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Abstract—In multitarget tracking, the main challenge is to maintain the correct identity of targets even under occlusions or when

differences between the targets are small. The paper proposes a new approach to this problem by incorporating the context information.

The context of a target in an image sequence has two components: the spatial context including the local background and nearby targets

and the temporal context including all appearances of the targets that have been seen previously. The paper considers both aspects. We

propose a new model for multitarget tracking based on the classification of each target against its spatial context. The tracker searches a

region similar to the target while avoiding nearby targets. The temporal context is included by integrating the entire history of target

appearance based on probabilistic principal component analysis (PPCA). We have developed a new incremental scheme that can learn

the full set of PPCA parameters accurately online. The experiments show robust tracking performance under the condition of severe

clutter, occlusions, and pose changes.

Index terms—Multitarget tracking, context-based tracking, probabilistic PCA.
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1 INTRODUCTION

TRACKING an object can be seen as a dynamic classification
of one target against everything else. When more than

one object is being tracked, the problem evolves into
dynamic multiclass classification.

The problem of jointly tracking multiple targets is as
challenging as it is important. In video surveillance, a
common interest is in the detection of suspicious behavior
by patterns of movement of people. In team sports, the
interest is usually in patterns of play. In traffic control, it
usually requires the tracking of many vehicles in the road.
All of these cases illustrate the importance of multiple target
tracking in real-life applications.

The challenging aspect of multiobject tracking is in
safeguarding the proper identity of all targets. This is
especially hard when objects have little distinction in their
appearance. Another aspect of the problem is occlusion
between targets passing in front and behind each other and
occlusion behind a part of the scene. In addition, there are the
usual aspects of tracking such as change in pose and change in
the illumination of the scene. We aim to maintain object
identity in these conditions, here for the case of a fixed camera.

The traditional approach in resolving the ambiguous
identity of several targets is to separate them whenever
possible. The common principle is that, once a target is
assigned to a position in the image, no more targets can
occupy that place. The classical methods, including the joint

probabilistic data association filter in [2] and the multiple
hypotheses tracking algorithm in [20], enforce a data
association variable into the target likelihood. It rules out
configurations where multiple targets associate with the
same image region. Recent methods [8], [26], [10] add a
prior term to the likelihood to prevent any pair of targets
from getting too close. Preventing proximity and eventually
occlusion between targets by constraints is undesired,
however, since that information is usually what one would
like to know in tracking. In addition, by posing constraints
on target positions, the references may succeed in avoiding
coalescence of targets, but they still may yield an undesired
switching of identity. In most references, each target is
searched for by maximizing its likelihood while ignoring
the others. The sensitivity of the likelihood to changes in
appearance may then provoke false classifications. The joint
likelihood models in [19], [9], [27] better describe the
overlap between targets during occlusions, but they still
minimize the likelihood of each individual target.

We believe that the accurate identification of targets
should be based on the two following conditions:

1. the ability to distinguish between targets moving
close to each other and between each target and the
background and

2. an accurate appearance model of each target that
should be robust to occlusions and other types of
appearance changes occurring during tracking.

We propose to achieve these goals by incorporating the
appearance information from the context of each target. Two
types of context are considered: spatial and temporal. The
spatial context of a target involves the local background and
other foreground objects present in the current frame. The
temporal context includes all prior appearances of the target.

We develop a new probabilistic framework for multi-
target tracking by a built-in classifier for the distinction of
targets against their spatial context. Robustness to occlu-
sions is achieved by modeling the appearance of a target
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using probabilistic principle component analysis (PPCA).
The PPCA model integrates all appearances seen in the
past. As we need to update the PPCA at each new frame,
we have developed a new, incremental PPCA scheme
which computes all parameters accurately and efficiently.

The paper is structured as follows: Section 2 presents our
concept of spatio-temporal context and its role for tracking.
Related work is discussed in Section 3. Section 4 presents
our framework for multitarget tracking, including the
probabilistic model and inference. In Section 5, we present
a new method for incremental probabilistic PCA. This
algorithm is used for the construction of the appearance
model of each target. The tracking results are demonstrated
in Section 6.

2 SPATIO-TEMPORAL CONTEXT-BASED TRACKING

When considering tracking as an object detection problem in
a dynamically evolving environment, the detection model
can be learned either offline or online, or by a combination
thereof. Offline learning, in turn, may be target specific or
general. Target-specific and complete models encompassing
all appearances of the target severely limit the applicability of
the model as it requires an explicit recording session. Offline
learning of a general model is a much more realistic approach
but it tends to miss important details in the appearance of the
target. For example, one may have a detailed appearance
model of humans, but it is still difficult to fill in the
appearance of all possible clothing. In general, the detection
model is best when constructed specifically for the online
context where the tracking takes place. Incorporation of
context information into the object detection model is there-
fore very important. This issue is the focus of this paper.

Since an image sequence has the spatio-temporal char-
acteristic, the context information of a moving target has
two components: the spatial context and the temporal
context, see Fig. 1. These contexts naturally correspond to
the two sources of information both used by the human
vision system to localize a moving object:

1. the appearance distinction between the object and its
surroundings at the specific moment of time and

2. the memory about the appearance of the object,
which is acquired over time.

Both the spatial context and the temporal context should
be taken into account.

In multitarget tracking, the spatial context of a target
involves the appearance information of the background and
the nearby targets. The detection model should be designed to
best discriminate each target from its spatial context. Conse-
quently, the algorithm should search for the image region
similar to the target while avoiding regions of the background
and other targets. In particular, if there are two regions where
the target has a high likelihood, the algorithm should select
the region which, at the same time has, a lower likelihood to be
a part of the background or any of the other targets.

A good detection scheme in individual frames cannot
last long with a poor memory of targets’ appearance. This is
why the temporal context is also needed. To incorporate the
temporal context, for each target we use an appearance
model covering all appearances of the object as seen in the
past. The contribution of past appearances makes the model
robust to occlusions or illumination changes. The model
should then be able to recognize the object when past
appearances return in the future. While the model should
be adaptive to new appearances of the object, a long-term
memory of all appearances will also help to reduce the drift
usually happening in adaptive tracking.

3 RELATED WORK

The spatial context has been considered in single target
tracking, particularly by the trackers using the discriminative
approach. For a single target, the spatial context information
is the appearance of the surrounding background. In [5], the
authors propose to select online color features most dis-
criminating a target object from a local background window.
The algorithm in [16] learns and maintains online a fore-
ground-background discriminant function as the objective
function in the target search. The papers indicate that the
improvement of the distinction between the target and the
surrounding context increases the robustness to varying
appearances of the object. In [1], [25], the objective function is
a classifier that is trained offline to discriminate the object
class of interest from the nonobject class. The use of a
substantial amount of prior knowledge in offline training can
provide a powerful classifier, but does not take into account
the specifics of an individual object. This could be a problem
for tracking multiple objects of the same class since all targets
would have the same objective function.
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Fig. 1. Detection of a target object in a video frame relies on two types of context information. This includes the contrast of the object with respect to

its surrounding and a memory of object’s appearances.
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For modeling the target appearance over a long temporal
context, the generative statistical models including eigen-
space or mixture of Gaussians can be applied. An important
requirement for such a model is that it can be learned
incrementally upon the arrival of new tracking results and
under the condition of a limited memory and a limited time.
The algorithms for online learning of a mixture of Gaussians
[24] require that the input samples be statistically indepen-
dent and, furthermore, need time to converge. Recent
tracking algorithms therefore focus on the eigenspace model
[21], [13], [14], [7]. They rely on the recursive SVD algorithm
[12] to update the eigenvectors of a data stream incremen-
tally. Eigenvectors alone, however, do not provide a prob-
abilistic measure to characterize object likelihood in the full
feature space. The probabilistic formulation of the eigenspace
model, well known as the PPCA (probabilistic PCA) [23], [15],
requires an additional parameter being the variance of the
noise in nonprincipal components. This parameter scales the
distance from data to the subspace of the principal compo-
nents, allowing for a natural combination with distance
measures within that subspace. In an existing method [14],
this noise parameter is predefined or set to a fraction of the
eigenvalue of the smallest principal component. This ad hoc
approach has no theoretical justification. Another incremen-
tal scheme of PPCA recently proposed in [4] is of a rather
different vein. It first performs a batch PPCA on newly
arrived samples and then merges the new PPCA and the
existing PPCA using a plain incremental PCA method. The
problem of this approach is inaccuracy of the estimation of
PPCA for the small number of incoming additional samples.
In particular, this method will not work when the number of
new observations is smaller than the number of principal
components. In addition, this method is not based on
maximum likelihood, which is usually required in parameter
estimation. In [11], PPCA is used for object tracking, but the
model is learned offline.

Although not explicitly stated, the current tracking algo-
rithms have used the context information for handling
background clutter and appearance variations. However,
thealgorithmsarerestrictedtothetrackingofasingle target.A
probabilistic framework for context-based tracking in case of
multiple targets is still lacking. Furthermore, while PPCA
appears effective for modeling appearances of a target over a
long temporal context, there is no incremental scheme that
calculates the full set of the PPCA parameters online. These
issues will be addressed in the presented paper.

Our context-based tracking model is learned solely
online. As is frequently the case, in practice, we assume
that no offline training is possible except for the initializa-
tion of the target region in the first frame of the sequence.
Acknowledging the power of offline learning, we leave the
interesting issue of combining offline and online models for
future research.

4 CLASSIFICATION-BASED FRAMEWORK FOR

TRACKING MULTIPLE TARGETS

We first present a novel classification-based framework for
multitarget tracking.

Let M be the number of targets that we want to track,
and xxxxi be the position of the ith target. For simplicity of the
presentation, we consider only translational motion,
although the method can also be extended for more

sophisticated types of motion. The goal of the tracking is
to estimate the concatenation of the position of all targets:
XXXX ¼ fxxxx1; . . . ; xxxxMg.

4.1 The Probabilistic Model

We propose the probabilistic model shown in Fig. 2. In this
model, XXXX ¼ fxxxx1; . . . ; xxxxMg is the state vector. Let P ¼
fpppp1; . . . ; ppppNg denote the set of all possible positions in the
image. ZZZZ ¼ fzzzz1; . . . ; zzzzNg is the set of measurements where zzzzi
denotes the vectors assembled from the intensities in a
neighborhood of position pi. The size of this neighborhood
will be elucidated in Section 5. To achieve accurate target
identification, a classifier is integrated in the tracking by
hidden class labels ‘1; . . . ; ‘N . Each class label ‘i 2
f0; 1; . . . ;Mg indicates the label of the target at location ppppi.
The label 0 is the background label indicating that no target
occupies the position. The main idea of the proposed
approach is that the tracker first estimates the distribution
of the label at every position and then locates each target at
the position where the corresponding label has highest
probability.

We use superscript ðtÞ to denote time. For ‘i, however, we
drop t as we use only labels at time t. Given the previous

tracking result XXXXðt�1Þ and the current measurements ZZZZðtÞ,
inference aboutXXXXðtÞ is made based on three distributions: the

predicted label distribution P ð‘ijXXXXðt�1ÞÞ, the measurement
distribution pðzzzzðtÞi j‘iÞ, and the position distribution pðxxxxðtÞk j
‘1; . . . ; ‘NÞ. The labels are assumed mutually independent

conditioned on XXXXðt�1Þ, implying that there is no dependence
between the position of targets. This assumption may not be

the case sometimes, for example, in a soccer play where the
position of the keeper is always correlated with the
defenders. However, it should not cause any serious problem

as long as the current measurements and the predicted prior
are sufficient to distinguish the targets. The assumption of
the independence of the labels also implies that no constraint

is placed on the target positions. In particular, this property
allows the targets to move close to each other. The algorithm

distinguishes the targets mainly by discriminating their
appearance. The posterior distribution of each label
P ð‘ijXXXXðt�1Þ; zzzz

ðtÞ
i Þ can be calculated straightforwardly from

pð‘ijXXXXðt�1ÞÞ and pðzzzzðtÞi j‘iÞ. The distribution of the position of
each target pðxxxxðtÞk ¼ ppppijZZZZðtÞ; X̂XXXðt�1ÞÞ is then independently

inferred using P ð‘ijXXXXðt�1Þ; zzzz
ðtÞ
i Þ and pðxxxxðtÞk j‘1; . . . ; ‘NÞ. This

probability will be used for the target search.
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Fig. 2. The proposed probabilistic model for multitarget tracking. xxxxk is
the position of kth target, zzzzi is the observation at position i, and ‘i is the
class label of position i.
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The three aforementioned distributions are defined as

follows:

1. The predicted label distribution P ð‘ijXXXXðt�1ÞÞ. The prob-
ability depends on the distance from ppppi to the previous
position of the targets. In particular, if ppppi is close to
xxxx
ðt�1Þ
k , then the chance that the kth target occupies this

position in the current frame should be high. We
define:

pð‘i ¼ kjXXXXðt�1ÞÞ / gðppppi; xxxx
ðt�1Þ
k Þ if 1 � k �M

c if k ¼ 0;

�
ð1Þ

where c is the prior of the background class, and

gðppppi; xxxx
ðt�1Þ
k Þ is a function decreasing with the distance

from ppppi to xxxx
ðt�1Þ
k . We use:

gðxxxx; yyyyÞ ¼ 1 if jxxxx� yyyyj < r
0 otherwise;

�
ð2Þ

where r is a predefined threshold representing the

maximal displacement of a target between two

successive frames. As result, if the distance from ppppi
to xxxx

ðt�1Þ
k exceeds r, pð‘i ¼ kjXXXXðt�1ÞÞ is zero, implying

that ppppi cannot be the position of the kth target in the

current frame, see Fig. 3.
2. The measurement distribution pðzzzzðtÞi j‘iÞ. The measure-

ment distribution in each class is assumed to be

Gaussian. The background distribution at each loca-

tion is represented by an isotropic Gaussian learned a

priori. A priori learning is possible as the camera is
fixed. For the target distribution, we employ the

probabilistic PCA model [23], a nonisotropic model

which provides more flexibility in modeling appear-

ance changes. Unlike the background, it is usually

impossible to learn a target distribution a priori.

Section 5 presents a method for the online construc-

tion of this distribution from the tracking results,

requiring initialization of the target in the first frame
only.

3. The position distribution pðxxxxðtÞk j‘1; . . . ; ‘NÞ. In the
absence of any a priori bias, the probability of the
kth target is uniformly distributed over the positions
with the label k:

pðxxxxðtÞk ¼ ppppij‘1; . . . ; ‘NÞ ¼
�ð‘i � kÞPN
j¼1 �ð‘j � kÞ

; ð3Þ

where �ðÞ denotes the Dirac delta function. Thus, the

target will have zero probability at pixels where the

class label is different from k.

4.2 State Inference and Target Search

We search for the kth target by maximizing the
posterior probability of the position xxxx

ðtÞ
k over all pixel

sites. The probability is conditioned on the previous
states and the current measurements:

x̂xxx
ðtÞ
k ¼ arg max

ppppi
p xxxx

ðtÞ
k ¼ ppppijZZZZðtÞ; X̂XXXðt�1Þ

� �
; ð4Þ

where x̂xxx
ðtÞ
k is the estimate of xxxx

ðtÞ
k , and X̂XXXðt�1Þ is the estimate of

the previous positions of all targets.
The posterior probability pðxxxxðtÞk ¼ ppppijZZZZðtÞ; XXXXðt�1ÞÞ can be

inferred using the conditional independence of XXXXðtÞ from
XXXXðt�1Þ and ZZZZðtÞ given the labels ‘1; . . . ; ‘N , as follows:

p xxxx
ðtÞ
k ¼ ppppijZZZZðtÞ; XXXXðt�1Þ

� �

¼
XM
‘1¼0

. . .
XM
‘N¼0

p xxxx
ðtÞ
k ¼ ppppi; ‘1; . . . ; ‘N jZZZZðtÞ; XXXXðt�1Þ

� �

¼
XM
‘1¼0

. . .
XM
‘N¼0

p xxxx
ðtÞ
k ¼ ppppij‘1; . . . ; ‘N

� �YN
j¼1

p ‘jjzzzzðtÞj ; XXXXðt�1Þ
� �

:

ð5Þ

Substituting (3) into (5), we can represent the distribution
of target position via the distribution of pixel labels.
Moreover, the summation over ‘i is simplified as:

p xxxx
ðtÞ
k ¼ ppppijZZZZðtÞ; XXXXðt�1Þ

� �
¼ p ‘i ¼ kjzzzzðtÞi ; XXXXðt�1Þ
� �

XM
‘1¼0

. . .
XM
‘i�1¼0

XM
‘iþ1¼0

. . .
XM
‘N¼0

QN
j¼1;j6¼i

p ‘jjzzzzðtÞj ; XXXXðt�1Þ
� �

1þ
PN

j¼1;j6¼i
�ð‘j � kÞ

8>>><
>>>:

9>>>=
>>>;
:
ð6Þ

The direct computation of this probability is intractable
since it depends on the distribution of all labels in the field.
Fortunately, the maximization of the probability in (6) can
be done rather sufficiently using the following proposition:

Proposition 1. The probability of the position of a target in (6) is
monotonically increasing with the probability of the corre-
sponding class. Specifically, for any pair of pixel sites ppppi and
ppppi0 , the inequality

p xxxx
ðtÞ
k ¼ ppppijZZZZðtÞ; XXXXðt�1Þ

� �
> p xxxx

ðtÞ
k ¼ ppppi0 jZZZZðtÞ; XXXXðt�1Þ

� �
holds if and only if

p ‘i ¼ kjzzzzðtÞi ; XXXXðt�1Þ
� �

> p ‘i0 ¼ kjzzzzðtÞi0 ; XXXXðt�1Þ
� �

:

The proof is given in the Appendix, which can be found at
http://computer.org/tpami/archives.htm. It follows from
the proposition that the maximization of the probability of
the position of a target can be achieved by maximizing the
probability of the corresponding class label:

x̂xxx
ðtÞ
k ¼ arg max

ppppi
p ‘i ¼ kjzzzzðtÞi ; XXXXðt�1Þ
� �

: ð7Þ

The intuitive explantation of this equation is that the image
part that is best recognized as a target is the most likely
position of the target. The analogy between the label
distribution and the target position distribution is also
confirmed by the simulated example shown in Fig. 4.
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Fig. 3. The prediction of the label prior probability. In this example, only

targets 1 and 3 contribute to the label prior at ppppi.
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The probability of a class label is calculated using the Bayes
formula as follows:

p ‘i ¼ kjzzzzi;XXXXðt�1Þ
� �

¼ pðzzzzij‘i ¼ kÞ

p ‘i ¼ kjXXXXðt�1Þ
� �

=p zzzzijXXXXðt�1Þ
� �

¼
pðzzzzij‘i ¼ kÞp ‘i ¼ kjXXXXðt�1Þ� �
PM
k¼0

pðzzzzij‘i ¼ kÞp ‘i ¼ kjXXXXðt�1Þ� � :
ð8Þ

Substituting (1) into (8), the equation of the target search is

elaborated as:

x̂xxx
ðtÞ
k ¼ arg max

ppppi

pðzzzzij‘i ¼ kÞg ppppi; xxxx
ðt�1Þ
k

� �
c pðzzzzij‘i ¼ 0Þ þ

PM
k0¼1

p zzzzij‘i ¼ k0ð Þg ppppi; xxxx
ðt�1Þ
k0

� � :
ð9Þ

As observed in (9), while the numerator contains the

likelihood of one target pðzzzzðtÞi j‘i ¼ kÞ, the denominator

contains the likelihood of the background pðzzzzðtÞi j‘i ¼ 0Þ
and the likelihood of the other targets pðzzzzðtÞi j‘i ¼ k0Þ. As a

result, the tracker not only searches for the target k, but also

avoids latching on the other targets or a background region.

This is the major difference between the proposed method

and the other methods which basically maximize the

likelihood of individual targets.
There is no need to consider all targets while calculating

(9). The weight gðppppi; xxxx
ðt�1Þ
k0 Þ restricts the consideration in the

neighborhood of ppppi. In particular, if the target is distant

from the other targets, the algorithm needs to compute only

the target likelihood and the background likelihood, and

then maximize their ratio.
The estimation of the posterior class probability pð‘i ¼

kjzzzzi;XXXXðt�1ÞÞ, which is used for the subsequent maximization

of the position probability pðxxxxðtÞk ¼ ppppijZZZZðtÞ; XXXXðt�1ÞÞ, resembles

the EM framework. The major difference with the standard

EM is that the posterior class probability does not depend on

the current position parameters, and moreover, the max-

imization of the probability of the position parameters can be

done efficiently through the maximization of the class

probability. As result, no iterative algorithm is needed and

only one EM step is taken here.

Note that, for the proposed model, the computation of
the state probability conditioned on the entire history of the
observations pðxxxxðtÞk ¼ ppppijZZZZð1:tÞÞ is intractable due to the
computational complexity of the probability in (6). In view
of this, (4) is also a reasonable approach to locate the target.
This approach works effectively in most tracking tasks and
has been common in tracking [22], [27].

5 ONLINE CONSTRUCTION OF THE MEASUREMENT

DISTRIBUTION USING THE INCREMENTAL

PROBABILISTIC PCA

We now address the inclusion of the temporal context in the
measurement model for each target.

The distribution of the measurement of the target k is
represented by a Gaussian with the mean vector ����k and
covariance matrix CCCCk:

p zzzz
ðtÞ
i j‘i ¼ k

� �
¼ N zzzz

ðtÞ
i ;����k; CCCCk

� �
: ð10Þ

The definition of measurement can be different among
targets, depending on the target size. Each target is
represented by a rectangular patch in the image. For the
kth target, the measurement vector zzzzi is composed of the
intensity values of the image patch which has the same size
as the target and is centered at ppppi. The background
likelihood at a pixel is evaluated by applying the model
for the image patch centered at the pixel and having the size
equal to the average of the size of the target windows. The
assumption of the rectangular shape is not strict. Depend-
ing on the application, another shape such as ellipse can
also be used if it better represents the target region.

The ability in representing complex data structures
depends on the specifics of CCCCk. The most simple model is
the isotropic Gaussian, where CCCCk ¼ �2

kIIII and IIII is the identity
matrix. This mode can only represent one snap shot of the
object without any appearance variations. The full non-
isotropic Gaussian with no constraint between the elements
of CCCCk is most powerful but not computationally tractable
when the dimensionality of the data is high. The common
trade-off is the probabilistic PCA (PPCA) model [23]:

CCCCk ¼ �2
kIIII þWWWWkWWWW

T
k : ð11Þ

WWWWk is a dk � qk matrix, dk is the dimensionality of zzzzi, and
qk � dk. This model provides a good balance between the
representation accuracy and the complexity. In fact, the
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Fig. 4. The illustration of the analogy between the label probability and the target location probability. In this example, label distributions are randomly

generated for an 11 pixels field with three classes. The solid lines represent the label probability while the dashed lines represent the true target

position probability calculated by (6).
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hyperplane spanned by the columns of Wk is the same
hyperplane spanned by the first qk eigenvectors of the
covariance matrix. So, the model is rather similar to the
classical eigenspace model, but has the advantage of the
probabilistic interpretation.

In the presented method, PPCA for each target is estimated
from the history of the past measurements zzzzð1;kÞ; . . . ; zzzzðt;kÞ

which are obtained from the beginning to frame t, see Fig. 5.
Here, zzzzðt;kÞ is the vector of intensities of the image region at
the estimated location of the kth target in frame t.

5.1 Maximum Likelihood Solution of
Probabilistic PCA

According to [23], the maximum likelihood estimation of

PPCA is:

����k ¼
1

t

Xt
i¼1

zzzzði;kÞ; ð12Þ

�2
k ¼

1

dk � qk
Xdk
i¼qkþ1

�i;k; ð13Þ

WWWWk ¼ VVVV q;kð����q;k � �2
kIIIIÞ

1=2RRRR; ð14Þ

where �1;k; �2;k; . . . ; �d;k are the eigenvalues arranged in the
descending order of the observation covariance matrix:

SSSSk ¼
1

t

Xt
i¼1

zzzzði;kÞ � ����k
h i

zzzzði;kÞ � ����k
h iT

: ð15Þ

Let vvvv1;k; . . . ; vvvvd;k be the corresponding eigenvectors. Here,
VVVV q;k is the dk � qk matrix whose columns are vvvv1;k; . . . ; vvvvq;k,

����q;k is the diagonal matrix whose diagonal elements are
�1;k; . . . ; �q;k, and RRRR is an arbitrary qk � qk orthogonal matrix.

The estimated covariance matrix is:

CCCCk ¼ �2
kIIII þ

Xqk
i¼1

�i;k � �2
k

� �
vvvvi;kvvvv

T
i;k

¼
Xqk
i¼1

�i;kvvvvi;kvvvv
T
i;k þ �2

k

Xdk
i¼qkþ1

vvvvi;kvvvv
T
i;k:

ð16Þ

While �1;k; . . . ; �q;k are the variances of the first q principal
components, �2

k is the average of the variances of the
remaining dk � qk components.

Note that (12), (13), and (14) should be used only in a batch
mode, where all zzzzði;kÞ; 1 � i � t are stored in memory and, in
addition, when the data dimensionality d is low. The next
section will present an efficient method for the estimation of

the high-dimensional PPCA in the incremental mode with-
out requiring the storage of all the past measurements.

5.2 Incremental Probabilistic PCA

In the incremental mode, the parameters are updated using

the current parameters for each target k individually and the

new coming measurement zzzzðtþ1;kÞ for that target. In the sequel,

we drop index k as this section holds for all targets. The full

set of parameters of a target includes the mean vector ����,

the first q eigenvectors vvvv1; . . . ; vvvvq, the corresponding eigen-

values �1; . . . ; �q, and the noise parameter �2. Like before, we

use the superscript ðtÞ to denote the estimation of these

parameters obtained at time t.

Upon the arrival of a new measurement zzzzðtþ1Þ, the mean

vector is easily updated as:

����ðtþ1Þ ¼ 1

tþ 1

Xtþ1

i¼1

zzzzðiÞ

¼ t

tþ 1
����ðtÞ þ 1

tþ 1
zzzzðtþ1Þ:

ð17Þ

The new observation covariance matrix is:

SSSSðtþ1Þ ¼ 1

tþ 1

Xtþ1

i¼1

zzzzðiÞ � ����ðtþ1Þ
h i

zzzzðiÞ � ����ðtþ1Þ
h iT

¼ t

tþ 1
SSSSðtÞ þ t

tþ 1
yyyyyyyyT ;

ð18Þ

where yyyy ¼
ffiffiffiffiffiffi

1
tþ1

q
½zzzzðtþ1Þ � ����ðtÞ�.

We need to calculate the eigenvectors and the eigenva-

lues of SSSSðtþ1Þ in order to obtain the new estimation of the

parameters. The direct eigenvalue decomposition of SSSSðtþ1Þ is

impossible due to the high value of d.

The crucial point is to approximate SSSSðtÞ by its current

estimation given in (16), yielding:

SSSSðtþ1Þ � t

tþ 1
�ðtÞ

2

IIII þ
Xq
i¼1

ð�ðtÞi � �ðtÞ
2

ÞvvvvðtÞi vvvv
ðtÞT
i þ yyyyyyyyT

" #
: ð19Þ

We remark that in related methods [12], [6], [3], matrix SSSSðtÞ is

traditionally approximated as SSSSðtÞ ¼
Pq

i¼1 �ivvvv
ðtÞ
i vvvv
ðtÞT
i . This

approximation is less accurate than (16) since it completely

removes the variances of the last d� q principal components.

Furthermore, it does not include �. Therefore, they do not

allow updating this parameter.

Let

LLLL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðtÞ
1 � �ðtÞ

2

q
vvvv
ðtÞ
1 ; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðtÞ
q � �ðtÞ

2

q
vvvvðtÞq ; yyyy

� 	
: ð20Þ

Then, (19) becomes:

SSSSðtþ1Þ � t

tþ 1
�ðtÞ

2

IIII þ LLLLLLLLT
h i

: ð21Þ

From here, to obtain the eigenvectors and eigenvalues of
SSSSðtþ1Þ, we need only the eigenvalue decomposition of the
matrix LLLLLLLLT . Again, the decomposition should not be
applied directly to LLLLLLLLT , which is d� d.
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Fig. 5. The measurement distribution is built online by incrementally

learning PPCA from the target’s past appearances.
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Instead, we set the ðq þ 1Þ � ðq þ 1Þ matrix:

QQQQ ¼ LLLLTLLLL ¼ ���� ����
����T �


 �
; ð22Þ

where ���� ¼ diagf�ðtÞ1 � �ðtÞ
2

; . . . ; �ðtÞq � �ðtÞ
2g,� ¼ yyyyTyyyy, and���� is

the q � 1 vector whose elements are

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðtÞ
i � �ðtÞ

2

q
vvvv
ðtÞ T
i yyyy:

Let the eigenvalue decomposition of Q be:

QQQQ ¼ UUUU�UUUUT ; ð23Þ

where ���� ¼ diagf�1; . . . ; �qþ1g, and UUUUTUUUU ¼ IIII. The eigenvec-
tors of LLT are the columns of the matrix:

VVVV ¼ LLLLUUUU��1=2: ð24Þ

Let VVVV ¼ ½vvvvðtþ1Þ
1 ; . . . ; vvvv

ðtþ1Þ
qþ1 �. Equation (19) is rewritten as:

SSSSðtþ1Þ � t

tþ 1
�ðtÞ

2

IIII þ
Xqþ1

i¼1

�ivvvv
ðtþ1Þ
i vvvv

ðtþ1Þ T
i

" #
: ð25Þ

It follows that vvvv
ðtþ1Þ
1 ; . . . ; vvvv

ðtþ1Þ
qþ1 are the first q þ 1 eigenvectors

of SSSSðtþ1Þ. Only the first q eigenvectors are retained in
memory. The first q þ 1 eigenvalues of SSSSðtþ1Þ are:

�
ðtþ1Þ
i ¼ t

tþ 1
½�ðtÞ

2

þ �i�: ð26Þ

The d� q � 1 remaining eigenvalues have the same value
t
tþ1�

ðtÞ2 . Using (13), � is updated as:

�ðtþ1Þ2 ¼ 1

d� q �
ðtþ1Þ
qþ1 þ ðd� q � 1Þ t

tþ 1
�ðtÞ

2

� 	

¼ t

tþ 1

�qþ1

d� q þ �
ðtÞ2

� 	
:

ð27Þ

The incremental PPCA is summarized as follows for each
target:

1. Update the mean ����, (17).
2. Update the matrix WWWW .

a. Set up matrix QQQQ, (22), and decompose it in its
eigenvectors and eigenvalues by (23).

b. Then, compute the matrix VVVV by (24). The first
q columns of VVVV are the new eigenvectors.

c. The corresponding eigenvalues �i are calculated
by (26). This yields all ingredients to compute
(14).

3. Update the noise parameter, (27).

The initial PPCA model is learned from an initial set of
measurements zzzz1; . . . ; zzzzk using the batch mode algorithm [23].
Note that we should have k > q, otherwise the estimated
covariance matrix would be singular. The incremental
PPCA can then start from frame kþ 1.

The most computationally consuming part of the pro-
posed algorithm is Steps 2a and 2b. The complexity of the
decomposition of matrix QQQQ in Step 2a is Oðq3Þ. The complex-
ity of the matrix multiplication in Step 2b is OðdqÞ. So, the
overall complexity is Oðq3Þ þOðdqÞ per each update. Since q
is small, the algorithmic complexity is linear with the
dimensionality of data. Therefore, the algorithm is efficient.

6 EXPERIMENTS

We have performed experiments to evaluate the perfor-
mance of the proposed appearance model and the tracking
algorithm in Section 4.

6.1 Performance Evaluation of the Proposed
Appearance Model

This first set of experiments demonstrates the accuracy of
the proposed incremental PPCA algorithm and its applic-
ability in the modeling appearance of a target.

To test the accuracy, we applied the algorithm for a
synthetic data stream that was sequentially drawn from a
Gaussian distribution of the form (11) with dimensionality
d ¼ 300, and number of principal components q ¼ 5. The
result is compared with the true distribution and the results
of batch PPCA and the method of Lin et al. in [14]. We have
implemented the last method for the case where the
updating of PPCA parameters is performed upon the
arrival of each new sample. Specifically, the new set of
eigenvectors and eigenvalues are obtained by computing
the Singular Value Decomposition (SVD) of the matrix:

E ¼ ffiffiffi
�
p

VVVV ðtÞq �ðtÞq j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ�

p
zzzzðtþ1Þ � ����ðtÞ
� �h i

; ð28Þ

whereVVVV ðtÞq is the matrix whose columns are the q eigenvectors

calculated at time t, ����ðtÞq is the diagonal matrix created from

the eigenvalues, and � is a forgetting factor. We have set

� ¼ t
tþ1 , which means that a newly arrived sample has the

same weight as past samples. The result of SVD will have the

formE ¼ VVVV ðtþ1Þ
qþ1 ����

ðtþ1Þ
qþ1 UUUU

ðtþ1Þ T
qþ1 . The q largest diagonal elements

of ����
ðtþ1Þ
qþ1 are the updated eigenvalues, and the corresponding

columns in VVVV
ðtÞ
qþ1 are the updated eigenvectors. The noise

variance is determined heuristically as fraction of the smallest

eigenvalue:

�ðtÞ
2

¼ 	�ðtÞq ; ð29Þ

where 	 is a predefined coefficient. Since the selection of
optimal 	 is not trivial, in the experiment we have used
different values of 	, resulting in different estimates.

Every time a new sample arrives, the following Gaussians
are compared:

1. G0: the ground truth Gaussian distribution,
2. G1: the Gaussian, updated by incremental PPCA,
3. G2: the Gaussian, estimated by batch-mode PPCA

for all drawn data points.
4. G3, G4, G5: the Gaussians, estimated by the method

in [14] with 	 set to 0.05, 0.1, and 0.3, respectively.

The similarity measure between two Gaussians Nð����1; CCCC1Þ
and Nð����2; CCCC2Þ is computed using the Kullback-Leibler
divergence as:

1

2
log
jC2j
jC1j
þ trðC�1

2 C1Þ þ ð����1 � ����2Þ
TC�1

2 ð����1 � ����2Þ � d
� 	

:

ð30Þ

The divergence between each pair of Gaussians are
calculated and plotted as function of the number of training
examples. Fig. 6a shows the divergence plots between G0

and G1, G2, G3, G4, and G5, respectively. Incremental PPCA
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and batch PPCA have an equal accuracy in terms of the
convergence to the ground truth distribution. The results of
the method in [14] are sensitive to the setting of 	, showing
the major problem of this ad hoc approach. In addition, G3,
G4, and G5 gain very little improvement in KL divergence
as the number of samples increases and eventually have
higher errors than G1 and G2. It can also be noted that, for
small numbers of samples, the maximum likelihood
estimation by batch PPCA is far from the best. This is
because the maximum likelihood does not necessarily
minimize the KL divergence from the true distribution.
Especially, for small data sets, the error can be large due to
overfitting. To verify, we repeated the experiment for lower
dimensionality d ¼ 30 and a larger number of samples. As
shown in Fig. 6b, for n > 1; 000, batch PPCA exhibits the
best performance compared although the difference from
incremental PPCA is small. Fig. 6c shows the divergence
between the result of batch PPCA, G2, and the other
Gaussians. As observed, the result our incremental algo-
rithm is most similar to G2. Furthermore, as Fig. 6d shows,
the results of incremental PPCA and batch PPCA become
closer as more data arrive.

We have also verified the efficiency of the proposed
PPCA scheme by measuring the computation time required
by one update. Fig. 7 shows the plot of this time as function
of the data dimensionality d. The computation was made in
MATLAB and a 1.6 GHz laptop. The figure confirms the

linearity of the computation time with respect to the data
dimensionality.

6.2 Multitarget Tracking

In this set of experiments, we demonstrate the result of the
proposed methods for tracking multiple people.

The tracking is initialized by specifying the position and
size of each target in the first frame. Although the subtraction
from the background image could be a good source of
information for the initialization, it usually includes false
alarms or misses some part of the target object due to
similarity to the background appearance. For automatic
initialization, these errors need be corrected using some prior
knowledge. Therefore, to focus on demonstrating the advan-
tage of context information, in the reported experiments, all
targets were initialized manually.

The parameters are set as follows: The background prior
c ¼ 0:1 ensuring that the probability of the background class
is low in the vicinity of the targets. The value of c requires
that the label distribution of a target is tight around its
position. The threshold r indicates the maximum displace-
ment in one time step, so that the algorithm can find the
target in the next frame. In addition, to handle occlusion, it
should also be larger than the size of the occluding object.
This is reasonable a priori knowledge. When set to the
maximum value, the image size, the computational burden
will slow down the tracker too much. In the experiment, we
track people with roughly the same size. r is set as
r ¼ 3� the average target width. The measurement distri-
bution for each target is represented by a PPCA-model with
the first q ¼ 5 principal components. The incremental update
of PPCA starts after k ¼ 2q frames. Moreover, in the first
k frames, targets are tracked independently and simply by
intensity matching with the sample given in the first frame.

A target is considered occluded when the likelihood
drops too low, namely,

zzzzðtÞ � ����k
� �T

CCCC�1
k zzzzðtÞ � ����k
� �

< to: ð31Þ

We have used to ¼ 6:0dk. The inverting of CCCCk in (31) can be
done efficiently using the Woodbury formulae [18]. During
occlusion, the appearance model of the target is not updated.

The tracking of a target is stopped either when it is
occluded for more than 100 successive frames or it moves
outside the image border.

We have tested the algorithm on several video sequences.
The results are shown in Figs. 8a, 9a, and 10a, respectively.
For comparison, Figs. 8b, 9b, and 10b show the results of
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Fig. 6. The Kullback-Leibler divergence between G0: the ground truth Gaussian distribution, G1: the Gaussian estimated by incremental PPCA,
G2: the Gaussian estimated by batch PPCA, and G3, G4, G5: the Gaussians estimated by the method of [14] with 	 ¼ 0:05; 0:1; 0:3, respectively.

Fig. 7. Computation time of one iteration of PPCA as function of
dimensionality. The computations were made in MATLAB and a 1.6 GHz
laptop.
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independently applying multiple instances of a single target
tracker. In this method, each target is searched for by
maximizing the ratio of its likelihood to the background
likelihood.

In Fig. 8, three persons are approaching each other from
opposite directions. An occlusion takes place at frames 15-25
when they cross each other. Targets 2 and 3 have a slightly
similar appearance and walk at a close distance. The single-
target trackers quickly lose track of the first target at the
occlusion. At frame 100, the three targets merge into one. The
proposed algorithm tracks successfully and maintains the
correct identity of the targets over the entire sequence.

Fig. 9 shows a similar situation but with four persons.
Again, the proposed algorithm successfully tracks all targets
until they leave the scene. The single-target trackers mix the
targets even before the occlusion and all the four merge into
one at the end, showing the drawback of the approach of
maximizing the likelihood of individual targets.

A difficult example is shown in Fig. 10. The sequence was
recorded by a fixed camera, located at a high window and
looking down on people walking on a street. Due to the
distance, all targets appear similar and small. Occlusions
occur when people cross or pass behind trees. At some

occlusions, three people coincide. In the figure, the proposed
algorithm correctly tracks and classifies all targets except for
the moment of occlusion when target windows merge.
Immediately after, the correct identification of targets is
restored. In the result of single-target trackers, the window of
targets 1, 2, and 5 melts together at the first occlusion in
frame 35. Erroneously, they stick to one target until frame 140.
The same thing occurs for targets 3 and 4. The same thing
occurs for two other targets. As a consequence, the
independent trackers lose track and cannot recover.

The power of incremental PPCA in modeling object
appearance is demonstrated in Fig. 11a. The figure shows
the result of the proposed algorithm for tracking two faces
under severe pose change and occlusion. A complete
occlusion occurs in frame 250 when one person passes behind
the other. Note that, during occlusion, the first person makes a
pose change from frontal view to side view. The online
training of a PPCA model for this person has taken into
account different views of his head before the occlusion.
Therefore, the algorithm successfully recognizes the profile
view after occlusion since it has been seen earlier in frame 112.
The eigenimages obtained are shown in Fig. 12. They also
depict different views of the head. Fig. 11b shows the results
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Fig. 8. (a) The result of the proposed algorithm for tracking multiple approaching targets with occlusions. The number on top of each target indicates

its label. (b) The results of the single-target trackers.
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of a modified version of the proposed algorithm where the
PPCA model is turned off. In this version, the likelihood
model for each target is an isotropic Gaussian with the mean
being a template image. The mean and the variance of this
Gaussian is updated over time using the Kalman filter [17].
Unlike PPCA, the Kalman filter can represent object appear-
ance over a short period of time only and will forget an object
view that was observed some time in the past but is no longer
visible. As a consequence, the algorithm failed to recognize
the profile view of the person after the occlusion, see Fig. 11b,
frame 275.

7 CONCLUSION AND FUTURE WORK

A new approach has been proposed for tracking multiple
targets, emphasizing the use of the context information. We
have shown that the accuracy of the target identification can
be improved by the incorporation of information from the
spatial and temporal context of each target.

The tracker discriminates a target from nearby targets and
the background by the pixel values in the target window.
Before searching for the next target position, all targets are
classified. Maximization of the probability of the target label,
rather than the target likelihood, prevents the target from

latching on image regions of the other targets or of the
background. As long as the appearance of the targets is
distinguishable, separating targets in appearance space and
not in position space can effectively overcome the problem of
target coalescence and identity switching. Moreover, this can
be achieved without imposing ad hoc constraints on the
targets’position,preservingpurity inthelocationofthetarget.

The key element in the representation of target appear-

ance is Probabilistic PCA, incrementally updated online

without storage of past measurements. This permits the

construction of a robust appearance model for each target.

The model effectively represents the diversity in appear-

ances as seen during the track, providing the long-term

memory which is instrumental in redetecting an object after

occlusions and severe pose changes.
Some issues remain for future research. First, since we

discriminate the targets based on their appearance, their
identity may not be determined correctly if their appearance
is indistinguishable. Specifically for this case, constraints on
the position of the target or constraints on the pixel labels
might be helpful, although the correct identification of the
targets would still not be guaranteed. Second, the current
algorithm considers the translational motion model only, as
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Fig. 9. The result of tracking multiple targets by (a) the proposed algorithm and (b) single-target trackers.
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Fig. 10. The results of tracking multiple targets in the conditions of a low resolution and heavy occlusions by (a) the proposed algorithm and

(b) single-target trackers.

Fig. 11. (a) Tracking results of the proposed algorithm in the condition of occlusion and pose change. (b) The result of the algorithm that updates the

template using the Kalman filter.
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the maximization of the objective function is performed over
the pixel sites. This limits the accuracy of tracking rotational
and scaling motion. The extension of the algorithm for more
sophisticated motion models is to be based on the definition
of a new label field in a higher dimensional space of motion
parameters and the corresponding extension of the like-
lihood model and the motion prediction model in (9) for that
space. Third, while the current algorithm does allow targets
to have different sizes, the normalization for targets having
significantly different sizes can be a problem. The algorithm
may be more sensitive to inaccuracies in the target likelihood
model when the likelihood is not a Gaussian. Finally, online
learning of the target model may have problems with
incorporating incorrect data like other adaptive trackers.
When the target window drifts or loses the object, the
appearance of the background or of the other targets will be
incorporated into the PPCA model of the target. When the
tracking errors occur over a short period, the problem with
incorrect data is not serious, since the PPCA model still
remembers the original appearance of the object well. When
the errors persist for a long time, incorrect data will become
the most major principal components and the model will be
damaged. This problem, fundamental to all adaptive track-
ers, can only be solved by a proper combination between a
general a priori object model that is learned offline and the
object model that is learned online.
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Fig. 12. The eigenimages obtained from the PPCA.
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