concepts like graphics) do not add much. In contrast, more
complex events, like people walking, profit from incremental adaptation of the
analysis to the intention of the author. The virtue of the semantic pathfinder
is its ability to find the best path of analysis steps on a per-concept basis.

The analysis steps in the semantic pathfinder exploit a common archi-
tecture, with a standardized input-output model, to allow for semantic inte-
gration. The conventions to describe the system architecture are indicated in
Figure 8.2. An overview of the semantic pathfinder is given in Figure 8.3.

8.3.1 Analysis Step General Architecture
We perceive semantic indexing in video as a pattern recognition problem.
We first need to segment a video. We opt for camera shots, indicated by
i, following the standard in literature. Given pattern x, part of a shot, the
aim is to detect a semantic concept ω from shot i using probability p(ω|xi).
Each analysis step in the semantic pathfinder extracts xi from the data, and
exploits a learning module to learn p(ω|xi) for all ω in the semantic lexicon
ΛS . We exploit supervised learning to learn the relation between ω and xi. The
training data of the multimedia archive, together with labeled samples, are
for learning classifiers. The other data, the test data, are set aside for testing.
This division prevents overtraining of the classifier. The general architecture
for supervised learning in each analysis step is illustrated in Figure 8.4.
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Fig. 8.3. The semantic pathfinder for one concept, using the conventions of Fig-
ure 8.2.

Supervised learning requires labeled examples. In part, we rely on the ground
truth, which accompanies our news video data, provided by [20]. We remove
the many errors from this manual annotation effort. It is extended to arrive
at an incomplete, but reliable ground truth for all concepts in lexicon ΛS .
We split the training data a priori into a non-overlapping training set and
validation set to prevent overfitting of classifiers in the semantic pathfinder. It
should be noted that a reliable validation set would ideally require an as large
as possible percentage of positively labeled examples, which is comparable to
the training set. In practice this may be hard to achieve, however, as some

Fig. 8.4. General architecture of an analysis step in the semantic pathfinder, using
the conventions of Figure 8.2.
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concepts are sparse. The training set we use contains 85% of the training data,
the validation set contains the remaining 15%. We summarize the percentage
of positively annotated examples for each concept in training and validation
set in Table 8.1.

We choose from a large variety of supervised machine learning approaches
to obtain p(ω|xi). For our purpose, the method of choice should be capa-
ble of handling video documents. To that end, ideally it must learn from a
limited number of examples, it must handle unbalanced data, and it should
account for unknown or erroneously detected data. In such heavy demands,
the Support Vector Machine (SVM) framework [12, 40] has proven to be a
solid choice [3, 35]. In this framework each pattern x is represented in an n-
dimensional space, spanned by extracted features. Within this feature space
an optimal hyperplane is searched that separates it into two different cate-
gories, where the categories are represented by +1 and −1 respectively. The
hyperplane has the following form: ω|(w · x + b)| ≥ 1, where w is a weight
vector, and b is a threshold. A hyperplane is considered optimal when the dis-
tance to the closest training examples is maximum for both categories. This
distance is called the margin, see the example in Figure 8.5. The problem of
finding the optimal hyperplane is a quadratic programming problem of the
following form [40]:

min
w,ξ

{1
2
w · w + C

( l∑

i=1

ξi

)}
, (8.1)

under the following constraints:

ω|(w · xi + b)| ≥ 1 − ξi, for i = 1, 2, . . . , l , (8.2)

where C is a parameter that allows us to balance training error and model
complexity, l is the number of shots in the training set, and ξi are slack vari-
ables that are introduced when the data is not perfectly separable. These slack
variables are useful when analyzing multimedia, since results of individual fea-
ture detectors typically include a number of false positives and negatives. The
usual SVM method provides a margin, γ(xi), in the result. We prefer Platt’s
conversion method [25] to achieve a posterior probability of the result. It is
defined as:

p(ω|xi) =
1

1 + exp(αγ(xi) + β)
, (8.3)

where the parameters α and β are maximum likelihood estimates based
on training data. SVM classifiers thus trained for ω, result in an estimate
p(ω|xi,q), where q are parameters of the SVM yet to be optimized.

The influence of the SVM parameters on concept detection is signifi-
cant [22]. We obtain good parameter settings for a classifier, by using an
iterative search on a large number of SVM parameter combinations. We mea-
sure average precision performance of all parameter combinations and select
the combination that yields the best performance, q∗. Here we use a three-
fold cross-validation [19] to prevent overfitting of parameters. The result of
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Table 8.1. Semantic concepts and the percentage of positively labeled examples
used for the training set and the validation set.

Semantic concept Training (%) Validation (%)

Weather news 0.51 0.43
Stock quotes 0.26 0.30
News anchor 3.91 3.99
Overlayed text 0.26 0.17
Basket scored 1.07 0.97
Graphics 1.06 1.05
Baseball 0.74 0.66
Sporting event 2.27 2.44
People walking 1.92 1.97
Financial news anchor 0.35 0.35
Ice hockey 0.36 0.47
Cartoon 0.60 0.73
Studio setting 4.94 4.65
Physical violence 2.73 3.14
Vegetation 1.60 1.59
Boat 0.55 0.45
Golf 0.14 0.25
People 3.89 3.99
American football 0.05 0.10
Outdoor 7.52 8.60
Car 1.57 2.10
Bill Clinton 0.97 1.41
News subject monologue 3.84 3.96
Animal 1.35 1.34
Road 1.44 1.98
Beach 0.42 0.61
Train 0.21 0.36
Madeleine Albright 0.18 0.02
Building 4.95 4.81
Airplane take off 0.89 0.87
Bicycle 0.28 0.27
Soccer 0.06 0.09

the parameter search over q is the improved model p(ω|xi,q∗), contracted to
p∗(ω|xi).

This concludes the introduction of the general architecture of all analysis
steps in the semantic pathfinder.

8.3.2 Content Analysis Step
We view video in the content analysis step from the data perspective. In
general, three data streams or modalities exist in video, namely the auditory
modality, the textual modality, and the visual one. As speech is often the
most informative part of the auditory source, we focus on textual features
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Margin

Fig. 8.5. Visual representation of the support vector machine framework. Here a
two-dimensional feature space consisting of two categories is visualized. The solid
bold line is chosen as optimal hyperplane because of the largest possible margin. The
circled data points closest to the optimal hyperplane are called the support vectors.

obtained from transcribed speech and visual features. After modality specific
data processing, we combine features in a multimodal representation. The
data flow in the content analysis step is illustrated in Figure 8.6.

Visual Analysis
In the visual modality, we aim for segmentation of an image frame f into
regional visual concepts. Ideally, a segmentation method should result in a
precise partitioning of f according to the object boundaries, referred to as
strong segmentation. However, weak segmentation, where f is partitioned into
internally homogenous regions within the boundaries of the object, is often
the best one can hope for [32]. We obtain a weak segmentation based on a
set of visual feature detectors. Prior to segmentation we remove the border
of each frame. The basis of feature extraction in the visual modality is weak
segmentation.

Invariance was identified in [32] as a crucial aspect of a visual feature de-
tector, e.g., to design features which limit the influence of accidental recording
circumstances. We use color invariant visual features [15] to arrive at weak
segmentation. The invariance covers the photometric variation due to shadow
and shading, and geometrical variation due to scale and orientation. This in-
variance is needed as the conditions under which semantic concepts appear in
large multimedia archives may vary greatly.

The feature extraction procedure we adhere to, computes per pixel a num-
ber of invariant features in vector u. This vector then serves as the input for
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Fig. 8.6. Feature extraction and classification in the content analysis step, special
case of Figure 8.4.

a multiclass SVM [12] that associates each pixel to one of the regional visual
concepts defined in a visual concept lexicon ΛV , using a labeled training set.
Based on ΛS , we define the following set of regional visual concepts:

ΛV = {colored clothing, concrete, fire, graphic blue, graphic purple, graphic
yellow, grassland, greenery, indoor sport court, red carpet, sand, skin, sky,
smoke, snow/ice, tuxedo, water body, wood}.

As we use invariant features, only a few examples per visual concept class are
needed; in practice less than 10 per class. This pixel-wise classification results
in the image vector wf , where wf contains one component per regional visual
concept, indicating the percentage of pixels found for this class. Thus, wf is
a weak segmentation of frame f in terms of regional visual concepts from ΛV ,
see Figure 8.7 for an example segmentation.

We use Gaussian color measurements to obtain u for weak segmenta-
tion [15]. We decorrelate RGB color values by linear transformation to the
opponent color system [15]:

⎡

⎣
E
Eλ

Eλλ

⎤

⎦ =

⎛

⎝
0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

⎞

⎠

⎡

⎣
R
G
B

⎤

⎦ . (8.4)

Smoothing these values with a Gaussian filter, G(σ), suppresses acquisi-
tion and compression noise. Moreover, we extract texture features by ap-
plying Gaussian derivative filters. We vary the size of the Gaussian filters,
σ = {1, 2, 3.5}, to obtain a color representation that is compatible with vari-
ations in the target object size (leaving out pixel position parameters):
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Fig. 8.7. Computation of the visual features, see Figure 8.6, is based on weak
segmentation of an image frame into regional visual concepts. A combination over
time is used to select one frame as representative for the shot.

Êj(σ) = Gj(σ) ∗ E, Êλj(σ) = Gj(σ) ∗ Eλ, Êλλj(σ) = Gj(σ) ∗ Eλλ, (8.5)

where j ∈ {∅, x, y} indicates either spatial smoothing or spatial differentiation
and that from now on the hat symbol (̂·) implies a dependence on σ. Nor-
malizing each opponent color value by its intensity suppresses global intensity
variations. This results in two chromaticity values per color pixel:

Ĉλ =
Êλ

Ê
, Ĉλλ =

Êλλ

Ê
. (8.6)

Furthermore, we obtain rotationally invariant features by taking Gaussian
derivative filters and combining the responses into two chromatic gradients:

Ĉλw =
√

Ĉ2
λx + Ĉ2

λy, Ĉλλw =
√

Ĉ2
λλx + Ĉ2

λλy, (8.7)

where Ĉλx, Ĉλy, Ĉλλx, and Ĉλλy are defined as:

Ĉλx =
ÊλxÊ − ÊλÊx

Ê2
, Ĉλλx =

ÊλλxÊ − ÊλλÊx

Ê2
,

Ĉλy =
ÊλyÊ − ÊλÊy

Ê2
, Ĉλλy =

ÊλλyÊ − ÊλλÊy

Ê2
. (8.8)

The seven measurements computed in (8.5)–(8.7), and each calculated over
three scales, yield a 21-dimensional invariant feature vector u per pixel.

Segmenting image frames into regional visual concepts at the granular-
ity of a pixel is computationally intensive. We estimate that the processing
of the entire case study data set would have taken around 250 days on the
fastest sequential machine available to us. As a first reduction of the analysis
load, we analyze 1 out of 15 frames only. For the remaining image processing
effort we apply the Parallel-Horus software architecture [29]. This architec-
ture, consisting of a large collection of low-level image processing primitives,
allows the programmer to write sequential applications with efficient parallel
execution on commonly available commodity clusters. Application of Parallel-
Horus, in combination with a distributed cluster consisting of 200 dual 1-GHz
Pentium-III CPUs [6], reduced the processing time to less than 60 hours [29].
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The features over time are combined into one vector for the shot i. Aver-
aging over individual frames is not a good choice, as the visual representation
should remain intact. Instead, we opt for a selection of the most representa-
tive frame or visual vector. To decide which f is the most representative for
i, weak segmented image wf is the input for an SVM that computes a prob-
ability p∗(ω|wf ). We select wf that maximizes the probability for a concept
from ΛS within i, given as:

vi = arg max
f∈fi

p∗(ω|wf ). (8.9)

The visual vector vi, containing the best weak segmentation, is the final result
of the visual analysis.

Textual Analysis
In the textual modality, we aim to learn the association between uttered
speech and semantic concepts. A detection system transcribes the speech into
text. From the text we remove the frequently occurring stopwords. After stop-
word removal, we are ready to learn semantics.

To learn the relation between uttered speech and concepts, we connect
words to shots. We make this connection within the temporal boundaries of
a shot. We derive a lexicon of uttered words that co-occur with ω using the
shot-based annotations of the training data. For each concept ω, we learn a
separate lexicon, Λω

T , as this uttered word lexicon is specific for that concept.
We modify the procedure for Person X concepts, i.e., Madeleine Albright and
Bill Clinton, to optimize results. In broadcast news, a news anchor or reporter
mentions names or other indicative words just before or after a person is
visible. To account for this observation, we stretch the shot boundaries with
five seconds on each side for Person X concepts. For these concepts, this
procedure assures that the textual feature analysis considers even more textual
content. For feature extraction we compare the text associated with each shot
with Λω

T . This comparison yields a text vector ti for shot i, which contains
the histogram of the words in association with ω.

Multimodal Analysis and Classification
The result of the content analysis step is a multimodal vector mi that inte-
grates all unimodal results. We concatenate the visual vector vi with the text
vector ti, to obtain mi. After this modality fusion, mi serves as the input for
the supervised learning module. To optimize parameter settings, we use three-
fold cross-validation on the training set. The content analysis step associates
probability p∗(ω|mi) with a shot i, for all ω in ΛS .

8.3.3 Style Analysis Step
In the style analysis step we conceive of a video from the production perspec-
tive. Based on the four roles involved in the video production process [39, 34],
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this step analyzes a video by four related style detectors. Layout detectors
analyze the role of the editor. Content detectors analyze the role of produc-
tion design. Capture detectors analyze the role of the production recording
unit. Finally, context detectors analyze the role of the preproduction team,
see Figure 8.8. Note that in contrast to the content analysis step, where we
learn specific content features from a data set, content features in the style
analysis step are generic and independent of the data set.

Style Analysis
We develop detectors for all four production roles as feature extraction in the
style analysis step. Each style detector uses an existing software implemen-
tation as a basis. The output of such a base detector is then aggregated and
synchronized to a camera shot. We categorize the resulting production-derived
features based on experimentally obtained thresholds. Together, these three
components define a style detector. We refer to our previous work for specific
implementation details of the detectors [34, Appendix A],[39]. We have chosen
to convert the output of all style detectors to an ordinal scale, as this allows
for easy fusion.

For the layout L the length of a camera shot is used as a feature, as this
is known to be an informative descriptor for genre [36]. Overlayed text is an-
other informative descriptor. Its presence is detected by a text localization
algorithm [27]. To segment the auditory layout, periods of speech and silence
are detected based on an automatic speech recognition system [14]. We ob-
tain a voice-over detector by combining the speech segmentation with the
camera shot segmentation [39]. The set of layout features is thus given by:
L = {shot length, overlayed text, silence, voice-over}.

As concerns the content C, a frontal face detector [28] is applied to de-
tect people. We count the number of faces, and for each face its location
is derived [39]. Apart from faces, we also detect the presence of cars [28].
In addition, we measure the average amount of object motion in a camera
shot [35]. Based on speaker identification [14] we identify each of the three
most frequent speakers. The camera shot is checked for the presence on the
basis of speech from one of the three [39]. The length of text strings recog-
nized by Video Optical Character Recognition [27] is used as a feature [39]. In
addition, the strings are used as input for a named entity recognizer [41]. On
the transcribed text obtained by the LIMSI automatic speech recognition sys-
tem [14], we also apply named entity recognition. The set of content features is
thus given by: C ={faces, face location, cars, object motion, frequent speaker,
overlayed text length, video text named entity, voice named entity}.

For capture T , we compute the camera distance from the size of detected
faces [28, 39]. It is undefined when no face is detected. In addition to camera
distance, several types of camera work are detected [4], e.g., pan, tilt, zoom,
and so on. Finally, for capture we also estimate the amount of camera mo-
tion [4]. The set of capture features is thus given by: T = {camera distance,
camera work, camera motion}.
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Fig. 8.8. Feature extraction and classification in the style analysis step, special case
of Figure 8.4.

The context S serves to enhance or reduce the correlation between seman-
tic concepts. Detection of vegetation can aid in the detection of a forest for
example. Likewise, the co-occurrence of a space shuttle and a bicycle in one
shot is improbable. As the performance of semantic concept detectors is un-
known and likely to vary between concepts, we exploit iteration to add them
to the context. The rationale here is to add concepts that are relatively easy
to detect first. They aid in detection performance by increasing the number of
true positives or reducing the number of false positives. As initial concept we
detect news reporters. We recognize news reporters by edit distance matching
of strings, obtained from the transcript and video text, with a database of
names of CNN and ABC affiliates [39]. The other concepts that are added to
the context stem from ΛS . To prevent bias from domain knowledge, we use
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the performance on the validation set of all concepts from ΛS in the content
analysis step as the ordering for the context. For this ordering we again refer
to Table 8.1. To assign detection results for the first and least difficult con-
cept, ω1 = weather news, we rank all shot results on p∗i (ω1|mi). This ranking
is then exploited to categorize results for ω1 into one of five levels. The basic
set of context features is thus given by: S = {news reporter, content analysis
step ω1}.

The concatenation of {L, C, T ,S} for shot i yields the style vector si. This
vector forms the input for an iterative classifier that trains a style model for
each concept in lexicon ΛS .

Iterative Style Classification
We start from an ordering of concepts in the context, as defined above. The
iteration of the classifier begins with concept ω1. After concatenation with
the other style features this yields si,1 the first style vector of the first it-
eration. si,1 contains the combined results of the content analysis step and
the style analysis step. We classify ω1 again based on si,1. This yields the a
posterior probability p∗(ω1|si,1). When p∗(ω|si) ≥ δ the concept ω1 is con-
sidered present in the style representation, else it is considered absent. The
threshold δ is set a priori at a fixed value of 0.5. In this process the classifier
replaces the feature for concept ω1, from the content analysis step, by the new
feature ω+

1 . The style analysis step adds more aspects of the author influence
to the results obtained with the content analysis step. In the next iteration
of the classification procedure, the classifier adds ω2 = stock quotes from the
content analysis step to the context. This yields si,2. As explained above, the
classifier replaces the ω2 feature from the content analysis step by the styled
version ω+

2 based on p∗(ω2|si,2). This iterative process is repeated for all ω in
lexicon ΛS .

We classify all ω in ΛS again in the style analysis step. As the result of
the content analysis step is only one of the many features in our style vector
representation in the style analysis step, we also use three-fold cross-validation
on the training set to optimize parameter settings in this analysis step. We use
the resulting probability as output for concept detection in the style analysis
step. In addition, it forms the input for the next analysis step in our semantic
pathfinder.

8.3.4 Context Analysis Step
The context analysis step adds context to our interpretation of the video.
Our ultimate aim is the reconstruction of the author’s intent by considering
detected concepts in context.

Semantic Analysis
The style analysis step yields a probability for each shot i and all concepts ω
in ΛS . The probability indicates whether a concept is present. We use the 32
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concept scores as semantic features. We fuse them into context vector ci, see
Figure 8.9.

Fig. 8.9. Feature extraction and classification in the context analysis step, special
case of Figure 8.4.

From ci we learn relations between concepts automatically. To that end, ci

serves as the input for a supervised learning module, which associates a con-
textual probability p∗(ω|ci) to a shot i for all ω in ΛS . To optimize parameter
settings, we use three-fold cross-validation on the previously unused data from
the validation set.

The output of the context analysis step is also the output of the entire
semantic pathfinder on video documents. On the way we have included in
the semantic pathfinder, the results of the analysis on raw data, facts derived
from production by the use of style features, and a context perspective of
the author’s intent by using semantic features. For each concept we obtain
a probability based on content, style, and context. We select from the three
possibilities the one that maximizes average precision based on validation set
performance. The semantic pathfinder provides us with the opportunity to
decide whether a one-shot analysis step is best for the concept only concen-
trating on content, or a two-analysis step classifier increasing discriminatory
power by adding production style to content, or that a concept profits most
from a consecutive analysis path using content, style, and context.

8.4 Indexing Results on 32 Semantic Concepts
We evaluated detection results for all 32 concepts in each analysis step. Given
the already enormous size of the data sets and the large amounts of annotation
– yet limited in terms of completeness – we have performed one pass for
32 concepts through the entire semantic pathfinder. We report the precision
at 100, which indicates the number of correct shots within the first 100 results
in Table 8.2.
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Table 8.2. Test set precision at 100 after the three steps, for a lexicon of 32 concepts.
The best result is given in bold. The corresponding path is selected in the semantic
pathfinder.

Semantic Content Style Context Semantic
concept analysis step analysis step analysis step pathfinder

News subject monologue 0.55 1.00 1.00 1.00
Weather news 1.00 1.00 1.00 1.00
News anchor 0.98 0.98 0.99 0.99
Overlayed text 0.84 0.99 0.93 0.99
Sporting event 0.77 0.98 0.93 0.98
Studio setting 0.95 0.96 0.98 0.98
Graphics 0.92 0.90 0.91 0.91
People 0.73 0.78 0.91 0.91
Outdoor 0.62 0.83 0.90 0.90
Stock quotes 0.89 0.77 0.77 0.89
People walking 0.65 0.72 0.83 0.83
Car 0.63 0.81 0.75 0.75
Cartoon 0.71 0.69 0.75 0.75
Vegetation 0.72 0.64 0.70 0.72
Ice hockey 0.71 0.68 0.60 0.71
Financial news anchor 0.40 0.70 0.71 0.70
Baseball 0.54 0.43 0.47 0.54
Building 0.53 0.46 0.43 0.53
Road 0.43 0.53 0.51 0.51
American football 0.46 0.18 0.17 0.46
Boat 0.42 0.38 0.37 0.37
Physical violence 0.17 0.25 0.31 0.31
Basket scored 0.24 0.21 0.30 0.30
Animal 0.37 0.26 0.26 0.26
Bill Clinton 0.26 0.35 0.37 0.26
Golf 0.24 0.19 0.06 0.24
Beach 0.13 0.12 0.12 0.12
Madeleine Albright 0.12 0.05 0.04 0.12
Airplane take off 0.10 0.08 0.08 0.08
Bicycle 0.09 0.08 0.07 0.08
Train 0.07 0.07 0.03 0.07
Soccer 0.01 0.01 0.00 0.01

Mean 0.51 0.53 0.54 0.57

We observe from the results that the learned best path (printed in bold) in-
deed varies over the concepts. The virtue of the semantic pathfinder is demon-
strated by the fact that for 12 concepts, the learning phase indicates it is best
to concentrate on content only. For five concepts, the semantic pathfinder
demonstrates that a two-step path is best (where in 15 cases addition of style
features has a marginal positive or negative effect). For 15 concepts, the con-
text analysis step obtains a better result. Context aids substantially in the
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Fig. 8.10. Influence of the style analysis step on precision at 100 performance for
a lexicon of 32 semantic concepts. Note a considerable decrease (American football)
or increase (news subject monologue) in performance when adding production style
information.

performance for five concepts. As an aside we note that the precision at 100,
when averaged over all concepts, steadily increases from 0.51 to 0.57 while
traversing the different semantic analysis paths.

The results demonstrate the virtue of the semantic pathfinder. Concepts
are divided by the analysis step after which they achieve best performance.
Some concepts are just content, style does not affect them. In such cases as
American football there is style-wise too much confusion with other sports
to add new value in the path. Shots containing stock quotes suffer from a
similar problem. Here false positives contain many stylistically similar results
like graphical representations of survey and election results. For complex con-
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Fig. 8.11. Influence of the context analysis step on precision at 100 performance
for a lexicon of 32 semantic concepts. Note a considerable decrease (golf) or increase
(people) in performance when adding context information.

cepts, analysis based on content and style is not enough. They require the use
of context. The context analysis step is especially good in detecting named
events, like people walking, physical violence, and basket scored. The results
offer us the possibility to categorize concepts according to the analysis step
of the semantic pathfinder that yields the best performance.

The content analysis step seems to work particularly well for semantic con-
cepts that have a small intra-class variability of content: weather news and
news anchor for example. In addition, this analysis step aids in detection of
accidental content like building, vegetation, bicycle, and train. However, for
some of those concepts, e.g., bicycle and train, the performance is still disap-
pointing. Another observation is that when one aims to distinguish subgenres,
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e.g., ice hockey, baseball, and American football, the content analysis step is
the best choice.

After the style analysis step, we obtain an increase in performance for 12
concepts, see Figure 8.10. Especially when the concepts are semantically rich:
e.g., news subject monologue, financial news anchor, and sporting event, the
style helps. As expected, index results in the style analysis step improve on the
content analysis step when style is a distinguishing property of the concept and
degrade the result when similarity in style exists between different concepts.

Results after the context analysis step in Figure 8.11 show that perfor-
mance increases for 13 concepts. The largest positive performance difference
between the context analysis step and the style analysis step occurs for concept
people. Concept people profits from sport-related concepts like baseball, bas-
ket scored, American football, ice hockey, and sporting event. In contrast, golf
suffers from detection of outdoor and vegetation. When we detect golf, these
concepts are also present frequently. The inverse, however, is not necessarily
the case, i.e., when we detect outdoor it is not necessarily on a golf course.
Based on these observations we conclude that, apart from named events, de-
tection results of the context analysis step are similar to those of the style
analysis step. Index results improve based on presence of semantically related
concepts, but the context analysis step is unable to capture the semantic
structure between concepts and for some concepts, this is leading to a drop
in performance.

The above results show that the semantic pathfinder facilitates generic
video indexing. In addition, the semantic pathfinder provides the foundation
of a technique taxonomy for solving semantic concept detection tasks. The fact
that subgenres like ice hockey, golf, and American football behave similarly
indicate the predictive value of the pathfinder for other subgenres. The same
holds for semantically rich concepts like news subject monologue, financial
news anchor, and sporting event. We showed that for named events, such
as basket scored, physical violence, and people walking, one should apply a
detector that is based on the entire semantic pathfinder. The significance of
the semantic pathfinder is its generalizing power combined with the fact that
addition of new information in the analysis can be considered by concept type.

8.4.1 Usage Scenarios
The results from the semantic pathfinder facilitate the development of various
applications. The lexicon of 32 semantic concepts allows for querying a video
archive by concept. Elswhere [37] we combined into the MediaMill semantic
video search engine query-by-concept, query-by-keyword, query-by-example,
and interactive filtering, see Figure 8.12. In addition to interactive search,
the set of indexes is also applicable in a personalized retrieval setting. A
feasible scenario is that users with a specific interest in sports are provided
with personalized summaries when and where they need it. The sketched
applications provide a semantic access to multimedia archives.
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Fig. 8.12. Interface of the MediaMill semantic video search engine. The system
allows for interactive query-by-concept using 32 concepts. In addition, it facilitates
query-by-similarity in the form of query-by-keyword, and query-by-example. Results
are presented in a storyboard.

8.5 Summary
In this chapter, we present the semantic pathfinder for semantic access to
multimedia archives. The semantic pathfinder is a generic approach for video
indexing. It is based on the observation that produced video is the result of an
authoring process. The semantic pathfinder exploits the authoring metaphor
in an effort to bridge the semantic gap. The architecture is built on a vari-
ety of detector types, multimodal analysis, hypothesis selection, and machine
learning. The semantic pathfinder selects the best path through content anal-
ysis, style analysis, and context analysis. After machine learning it appears
that the analysis is completed after content analysis only when concepts share
many similarities in their multimodal content. It appears also that the seman-
tic path runs up to style analysis when the professional habits of television
are evident to the concept. Finally, it exploits a path based on content, style,
and context for concepts that are primarily intentional, see Table 8.2 and
Figures 8.10 and 8.11.

Experiments with a lexicon of 32 semantic concepts demonstrate that the
semantic pathfinder allows for generic video indexing, while confirming the
value of the authoring metaphor in indexing. In addition, the results over the
various analysis steps indicate that a technique taxonomy exists for solving
semantic concept detection tasks; depending on whether content, style, or
context is most suited for indexing. For some concepts the precision at 100
performance is still quite low. For selecting illustrative footage, this may al-
ready be sufficient. This is not yet so for tasks that require accurate retrieval.
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However, the trend in results over the past years indicates that automated
search in video archives lures at the horizon.

8.6 Further Reading
Basic techniques for video indexing are discussed in the review papers by Bolle
et al. [8] and Brunelli et al. [10]. Smeulders et al. [32] present an in depth
overview of content-based image retrieval. Where these papers emphasize the
visual analysis in video indexing, the review paper of Wang et al. [42] stresses
audio analysis. For an overview of text analysis methods we refer to the book
by Manning and Schütze [21]. A broad introduction to multimodal semantic
video indexing literature can be found in our previous work [36] and the work
of Naphade and Huang [23].

Statistical pattern recognition is an indispensable tool for anyone work-
ing in semantic video indexing. An excellent introduction and overview is in
the paper by Jain et al. [19]. At present, the support vector machine frame-
work is the classifier of choice in the most successful semantic video indexing
systems [1, 3, 38] An in depth theoretical discussion on the support vector
machine is in the book by its inventor Vapnik [40]. A more accessible tutorial
is the paper by Burges [11].

For recent updates on the state-of-the-art in the field we refer to the pro-
ceedings of the yearly ACM Multimedia Conference, the International Confer-
ence on Image and Video Retrieval, and the IEEE International Conference
on Multimedia & Expo. The most important journals in the field are IEEE
Transactions on Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on Multimedia, IEEE Multimedia, and ACM Transactions on Multime-
dia Computing, Communications and Applications.

We have deliberately left out the NIST TRECVID video retrieval bench-
mark in our discussion on semantic video indexing, as this benchmark is the
topic of Chapter 13. The benchmark aims to promote progress in video re-
trieval via open, metrics-based evaluation [30, 31]. Tasks include camera shot
segmentation, story segmentation, semantic concept detection, and several
search tasks. Because of its widespread acceptance in the field, resulting in
large participation of teams from both academic and corporate research labs
worldwide, the benchmark can be regarded as the de facto standard to evalu-
ate performance of semantic video indexing and retrieval research. The most
recent developments in semantic video indexing are accessible via the elec-
tronic proceedings of the TREC workshop on Video Retrieval Evaluation [24].
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