
Depth Information by Stage Classification

Vladimir Nedovíc1 Arnold W.M. Smeulders1 André Redert2
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Abstract

Recently, methods for estimating 3D scene geometry or
absolute scene depth information from 2D image content
have been proposed. However, general applicability of
these methods in depth estimation may not be realizable, as
inconsistencies may be introduced due to a large variety of
possible pictorial content. We identify scene categorization
as the first step towards efficient and robust depth estima-
tion from single images. To that end, we describe a limited
number of typical 3D scene geometries, calledstages, each
having a unique depth pattern and thus providing a specific
context for stage objects. This type of scene information
narrows down the possibilities with respect to individual
objects’ locations, scales and identities. We show how these
stage types can be efficiently learned and how they can lead
to robust extraction of depth information. Our results indi-
cate that stages without much variation and object clutter
can be detected robustly, with up to 60% success rate.

1. Introduction

The objects of the world come with almost infinite vari-
ation in appearance as well as in their geometry. Scenes,
on the other hand, show a much more regular pattern.
The vast majority of photographs depict a scene geometry
from a limited number of different types. There are rough
classes of scene geometries, orstagesas we prefer to call
them, which constitute of a straight background (like a cur-
tain, a wall, the façade of a building, a remote mountain
range), or other ones which show walls at all three sides of
the picture (a corridor, a tunnel, a narrow street). When
video broadcasts are considered, there is also a specific

Figure 1. Example frames and their stage categories; top two
rows, from left to right:sky+ground, table+person+background,
diagonal background; bottom two rows: box, corner,
sky+background+ground.

stage for anchor-type images, corresponding to news-reader
sequences, interviews, talk-shows, press-conferences,etc.
Figure 1 shows a few prototypes together with their stage
models. Hence, whereas in many tasks a precise geometry
is requested for the object, it suffices to build a rough model
for the geometry of the scene. These regularities pose the
question of this paper. More specifically, we aim to discover
whether stages as models of scene geometry can be derived



from a single arbitrary photograph.
Therefore, we do not aim for a precise reconstruction

of the scene geometry. Accurate techniques have been de-
signed for the reconstruction of the object geometry via
shape from shading, shape from motion or shape from
stereo, when these options are available. The scene geom-
etry, in contrast, is the stage on which the objects of the
picture act, hence limited accuracy frequently suffices. In
this paper, we consider stages as very rough models of the
scene, with the objects ignored.

There is a good reason why the geometry of the scene
can be represented by one of very few classes. Human ob-
servers almost always stand with their feet on the ground,
walls are almost always perpendicular to the ground, they
are to the side of the object or behind it, and so on. More-
over, there is an advantage of knowing just the stage type.
The stage may reveal to the observer the type of the scene,
the information about relative distances to scene elements,
the locations in the field of view where objects may appear,
the absolute size of an object relative to the position in the
scene,etc.

Recent methods for the geometry of scenes [9, 28, 20,
26] aim also at inferring the objects’ geometry. There is a
chicken-and-egg problem here: once the coarse geometry
of the scene is known, one is able to deduce object sizes
and use the information for object recognition, in a similar
vein as Hoiemet al. [10]. However, learning the geometry
may profit from recognizing familiar objects with known
geometry such as faces, as exploited by Sudderthet al. [26].

We follow a different path. Inspired by the recent suc-
cess of scene appearance classification [15, 6, 19, 30], into
classes like indoor, outdoor, desert, beach and so on we con-
sider classifying the stage type - that is, the rough geome-
try of the scene - on the basis of the regularities indicated
above.

Scene classification methods capture the complex statis-
tics of natural images by using bag-of-feature [22, 4] or tex-
ton approaches [13, 21, 31] to condense the scene appear-
ance into codebooks, which is subsequently used to train a
classifier from many examples of scene classes. The key
ingredient here is the capturing of natural image statistics,
as realized in the influential work of Torralba and Oliva
[15, 28]. For real-world scenes, physical processes that
shape natural structures are different at each observed scale
[28]. These processes depend on object and material sur-
faces from which the visual world is built. Similar is true
for man-made structures, which also differ due to func-
tional constraints in relation to human size. Furthermore,
the viewpoint with respect to horizon or vanishing point im-
poses constraints on image content. Image features capture
these effects, and hence there is a relation between image
statistics, scene structure and depth pattern.

That depth can also be derived from models of natural

image statistics has already been shown by Torralba and
Oliva [28]. However, whereas they propose the usage of
mean depth information to facilitate scene categorization,
we attempt to achieve the opposite.

In this paper, we aim at inferring geometry from single
images. Implicitly, current methods for depth estimation
from single images assume scene content to be classified,
as they work for specific domain of indoor [26, 5], outdoor
[9, 20], or have been specifically trained for a few of these
categories [11]. We make this dependence explicit: we be-
lieve that the first step in providing depth information for
a particular scene should be to classify the scene into one
of the geometric stages (Figure 2). We build on the suc-
cess of scene classification by learning a classifier to distin-
guish over various 3D stage categories. As the variety of
stage types is much lower than the variety in pictorial scene
content, we expect our method to be more successful than
alternative methods directly based on the content.

In this paper we limit ourselves to the determination of
the stage type. In the next phase, more precise depth estima-
tion can be performed, by estimating the stage parameters
from the data. Here, we will present stage classification re-
sults for the domain of TRECVID news videos [23].

The organization of the paper is as follows. In Section
2 we review related work and state our contribution. Sec-
tion 3 outlines our approach to stage type classification. We
present our results on news video data in Section 4. We
wrap up with conclusions in Section 5.

2. Related work

Absolute depth from single images. Recent attempts to
estimate absolute scene depth from single images use ma-
chine learning methods to directly map low-level features
to image depths. Torralba and Oliva [28] use global im-
age structure; based on the magnitude of the global Fourier
transform and the local wavelet transforms, they obtain an
estimate of the viewpoint and of average scene depth. Sax-
enaet al. [20] also presented a method to learn absolute
depth from single outdoor images based on low-level fea-
tures, extracted at multiple scales, in a Markov Random
Field (MRF) model. Delageet al. [5] derive an algorithm
for reconstructing indoor scenes from a single image by
learning the wall-ground boundaries using a Bayesian net-
work.

For convincing visual 3D quality, and for many appli-
cations, including robot navigation, derivation of exact dis-
tances to elements in the scene may not be necessary as long
as relative order of those elements is established. There ex-
ists a vast body of literature on recovering relative depth
information. However, classical methods for relative depth
estimation provide only local depth estimation and require
high-quality images, as is the case for texture gradients [1],
shape from shading (e.g. [12]), from edges and junctions
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Figure 2. The original classification of TRECVID key-frames into stage types, inspired by Hoiemet al. [9] - the top-level categorization
is into indoor andoutdoorscenes, as well as those without a three-dimensional structure (i.e.no depth). However, the blue bounding
box indicates a significant number of overlapping indoor and outdoor stages that share the same geometric model. Legend in the top right
corner shows the labeling of individual surfaces inside stages.

[2], and from Fractal dimension [17] (see Palmer [16] for
an overview).

Semantic scene categorization. Several researchers have
constructed algorithms that can classify images into two se-
mantic categories: indoor versus outdoor [27], city/suburb
versus landscape [29], etc. They usually rely on particu-
lar discriminating features, for example that cities will have
more vertical edge energy than flat landscapes. This last
claim was used also by Oliva and Torralba [15], which pro-
pose a set of perceptual dimensions (i.e. naturalness, open-
ness, roughness, expansion, ruggedness) to represent the
dominant spatial structure of a scene. The same idea was
used in [32] prior to learning the semantic scene context. A
different approach, using a pre-defined codebook vocabu-
lary, was used in [6] and [30] to label parts of an image by
the best representative.

Geometric scene categorization. The spectral signature,
used by Oliva and Torralba for scene categorization and es-
timation of mean absolute scene depth, has already proven
useful in object recognition [14, 25]. However, scene classi-
fication approaches mentioned above suffer from two draw-
backs. The first is that they model semantic scene cate-
gories. The potential number of such categories can be
very large, and deriving high-level semantic information
from images remains difficult and unreliable. The second
drawback is that all these approaches work in the 2D image
plane, without attempting to recover the 3D scene structure.
To that regard,geometricimage context has recently been
used instead of semantic class modeling by Hoiemet al.
[9, 8]. They model classes of image surfaces and derive the
orientation of each such class; the subsequent combination
of surface orientations leads to the reconstruction of the 3D
scene model. Their model takes into account the observer’s



viewpoint and the orientation of a physical object with rela-
tion to the physical scene.

Contribution of the paper. We draw inspiration from the
work of Hoiemet al. [9] and attempt to derive 3D geome-
try of the scene, and recover depth information. However,
instead of individual surfaces, we model geometric scene
classes, relying on constraints imposed by both natural im-
age statistics and viewpoint characteristics. We explicitly
rely on categorization of the input image into stage types
for proper estimation of scene geometry. We believe that the
recognition of the scene as a whole into a limited number of
typical stages is a simpler problem than image segmentation
and subsequent reconstruction.

Our work on depth estimation is also similar to that of
Torralba and Oliva [28]. But where they propose to utilize
mean absolute depth in order to facilitate scene categoriza-
tion, we attempt to do the opposite, and propose to derive
global depth profile based on stage types. They rely on nat-
ural image statistics as well for scene categorization [15],
however we impose an additional constraint on global depth
expectation since we take into account the viewpoint of the
observer. This greatly reduces the number of categories that
we need to model.

3. Stage type classification

As claimed in previous sections, we believe that the first
step in providing depth information for a particular scene
should be to classify the scene into one of the stages, each
having a unique 3D geometry. Our stages thus refer to the-
atrical representations of physical scenes that provide spe-
cific context for objects, similar to cut&fold reconstructions
of Hoiem et al. [9, 8]. Once the stage type is identified,
the image can be aligned with its corresponding template,
whereas individual objects can be placed in this 3D setup
like cardboard figures.

3.1. Empirical study on TRECVID data

We relied on the structure present in real-world scenes
in order to arrive at a limited number of geometric patterns.
The structure of the visual world is imposed by three cru-
cial constraints mentioned before: natural image statistics
results in statistical regularities; viewpoint constraints (in-
cluding the camera height typically1.5−2m) limit the pos-
sibilities with respect to perspective; and film rules ensure
for the orthogonality of relevant lines and angles.

Our initial stages are shown in Figure 2: we have looked
at thousands of TRECVID keyframes [23] and noted the
frequency with which each specific category appears. The
structure that we observed limited the vast number of sur-
face combinations into 18 categories only, plus an addi-
tional no depthclass corresponding to graphics (i.e. maps,

Figure 3. Natural image statistics-based Weibull distribution: pa-
rameter values as a function of depth for textures of grass (left col-
umn) and wall bricks (right column):β decreases from the point of
fixation, whereasγ increases with depth. The color map has been
hard-limited to a pre-defined range, such that results are compara-
ble to each other.

charts,etc.). We retained only those stage types that corre-
sponded to at least 5% of the observed video frames; this
accounted for a large majority of all the data.

When one models semantic scene classes, the natural
top-level categorization is into indoor and outdoor images.
In the beginning, we followed the same intuition and mod-
eled outdoor stages as combinations of three basic layers
(namelysky, vertical backgroundandground) and indoor
stages as specific configurations inside a rectangular box.
However, by observing many more frames and by repre-
senting the stages graphically, we have noticed that there
exists a significant overlap in terms of geometry between
these two top-level categories (see blue box in Figure 2). In
other words, when geometrical classes are being modeled,
the imposed structure leads to certain stage types being rep-
resented by the same 3D model,regardlessof whether they
belong to indoor or outdoor scenes. Therefore, we have
concluded that higher levels of stage hierarchy should also
be based on geometry.



3.2. Depth from stage types

Once we have successfully identified a small set of stage
types, we turn our attention to descriptive visual features.
As already mentioned, there exists a direct relation between
image statistics, scene structure and depth pattern. When
scene depth is small, larger surfaces merge into coarser
structures, showing finer details. In that case, with a single
dominant structure observed, gradient histogram typically
follows a decaying power-law distribution. When scene
depth increases and more and more objects are added to
the scene, the texture of the image will be fragmented into
various patches, each associated with a different power-law.
The integration over various power-laws results in a Weibull
distribution [7], whose parameters are indicative of local
depth order and the direction of depth. This is shown in
Figure 3 for two example surfaces. Spatial image statis-
tics will conform to the Weibull distribution until the scene
depth increases to the point that the observed samples be-
come completely uncorrelated, resulting in a Gaussian his-
togram. Thus we capture natural image statistics by param-
eterizing edge histograms. We build on previous success
of Weibull features in scene categorization [30] and generic
concept detection [24] to classify scenes into stages and uti-
lize this information for depth estimation.

Filtering. We use a Gaussian scale-space framework to
extract features. Spatial scale is incorporated by convolving
images with Gaussian derivative filters,

E (x, y, σi) = G (x, y, σi) ∗ I (x, y) (1)

whereG(x, y, σi) represents a Gaussian derivative filter in
thex andy-direction, respectively, andI represents an in-
tensity image.

Weibull distribution. From research on natural image
statistics it is known that histograms of derivative filter re-
sponses can be represented by a simple distribution [18].
We follow [7] by exploiting the fact that histograms of
gradient magnitude can be well modeled by an integrated
Weibull distribution, also known as Generalized Laplacian,

f(x) =
γ

2γ
1
γ βΓ

(
1
γ

)e−
1
γ | (x−µ)

β |γ (2)

The parametersµ, β andγ represent the center, width and
shape (i.e. peakness) of the distribution, respectively, and
x is an edge response of a derivative filter. Furthermore,
Γ(1/γ) denotes the complete Gamma function,Γ(α) =∫∞
0

tα−1e−tdt. The shape parameterγ ranges from 0 to
2, however for general images it will often be within the
interval [0.5,1]. Forγ = 2 the Weibull distribution is equiv-
alent to the normal distribution, and forγ = 1 it is a double

exponential. For small values ofγ, the distribution is close
to the symmetric power-law.

Feature extraction. Using Gaussian derivative filters, we
extract texture information that is subsequently summarized
in histograms. We use a maximum likelihood estimator
(MLE) to estimate the parametersµ, β andγ of the inte-
gral Weibull distribution. Theµ parameter represents the
mode of the distribution, whose position is influenced by
uneven illumination. Therefore, in order to achieve illumi-
nation invariance, the values ofµ are ignored.

By using Weibull parameters, an accurate and very com-
pact parameterization of derivative histograms is obtained.
The estimated distribution will fit well to histograms of the
majority of all images, regardless of whether they are indoor
or outdoor, artificial or man-made,etc.

Since our stages often contain oriented surfaces with
continuously increasing depth, we need to perform local
measurements and extract features from image regions. To
that end, we have identified a standard grid for images,
based on which we can perform the desired tasks. For each
image, we extract grid-based features from consecutive im-
age regions spanningw4 × h

4 , wherew andh denote image
width and height, respectively. The integral Weibull dis-
tribution is then fitted to histograms of intensity filter re-
sponses inx andy directions (σ = 3 pixels), resulting inβ
andγ parameters for each direction. Experiments are per-
formed based onβ andγ parameters together. Thus, for the
total of 16 regions in our grid, we obtain feature vectors of
64 dimensions.

Classification strategy. The observations from our em-
pirical study (Section 3.1) and Figure 2 led to a new, geo-
metric hierarchy of stage types, in which only 15 geomet-
ric stages remain (including the symmetrical variants within
certain classes). This is shown in Figure 4, according to
which classification can be performed at an intermediate
level (i.e. level of stage groups represented by Roman nu-
merals) or at a lower level (i.e. individual stages - repre-
sented by Arabic numbers). Although the dataset is divided
into 15 stage types, for reasons of clarity we decide to com-
bine the results of symmetrical sub-stages, such that they
are presented for 12 classes only. Figure 4 directly reflects
our classification strategy.

For purposes of stage classification, we design a generic,
1 vs. 1-based classifier that uses features from all the re-
gions and outputs a single stage label. Multi-class classifiers
based on a1 vs. 1approach involveK(K − 1)/2 different
binary classifiers on all possible pairs of classes; test points
are then classified according to which class has the highest
number of ‘votes’. The classification scheme is shown by a
simplified block diagram in Figure 5.
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whereas those of the lowest level are represented in Arabic numerals 1 through 12. Note that the symmetry of certain stages is represented
by additional division into sub-stages.

4. Experiments

4.1. Experimental setup

For the evaluation of our stage classification algorithms,
we have used the keyframes of the 2006 TRECVID video
benchmark dataset1. The TRECVID video benchmark pro-
vides nearly 170 hours of news video in various languages
(English: CNN, NBC, MSNBC; Chinese: CCTV4, NT-
DTV; Arabic: LBC).

In the initial result phase, we have annotated 1241
TRECVID keyframes into one of the 15 stage categories.
Then for each category, samples were split before classifi-
cation into two halves, one for training and another for test-
ing purposes. From a large variety of supervised machine
learning approaches, we have chosen the Support Vector
Machine (SVM), which has proven to be a solid choice. We

1NIST:TRECVID Video Retrieval Evaluation, 2001-2006.
http://www-nlpir.nist.gov/projects/trecvid/

Figure 5. A simplified block-diagram of classification with Sup-
port Vector Machines: a generic stage detector is defined on the
4× 4 region grid - features extracted from image regions are input
into the SVM directly.

utilized the LIBSVM implementation [3] with radial basis
functions as kernels.



4.2. Results

Lower level of hierarchy - 12 classes. First we give re-
sults obtained with the 12 individual stages. Our stage clas-
sifier results are shown in Table 1, together with the relative
occurrence (i.e. prior probability) of each stage type in the
ground truth (as already mentioned, the results for symmet-
rical variants of the stagesground+diag.background, diag-
onal backgroundand1 side-wallhave been combined for
clarity). The correct classification performance is given by
the total number of correctly classified (true positives+true
negatives) images divided by the total number of images.
Our method performs very well forsky+ground, gnd, ta-
ble+person+background, andperson+backgroundstages.
Especially for the latter two classes, variety in image con-
tent is restricted for the domain of news videos, explain-
ing the good performance. For less strictly defined stages,
e.g. ground+diag.background, corner and no depth, per-
formance is moderate due to the larger variability of scene
content and exact scene configuration. For the classesbox,
ground+backgroundand1 side-wall, performance is poor.
Here, the drawback is the diversity of objects and amount of
occlusions present in these categories. Hence, the statistics
of the scene are lost in the object clutter.

class name % in dataset % correct
1 sky+bkg+gnd 6.3% 16.7%
2 gnd+bkg 7.1% 8.2%
3 sky+gnd 8.7% 60.7%
4 gnd 7.4% 44.7%
5 gnd+diagBkg 10.75% 26.9%
6 diagBkg 6.4% 14.3%
7 box 5.5% 8.1%
8 1 side-wall 9% 13.6%
9 corner 10.75% 34.3%
10 tab+pers+bkg 7.4% 48%
11 pers+bkg 13.1% 42.5%
12 no depth 7.4% 22.4%

AVG: 28.4%

Table 1. Relative occurrence within the dataset and the percentage
of correct classifications for the 12 stages at the lower level of
hierarchy. For correct classifications, last row gives the average
percentage over all classes.

Intermediate level of hierarchy - 5 classes When con-
sidering stage classification at a higher level in the hierar-
chy, more similar to the work by Hoiemet al. [10], the rel-
ative occurrences and results are given in Table 2. In this
case,straight/no backgroundandperson+background, be-
ing the super-classes of well-performing stages from above,
are again doing very well. On the other hand,boxandcor-

nerare performing less good, due to the same reasons as be-
fore, namely the likelihood of object clutter and occlusion.
Overall, a recognition performance of 40% is obtained.

group name % in dataset % correct
I straight/no bkg. 29.5% 69.5%
II tilted bkg. 17.15% 35.2%
III box 14.5% 19.6%
IV corner 10.75% 13.2%
V person+bkg 20.5% 63.1%

AVG: 40.1%

Table 2. Relative occurrence within the dataset and the percentage
of correct classifications for the 5 stage groups at the intermediate
level of hierarchy.

In conclusion, the results indicate that some simple
stages (as well as their super-stages) can be detected very
robustly. This is true for those classes which typically ap-
pear with small variations and are not likely to contain ob-
ject clutter. Thus in the experiment with 12 stages, we cor-
rectly distinguish classsky+groundin more than 60% of the
cases. On some other stages, however, our detector perfor-
mance is low. This is due to the lower number of samples,
amount of variation within the class, significant amount of
occlusion and object clutter,etc. Similar observations can
be made with respect to the intermediate level of hierarchy
with 5 stage groups. However, in all cases the performance
is significantly better than the chance level, indicating the
usefulness of the approach.

5. Conclusions

In this paper, we describe how the problem of depth in-
formation from single images can be approached by first
performing scene classification. To that end, we describe
a small number of typical 3D scene geometries, or stages,
each having a unique depth pattern and providing a specific
context for stage objects. Beside providing a background
depth profile, this type of information about the scene sig-
nificantly narrows down the possibilities with respect to in-
dividual objects’ locations, scales and identities, and thus
leads to more robust depth estimation.

Contrary to other scene classification approaches, we
model geometric scene classes and thus account for the 3D
relationships between objects and the scene. By relying on
inherent structure of real-world images, resulting from nat-
ural image statistics and viewpoint constraints, we arrive at
only 15 geometric stages for the news videos. We show
that the proposed features are indeed indicative of depth in-
formation. Quantitative classification results are presented
for the news video data of the TRECVID 2006 benchmark,
yielding a baseline performance for stage type classification



in depth estimation. The results indicate that some simple
stages, which typically do not appear with much variation
and do not contain object clutter, can be detected robustly,
with up to 60% success rate. Overall, classification per-
formance for individual stages is around 28%, which may
seem low. However, it should be considered that generic
concept detection of video data in the NIST TRECVID
benchmark reaches some 30% recognition rates, after many
rounds of performance upgrades over the last 5 years.

In future work, we plan to utilize the hierarchy of stages
to arrive at an individual stage after a two-step classification
process. In other words, once the stage group for the im-
age has been found, the individual stage is sought for only
within the members of that group (i.e. within its “geometri-
cal neighborhood”). Preliminary results show this strategy
to be a very promising one.

It is important to note that in the presented work, we
do not attempt to derive a precise depth map for the input
image, but only to decide on the appropriate stage. How-
ever, the stage information constitutes a prior for the next
phase, in which corresponding stage parameters are esti-
mated. Once these parameters are available, a background
depth map is obtained and it can be aligned with the original
image in a complete depth estimation system.
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