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Abstract 
During the last decade, performance improvements in top sports have been 
increasingly driven by technological innovations. This paper discusses the 
application of video analysis for training registration in swimming. In current 
practice, coaches have limited means to evaluate objectively and quantitatively 
how a training session was carried out. We propose the use of a video-based 
registration system in order to help the coach in acquiring such information. The 
system uses multiple cameras to cover the swimming pool. By using a simple 
background modeling and blob tracking method swimmers are tracked and their 
lap times are estimated. The main limitation of the system is the failure to detect 
swimmers at the pool ends while they are resting or underwater. This can lead to 
the necessity to perform manual interactions to associate laps to swimmers and a 
systematic underestimation of the lap times of typically 1.5 seconds. Our results 
can be used to formulate training guidelines that can help overcome some 
limitations of the system so that, with little or no manual effort, the system could 
be used in practice to do quantitative measurements. The information on the 
actual training performance of the swimmers could then be compared with the 
training schedule made beforehand and used to further optimize the training 
program. 

 
KEY WORDS: TRAINING REGISTRATION, VIDEO ANALYSIS, TRACKING, 
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Introduction 

In recent years, performance improvements on top sports have been more and more driven by 
technological innovations. The rapid development of computer and information technology 
creates new opportunities to analyze aspects of sports that were previously out of reach. One 
particular application of technology that is growing in popularity is the use of video to 
analyze sport training (Wang et al., 2004). For example, it has been used to analyze a hand-
ball game (Perše et al., 2006), soccer (Xu et al., 2004) and golf (Urtasun et al., 2005). The 
goal of video analysis is to evaluate the athlete’s performance during training sessions, 
thereby providing assistance to coaches and athletes. This paper will discuss the application 
of video analysis to swimming, in particular to the training sessions of top swimmers. 
Using current practice, swimming coaches spend a lot of time making training programs, but 
they have few objective and quantitative measures to evaluate how the training was carried 
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out. The evaluation is limited to visual inspection and some time measurements with a 
stopwatch. At the end of the session, the swimmers fill in an evaluation form on how they 
experienced the session and to measure physical tiredness, lactate measurements are made by 
drawing blood samples. If several swimmers are training together the coach cannot give full 
attention to each of them and it is difficult to log all previous training data to make 
comparisons between training sessions. Our aim is to develop a video analysis system that 
will provide quantitative evaluation metrics for full training sessions of multiple swimmers 
and allow training schedules to be optimized. 
In the last decade, video-based motion analysis has been used to improve technical 
performance in swimming. Usually underwater cameras are used to record swimmers and 
during playback the coach can show them where they should correct or improve the strokes. 
The interactive video software developed by Dartfish (Dartfish, 2006) has been used by many 
coaches all over the world. By inspecting the recording and manually inserting various 
markers on the video, the coach can measure aspects of the swimmer’s motions. Another type 
of registration is hand force measurement, combined with video recording (STR, 2006). 
During the training, the developed Aquanex system measures the forces exerted by both 
hands in real-time. Analyzing the force curves in time makes it possible to reinforce the 
positive elements and identify the limiting factors. These systems are useful for giving 
detailed information about technique but not for registering the training sessions of multiple 
swimmers. 
In terms of Computer Vision, the problem of monitoring swimmers is known as tracking 
persons in surveillance. In the last few years visual surveillance received growing attention 
(Hu et al., 2004). Two main approaches to this problem can be distinguished in literature, the 
motion-based approach and model-fitting approach.  
The motion-based approach involves modeling the background scene and doing motion 
segmentation to detect foreground objects (see Stauffer & Grimson, 1999 and Elgammal et 
al., 2002). The background model is updated continuously to cope with scene variations and 
moving foreground objects are associated to previously-detected objects to form tracks. This 
approach has been applied to swimmers by Eng et al. (2006), who focused on drowning 
detection. Using this approach the object of interest is identified by its motion and this can 
have disadvantages when the tracked object stops moving. It is most appropriate for 
stationary cameras in scenes that do not show strong variation and is computationally 
efficient. 
The model-fitting approach focuses on modeling the object to be tracked and fitting this 
model directly to the input data. Using this approach the object of interest is identified by its 
appearance and this can have disadvantages when the object appearance is highly-variable or 
unpredictable. Baumberg & Hogg (1995) and Gavrila & Philomin (1999) used a silhouette-
based representation to track humans in video sequences, but when the object is partially 
occluded this method will not perform correctly. Nguyen & Smeulders (2004) learned the 
intensity pattern of the object of interest and the local surrounding background, which 
allowed robust tracking even under severe changes of both the foreground and the 
surrounding background. However, this algorithm has to be initialized manually and tracking 
multiple objects requires more computing power when compared to the first approach. Viola 
et al. (2005) introduced a method for detecting pedestrians in surveillance video which learns 
the appearance of full human figures from a large dataset. The trained pedestrian detector can 
be run in almost real-time (4 fps) but it does not perform well with partially-occluded human 
figures. 
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This paper presents results obtained with a prototype video analysis system based on a 
motion-based approach to swimmer tracking. The system is not required to work fully-
automatically and is designed for compliant subjects who are willing to adhere to certain 
guidelines about behavior in a controlled environment. The results obtained allow us to 
identify important issues for the design of future systems. Our analysis includes 
considerations of hardware, swimming pool infrastructure, training schedule guidelines and 
interfaces but we pay particular attention to algorithm requirements and performance 
evaluation. 

Methods 

This section describes the hardware setup used to capture the training session, the data 
processing algorithm and the performance evaluation method used to analyze the results. 
 
We recorded 45 minutes of video during training sessions of the Dutch youth national 
swimming team. Only three lanes were used during the training. The bottom lane was 
occupied by a single swimmer who swam back and forth in separate halves of the lane. The 
middle lane was occupied by two swimmers who each swam back and forth in separate 
halves of the lane. The third lane was occupied by four swimmers who swam in a circulating 
pattern i.e. swimmers moved in a different direction in each half of the lane. To have an 
overview of the whole 50m pool length we used 3 PAL cameras (with 720x576 pixels 
resolution each) with overlapping views elevated approximately 4m high at the pool side on 
tripods (Figure 1). The use of tripods is motivated by the fact that training sessions are often 
held in different pools so we need a mobile setup that can be easily built up and broken down. 
The cameras are connected to 3 frame grabbers that are installed on a dual-core Xeon 3GHz 
PC. Figure 2 shows the sample views from each camera. 
 

Figure 1. The hardware setup used to record the training session. The 3 PAL cameras are elevated at the pool 
side on tripods. 
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Figure 2. Sample views from the three PAL cameras. 

 
Figure 3. Block diagram of the data processing. The system uses the raw recording videos as input and produces 

object tracks as output. 

The processing block diagram can be seen in Figure 3. The recordings made during data 
acquisition are the input of the processing. At the end, a list of objects tracks, which represent 
the swimmers laps, will be generated. The following list gives a short description of what 
each block does:  

• Undistortion: This step corrects the distortion introduced by the lens. The distorted 
input image (Figure 2, left) is transformed to a rectified image (Figure 4, left). The 
camera distortion parameters are estimated beforehand using images of a calibration 
checkerboard in six orientations and the MATLAB Calibration Toolbox (Bouguet, 
2006).  

• Perspective Transformation: Perspective transformation is applied on sub-region of 
the image (e.g. yellow rectangle in Figure 4, left). This sub-region is defined manually 
for each camera and is specific to a given setup. The transform regularizes the 
geometry of the view and gives the impression of a view from directly above the pool 
(Figure 4, right). 

• Segmentation & Thresholding: This step is used to separate the foreground from the 
background (See Figure for the detailed block diagram). Firstly, each RGB pixel of 
the input image is transformed to the red chrominance (Cr) component of the YCbCr 
color space using the following relation: 

( )BGRCr 08128.04185.04998.0128 ++−=  
Since the water has strong blue component and the swimmers have strong red 
component this transformation enhances the distance between the color of swimmers 
and the color of water. After this transformation, a background model Bt is built and 
updated continuously by taking the running average of image frames: 
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 ( ) ttt IBB αα +−= −11  
with It as the current frame and α the update rate (how fast the model forgets previous 
frames). Finally, the image difference between the current image and background 
model image is then transformed to binary image by using hysteresis thresholding 
(Davies, 2005) to obtain groups of pixels (blobs), which represents the swimmers. The 
low and high intensity thresholds were determined by visual inspection of the binary 
output image and set to 10 and 16 respectively. Only blobs containing more than 60 
pixels are admitted to the output, because smaller blobs are likely to be the result of 
noise caused by water movements and so on. 

 

 
Figure 4. Perspective transformation from undistorted image. The region marked with the yellow rectangle on 

the left image is transformed to the right image. The rest of the image is discarded. 

 
Figure 5. Detailed block diagram of the Segmentation & Tracking block. 

• Tracking: This step associates blobs from previous video frames with the current one 
(Figure 6) to form tracks. If blobs from the current frame and the previous overlap 
they are associated. The interaction handling is used to deal with the cases when more 
than one association is possible. For example, when swimmers approach each other 
the segmentation step may detect a single blob containing multiple swimmers. This 
type of interaction is handled by considering the existing individual swimmer’s tracks 
as lost (no association possible) and creating a new track for the combined blob. 
When the single blob splits again into two separate blobs, the track from the single 
blob is considered as lost and two new tracks are generated for each swimmer. If an 
existing track cannot be associated to a blob in the current frame (i.e. lost track), 
linear extrapolation of the blob motion is used to predict the blob position and 
associations to the predicted positions are possible for up to 10 frames, after which it 
will be removed from the active track list and passed on to the next processing step. 
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Figure 6. Detailed block diagram of the Tracking block. 

• Location Transformation: This step performs a conversion from pixel coordinates to 
real world coordinates (i.e. meters). Since we know how long and how wide the pool 
is (the lane width is an official standard and the length can be determined by counting 
the stripes of the lane dividers), the pixel-to-world relationship can be calculated. 

• Inter-camera Track Association: The track information from the multiple video 
streams is combined in this step. In the overlapping region between two camera 
views, tracks of swimmers leaving one view and entering an adjacent view are 
combined by associating tracks with the best degree of overlap. However, tracks 
observed to be traveling in opposite directions are not considered for association. This 
constraint is used because we know that swimmers should not turn back in the middle 
of the pool. 

• Intra-lap Track Repair: Within a lap the track from a single swimmer may be 
fragmented (i.e. broken down into several short tracks). These track fragments can be 
grouped together using the following equations: 

     ( )startjendi
s

i ssds
j

,,1 ,'minarg=+ ,    )()(,],[ ji
T

i sdirsdiryxs ==  

where ( )ji ssd ,  is the Euclidean distance between two points, is  the starting or end 
point of track si in 2D and ( )isdir  is the motion direction of the specified track (either 
left or right). For each fragmented track si, the next track si+1 = sj with the same 
direction of motion and minimum 2D Euclidean distance between the extrapolated 
end point of si’ and the starting point of sj is found. The end point of si is extrapolated 
to the candidate track starting point sj in order to select the most probable candidate if 
there is a large gap between the current track and the next candidate track. Once a 
whole lap is recovered, the gaps between fragmented tracks are filled using linear 
interpolation. 

• Inter-lap Track Repair: During the training session swimmers reaching the end of the 
pool either turn and start a new lap (usually performing a tumble turn), or take a rest. 
To maintain the track of a swimmer between laps the following rule is introduced. 
Any track that enters a region 5 meters from the end of the pool is associated to the 
next track that leaves that region as long as no other track enters the region in the 
meantime. When multiple tracks enter the region before any tracks leave it is not 
possible to maintain the track automatically (see Figure 7). These events are 
recognized automatically and require manual correction. 
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Figure 7. The scheme used to group laps belonging to each swimmer in a lane, at the ends of the pool. (a) If one 
swimmer enters the region and some time later leaves and no other swimmers are resting, then 
the two laps can be easily grouped. (b) When multiple swimmers enter the region and some 
time later one swimmer leaves, two possibilities arise. Either swimmer A left first or swimmer 
B. 

• Manual Interaction: The last step is to perform inter-lap track repair manually for 
those tracks that cannot be automatically associated. Since no user interface has yet 
been implemented this is done by inspecting the video and editing the results file. 

 
Performance evaluation is done using two measures: frame-based metrics and object-based 
metrics (Bashir & Porikli, 2006). Firstly, a ground truth set is constructed and compared to 
the automatic detections in selected frames. Secondly, the individual tracks of objects are 
analyzed as separate entities. The ground truth set of swimmer locations was created using 
the ViPER tool (Doermann et al., 2000). We created a sparse set with an interval of 100 
frames as a trade-off between amount of work needed and the reliability of the ground truth 
set. A bounding box covering the head and torso is used to represent the location of a 
swimmer. The arms and legs are excluded because they are underwater frequently, which 
make them difficult to use as a reliable boundary. Accurate lap times cannot be measured 
using a sparse ground truth so the start and end times for each lap were also noted: the start 
and end times are when the swimmers break or make contact with the pool wall, either by 
using their arms or feet. 
 
Frame-based metrics measure how well the swimmers are detected in each frame. First, the 
following standard quantities were measured: 

• True Positive (TP): The number of bounding boxes for which both ground truth data 
and system results agree on the presence of a swimmer. 

• False Positive (FP): The number of bounding boxes for which the system falsely 
detects a swimmer. 

• False Negative (FN): The number of bounding boxes for which the system misses a 
swimmer. 

In the above definitions, the matching between the ground truth data and the system results is 
done by looking at the overlap between the two. If the bounding box centre of the tracking 
results is located inside a ground truth bounding box, it is considered a match. Furthermore, 
the following metrics are derived from the above definitions: 

• Tracker Detection Rate = TP / (FN + TP) 
• False Alarm Rate = FP / (TP + FP) 

These metrics were calculated for three cases: when we consider all bounding boxes, when 
we leave out bounding boxes in the ends of the pool (i.e. the first 5 meter and last 5 meter), 
and finally do the latter again for each separate lane. 
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# True 
Positives

# False 
Positives

# False 
Negatives

Tracker 
Detection Ratio

False Alarm 
Rate

All lanes 3328 250 1153 0,74 0,07
All lanes excluding pool ends 3094 250 199 0,94 0,07
Lane 1 (lower) excluding pool ends 238 22 23 0,91 0,08
Lane 2 (middle) excluding pool ends 1023 25 54 0,95 0,02
Lane 3 (upper) excluding pool ends 1819 220 132 0,93 0,11

 
Object-based metrics are based on the complete laps of each swimmer. The failure rate of the 
algorithm is measured by counting the number of manual interactions needed to identify 
every lap of a given swimmer as a single, continuous track. A single interaction is defined as 
the connection of one track fragment to another. Note that this definition does not include the 
number of interactions required to decide which fragments to connect. For an operational 
system a user could interact with the system to connect two track fragments using a 
maximum of two mouse clicks (selecting the end point of one track and the starting point of 
the other track) but examination of the video clip may be needed to decide which fragments 
to connect. After the complete laps have been identified for each swimmer, with manual 
correction if necessary, the measured lap times are compared to the ground truth. 
 

 
Figure 8. The visualization output of the tracking result. Each swimmer is represented by a bounding box with 

its track over time. 

Table 1. The detection performance of our tracking method measured by the frame-based metrics.  

 
 
 
 
 

 

Results & Discussion 

Setting up the mobile data acquisition system took about 40 minutes. Care had to be taken to 
position the cameras correctly in order to achieve the right degree of overlap between the 3 
views. During data processing a total of 12 points in the 3 views had to be selected manually 
to register the images correctly. The prototype contains no mechanism to ensure that the 
camera position and viewing are repeatable between training sessions and within training 
sessions the camera positions can move if the tripods or the connecting wires are accidentally 
displaced, forcing recalibration of the system. In general, the more variable the camera and 
scene geometry is the higher the burden on the computer vision algorithm and these factors 
favor the use of multiple fixed acquisition systems at different locations rather than a single 
mobile system.  
Figure 8 shows an example of the tracking algorithm output. The detection performance 
measured for 45 minutes of video using frame-based metrics is presented in Table 1. For all 
swimmers in all lanes the tracker detection ratio is 0.74 and the false alarm rate is 0.07. Many 
of the false negatives are caused by the swimmers at the ends of the pool: when bounding 
boxes within 5 meters from the pool ends are excluded from the analysis the detection ratio 
improves to 0.94 and the false alarm rate remains 0.07. The reason for this is that swimmers 
at the ends of the pool are often resting or underwater, meaning that their motion or color 
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Before 
track repair

After grouping
fragmented tracks

After grouping
laps to swimmers

Lane 1 Swimmer 1 23 75 22 0
Lane 2 Swimmer 2 54 131 53 6

Swimmer 3 51 57 50 6
Lane 3 Swimmer 4 52 132 51 27

Swimmer 5 53 98 52 28
Swimmer 6 58 104 57 17
Swimmer 7 47 99 46 17
Total 338 696 331 101

Number of laps
in 

Ground Truth set

Number of manual interactions needed

properties are less distinguishable from their environment. If the pool ends are excluded and 
the different lanes are compared, the best results are obtained from lane 2. In lane 3 the 
relatively high false alarm rate is due to bright reflections, caused by light entering from a 
window on the other side of the pool, that are sometimes mistaken for swimmers. The lower 
tracker detection ratio in lane 1 is due to imperfect calibration of the setup which causes the 
swimmer to partly fall outside the view and be undetected by the prototype system. 
 
Figure 9 shows examples of 4 failure modes for the detection algorithm. Many of the false 
negatives reported above are caused by a failure to detect swimmers at the ends of the pool 
when they are resting (Figure 9a) or underwater (Figure 9b). In addition, water waves can 
cause false negatives by covering the swimmer (Figure 9c) and water reflections can cause 
false positives (Figure 9d). 

 
 (a)  (b) 

 
 (c) (d) 

Figure 9. The types of difficulty encountered during the whole training registration process (best viewed in 
color): (a) Resting swimmers and (b) swimmers underwater could not be detected (shown here 
with yellow dashed circles), (c) water reflections and water ripples caused misdetection 
(undetected swimmer within yellow dashed circle) and (d) false detection (upper rectangle). 

Table 2. Comparison of the number of manual interactions needed in three stages during the track repair 
method. 

 
 
 
 
 
 
 
 
 
 
 



International Journal of Computer Science in Sport – Volume 6/Edition 1 www.iacss.org 
   

 

13 

Mean 
(sec)

Standard Deviation
(sec)

Swimmer 1 2,62 1,61
Swimmer 2 1,69 2,33
Swimmer 3 0,52 0,60
Swimmer 4 2,04 2,08
Swimmer 5 1,29 2,35
Swimmer 6 0,43 0,74
Swimmer 7 1,57 1,74

Elapsed time discrepancy (after repair)

Table 2 shows the number of manual interactions needed to correctly identify the complete 
laps of each swimmer. Before track repair an average of 100 manual interactions per 
swimmer would be required to correct the results because the tracks of individual laps are 
fragmented. After automatically grouping fragmented tracks each lap is represented by a 
single track, but laps have not been associated to swimmers (See Figure 10). After grouping 
laps to swimmers the system is not able to solve instances when two or more swimmers are 
resting at the same end of the pool. These situations are recognized by the algorithm but have 
to be resolved manually. They never occur in lane 1 which is occupied by a solitary swimmer 
and often occur in lane 3 which is shared by four swimmers. After all tracking methods have 
been applied the number of manual interactions required for correct swimmer tracking is at 
best none and at worst 28 depending on which swimmer is tracked. Note that trials showed 
that no manual interactions were necessary to accurately track the swimmers in lane 2 if the 
algorithm made use of the fact that each swimmer used only one half of the lane and the 
vertical position was used for inter-lap track repair. For elite athletes this constraint usually 
applies because it most closely matches race behavior. 

 
     (a)         (b) 

Figure 10. (a) The visualization of the fragmented tracks (best viewed in color). Each line segment is a 
collection of centre of gravity points of the detected swimmer blobs. The segments are drawn 
here using only the x coordinate of the centre points and the frame numbers (time axis). 
Upward lines in time represent swimmers going from left to right. In the matching, the y 
coordinate is also considered. For example, segment 172 (red) should be matched to segment 
174 (magenta). Without using the extrapolation, segment 172 would have been matched to 
segment 175 (yellow), which has the same direction and is the closest. (b) The results after 
grouping the fragmented tracks. The gaps between tracks are now filled with interpolated 
values. 

Table 3. Results from the object-based evaluation: statistics of the elapsed time discrepancy and the average 
speed discrepancy. 
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Warm-up

4 x 50 legs without swimming board, 
change position per 25m

200 100m freestyle + 100m medley
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8 x 150 freestyle, 70% with 10-15s rest

800 per 200m 3s faster, r. 30s

Figure 11. The elapsed time plots for all laps of all swimmers. The ground truth lap times (blue) are compared to 
the tracking results (green) after manual correction. Patterns dictated by the training schedule 
can be discerned in these plots, for example, swimmer 1 swims with a pattern of a few slow 
laps and 1 fast lap during the first 15 laps. 

 
Figure 12. Comparison of the registered laps of a swimmer to the training schedule. This part shows the 

performance of swimmer 3 (upper halve middle lane) during the transition between warm-up 
and core training. Note that each segment in the visualization represents a 50m lap and the 
swim direction is indicated by different segment colors. 
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The lap times of all swimmers are depicted in Figure 11. The mean and the standard 
deviation of the measurement discrepancies are summarized in Table 3. The measurement 
discrepancy is defined as the estimated value subtracted from the ground truth value. The 
mean discrepancy for the lap time measurements is typically 4% of the lap time. It can be 
seen from Table 3 that the automatically-measured lap times are systematically shorter than 
the true lap times, sometimes with a significant difference when swimmers move slowly. 
This is mainly caused by the failure of the algorithm to initialize tracks at the moment the 
swimmers start a lap. At the start of a lap, the swimmers are often underwater after 
completing a tumble-turn and may not be detected until they have moved several meters from 
the pool wall and resurfaced (see Figure 8). Trials indicated that linearly extrapolating the 
tracks to the pool edge using the average speed of the first 4 seconds of each track improved 
the lap time estimates but that linear interpolation is not optimal because swimmers show a 
tendency to go faster at the beginning of a lap.  
To allow a coach to check that a swimmer has completed a training session as instructed it is 
necessary to map the written training schedule to the system output. It has been found that the 
registered laps show patterns that can make this possible and this issue will be the subject of 
future work. Figure 12 shows an example of a swimmer swimming the last 2x100m of a 
warm-up, taking a rest, and beginning the core training by swimming groups of 150m (3 laps) 
with 10-15 seconds rest in between. 

Conclusions and Future Work 

We have described results from a prototype system designed to register the training sessions 
of swimmers using video recordings. These results allow us to draw conclusions about design 
requirements for future systems and likely performance limitations. 
Regarding video acquisition hardware we have observed that the mobile prototype requires 
time and specialist knowledge to assemble and that changes in the scene and camera 
geometry will be source of variability in the system performance. We conclude that fixed 
systems are likely to offer advantages over mobile systems in terms of data quality and 
repeatability of results. For mobile systems a simpler set-up with fewer cameras and easier 
assembly and calibration would be advantageous. 
Regarding computer vision techniques we have shown that, although joining laps is difficult, 
it is possible to track each lap swum by 7 swimmers taking part in a 45 minute training 
session automatically using a simple background modeling and blob tracking method. Many 
difficulties encountered during tracking, such as intra-lap track fragmentation and inter-lap 
track association can be corrected by using constraints about the swimmers motions, which 
are predictable and repetitive. The main limitation on the algorithm performance is the failure 
to detect swimmers at the ends of the pool that are either resting or underwater. The failure to 
detect resting swimmers means that manual interactions are necessary to distinguish between 
swimmers who take a rest together at the same end of the pool. The failure to detect 
swimmers swimming underwater after tumble turns causes lap times to be systematically 
underestimated by typically 1.5 seconds. The tracking output shows patterns of laps and 
pauses that can make it possible to manually map the written training schedule of the coach to 
the system output to obtain an overview of the training session as performed.  
Our results show that the performance of the system can be highly dependent on the way in 
which the swimmers behave and how the training sessions are organized. For example, much 
more manual interaction is necessary to correct the tracking results when swimmers rest 
together at the same end of the pool or share the same swim lane and swim in a circulating 
pattern rather than swimming backwards and forwards in the same part of the lane. One way 
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to improve the performance of the system without further algorithm development is for the 
training sessions to be organized in a way that avoids these situations and develop guidelines 
for the coaches and swimmers. The use of colored swim caps could also improve the 
segmentation performance at the ends of the pool and allow swimmer positions and identities 
to be tracked more accurately.  
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