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Abstract

We propose a method for reconstruction of human brain statesdirectly from func-
tional neuroimaging data. The method extends the traditional multivariate re-
gression analysis of discretized fMRI data to the domain of stochastic functional
measurements, facilitating evaluation of brain responsesto complex stimuli and
boosting the power of functional imaging. The method searches for sets of voxel
time courses that optimize a multivariate functional linear model in terms ofR2-
statistic. Population based incremental learning is used to identify spatially dis-
tributed brain responses to complex stimuli without attempting to localize func-
tion first. Variation in hemodynamic lag across brain areas and among subjects
is taken into account by voxel-wise non-linear registration of stimulus pattern to
fMRI data. Application of the method on an international test benchmark for
prediction of naturalistic stimuli from new and unknown fMRI data shows that
the method successfully uncovers spatially distributed parts of the brain that are
highly predictive of a given stimulus.

1 Introduction

To arrive at a better understanding of human brain function,functional neuroimaging traditionally
studies the brain’s responses to controlled stimuli. Controlled stimuli have the benefit of leading to
clear and often localized response signals in fMRI as they are specifically designed to affect only
certain brain functions. The drawback of controlled stimuli is that they are a reduction of reality: one
cannot be certain whether the response is due to the reduction or due to the stimulus. Naturalistic
stimuli open the possibility to avoid the question whether the response is due to the reduction or
the signal. Naturalistic stimuli, however, carry a high information content in their spatio-temporal
structure that is likely to instigate complex brain states.The immediate consequence hereof is that
one faces the task of isolating relevant responses amids complex patterns.

To reveal brain responses to naturalistic stimuli, advanced signal processing methods are required
that go beyond conventional mass univariate data analysis.Univariate techniques generally lack
sufficient power to capture the spatially distributed response of the brain to naturalistic stimuli. Mul-
tivariate pattern techniques, on the other hand, have the capacity to identify patterns of information
when they are present across the full spatial extent of the brain without attempting to localize func-



tion. Here, we propose a multivariate pattern analysis approach for predicting naturalistic stimuli
on the basis of fMRI data. Inverting the task from correlating stimuli with fMRI data to predicting
stimuli from fMRI data makes it easier to evaluate brain responses to naturalistic stimuli and may
extend the power of functional imaging substantially [1].

Various multivariate approaches for reconstruction of brain states directly from fMRI measurements
have recently been proposed. In most of these approaches, a classifier is trained directly on the fMRI
data to discriminate between known different brain states. This classifier is then used to predict brain
states on the basis of new and unknown fMRI data alone. Such approaches have been used to predict
what percept is dominant in a binocular rivalry protocol [2], what the orientation is of structures sub-
jects are viewing [3] and what the semantic category is of objects [4] and words [5] subjects see on
a screen. In one competition [6], participants trained pattern analyzers on fMRI of subjects viewing
two short movies as well as on the subject’s movie feature ratings. Then participants employed the
analyzers to predict the experience of subjects watching a third movie based purely on fMRI data.
Very accurate predictions were reported for identifying the presence of specific time varying movie
features (e.g. faces, motion) and the observers who coded the movies [7].

We propose an incremental multivariate linear modeling approach for functional covariates, i.e.
where both the fMRI data and external stimuli are continuous. This approach differs fundamentally
from existing multivariate linear approaches (e.g. [8]) that instantly fit a given model to the data
within the linear framework under the assumption that both the data and the model are discrete.
Contemporary neuroimaging studies increasingly use high-resolution fMRI to accurately capture
continuous brain processes, frequently instigated by continuous stimulations. Hence, we propose
the use of functional data analysis [9], which treats data, or the processes giving rise to them, as
functions. This not only allows to overcome limitations in neuroimaing studies due to the large
number of data points compared to the number of samples, but also allows to exploit the fact that
functions defined on a specific domain form an inner product vector space, and in most circum-
stances can be treated algebraically like vectors [10].

We extend classical multivariate regression analysis of fMRI data [11] to stochastic functional mea-
surements. We show that, cast into an incremental pattern searching framework, functional multi-
variate regression provides a powerful technique for fMRI-based prediction of naturalistic stimuli.

2 Method

In the remainder, we consider stimuli data and data producedby fMRI scanners as continuous func-
tions of time, sampled at the scan interval and subject to observational noise. We treat the data
within a functional linear model where both the predictant and predictor are functional, but where
the design matrix that takes care of the linear mapping between the two is vectorial.

2.1 The Predictor

The predictor data are derived directly from the four-dimensional fMRI dataI(x, t), wherex ∈ ℜ3

denotes the spatial position of a voxel andt denotes its temporal position. We represent each of
theS voxel time courses in functional form byfs(t), with t denoting the continuous path parameter
ands = 1, ..., S . Rather than directly using voxel time courses for prediction, we use their principal
components to eliminate collinearity in the predictor set.Following [10], we use functional principal
component analysis. Viviani et al. [10] showed that functional principal components analysis is
more effective than is its ordinary counterpart in recovering the signal of interest in fMRI data, even
if limited or no prior knowledge of the hemodynamic functionor experimental design is specified.
In contrast to [10], however, our approach incrementally zooms in on stimuli-related voxel time
courses for dimension reduction (see section 2.5).

Given the set ofS voxel time courses represented by the vector of functionalsf (t) = [ f1(t), ..., fS (t)]T ,
functional principal components analysis extracts main modes of variation inf (t). The number
of modes to retain is determined from the proportion of the variance that needs to be explained.
Assuming this isQ, the central concept is that of taking the linear combination

fsq =

∫
t

fs(t)αq(t)dt (1)



where fsq is the principal component score value of voxel time coursefs(t) in dimensionq. Principal
componentsαq(t), q = 1, ..,Q are sought for one-by-one by optimizing

αq(t) = max
α∗q(t)

1
S

S∑
s=1

f 2
sq (2)

whereαq(t) is subject to the following orthonormal constraints∫
t
αq(t)2dt = 1

∫
t
αk(t)αq(t)dt = 0, k ≤ q. (3)

The mapping offs(t) onto the subspace spanned by the firstQ principal component curves results in
the vector of scalarsf s = [ fs1, ..., fsQ]. We define theS ×Q matrixF = [f1, ..., fS ]T of principal com-
ponents scores as our predictor data in linear regression. That is, we perform principal component
regression withF as model, allowing to naturally deal with temporal correlations, multicollinearity
and systematic signal variation.

2.2 The Predictand

We represent the stimulus pattern by the functional1(t), t being the continuous time parameter. We
register1(t) to each voxel time coursefs(t) in order to be able to compare equivalent time points
on stimulus and brain activity data. Alignment reduces to finding the warping functionωs(t) that
produces the warped stimulus function

gs(t) = 1(ωs(t)). (4)

The time warping functionωs(t) is strictly monotonic, differentiable up to a certain order and takes
care of a small shift and nonlinear transformation. A globalalignment criteria and least squares
estimation is used:

ωs(t) = min
ω∗s

∫
t
(1(ω∗s(t)) − fs(t))

2dt. (5)

Registration of1(t) to all voxel time coursesS results in predictand datag(t) = [g1(t), ..., gS (t)]T ,
whereg(t) is 1(t) registered onto voxel times-coursef (t). Our motivation for using voxel-wise
registration over standard convolution of stimulus1(t) with the hemodynamic reponse function, is
the large variability in hemodynamic delays across brain regions and subjects. A non -linear warp
of 1(t) does not guarantee an outcome that is associated with brainphysiology, however it allows
to capture unknown subtle localized variations in hemodynamic delays across brain regions and
subjects.

2.3 The Model

We employ the predictor data to explain the predictand data within a linear modeling approach, i.e.
our multivariate linear model is defined as

g(t) = Fβ(t) + ǫ(t) (6)

with β(t) = [β1(t), ..., βQ(t)]T being theQ×1 vector of regression functions. The regression functions
are estimated by least squares minimization such that

β̂(t) = min
β
∗
(t)

∫
t
(g(t) − Fβ∗(t))2dt, (7)

under the assumption that the residual functionsǫ(t) = [ǫ1(t), ...., ǫS (t)]T are independent and nor-
mally distributed with zero mean. The estimated regressionfunctions provide the best estimate of
g(t) in least squares sense:

ĝ(t) = Fβ̂(t). (8)

Given a new (sub)set of voxel time courses, prediction of a stimulus pattern now reduces to comput-
ing the matrix of principal component scores from this new set and weighting these scores by the
estimated regression functionsβ̂(t).



2.4 The Objective

The overall fit of the model to the data is expressed in terms ofadjustedR2 statistic. The functional
counterpart of the traditionalR2 is computed on the basis ofg(t), its mean ¯g(t) and its estimation
ĝ(t). For the voxel setS ,

ġS (t) =
S∑

s=1

(gs(t) − ḡ(t))2 (9)

g̈S (t) =
S∑

s=1

(gs(t) − ĝs(t))
2 (10)

are derived, where the first term is the variation of the response about its mean and the second the
error sum of squares function. The adjusted R-square function is then defined as

RS (t) = 1−
g̈S (t)/S − Q − 1

ġS (t)/S − 1
(11)

where degrees of freedomS − Q − 1 andS − 1 adjust the R-square. Our objective is to find the set
of voxel time coursesS defined as

S = max
S ∗⊂S

∫
t
RS ∗(t)dt (12)

whereS ∗ denotes a subset of the entire collection of voxels time coursesS extracted from a single
fMRI scan. That is, we aim at finding spatially distributed voxel responsesS that best explain the
naturalistic stimuli, without making any prior assumptions about location and size of voxel subsets.

2.5 The Search

In order to efficiently find the subset of voxels that maximizes Equation (12), we use Population-
Based Incremental Learning (PBIL) [12], which combines Genetic Algorithms with Competitive
Learning. The PBIL algorithm uses a probability vector to explore the space of solutions. It in-
crementally generates solutions by sampling from that probability vector, evaluates these solutions
and selects promising ones to update the probability vector. Here, at incrementi, the probability
vectorpi = [pi

1, ..., p
i
S ] is used to generate a population ofN solutionsM i = [mi

1, ...,m
i
N ], where

each member is an S-vector of binary values:mi
n = [mi

n1, ...,m
i
nS ]. A value of 1 for mns means

that for solutionn the corresponding voxel time coursefs(t) is included in the predictor set, while
a value 0 indicates exclusion. Each membermi

n is evaluated in terms of its adjustedR2 value, and
the members with highest values form the joint probability vectorp∗. A new probability vector is
subsequently constructed for the next generation via competitive learning:

pi+1 = γpi + (1− γ)p∗. (13)

The learning parameterγ controls the search: a low value enables to focus entirely onthe most
recent voxel subset while a low value ensures that previously selected voxel subsets are exploited.
In order to ensure spatial coherence and limit computation load, we employ the PBIl algorithm not
on single time courses, but on averages of spatial clusters of voxel time courses. That is, we first
spatially cluster voxel locations as shown in Figure 1, thencompute average time course for each
cluster and then explore the averages via PBIL for model building.

2.6 The Prediction

The subset of voxel time courses that results from population based incremental learning defines
the most predictive voxel locations and associated regression functions. Given new and spatially
normalized fMRI data, represented byf̃ (t) = [ f̃1(t), ..., f̃S (t)]T , prediction of a stimulus then reduces
to computing

g̃(t) = F̃β̂(t). (14)

In here,g̃(t) is the vector of predicted stimuli of which the mean is considered to be the sought stim-
ulus. The matrixF̃ is the principal component scores matrix obtained from performing functional
principal components analysis on subsetf̃S(t), with S referring to the set of most predictive voxels
as determined by training.



Figure 1: Examples of K-means clustering of voxel locationsusing Euclidean distance. Left: 1024-
means clustering output. Right: 512-means clustering output. Different gray values indicate differ-
ent clusters in a spatially normalized brain atlas.

3 Experiments and Results

3.1 Experiment

Evaluation of our method is done on a data subset from the 2006Pittsburgh brain activity interpre-
tation competition (PBAIC) [6, 7], involving fMRI scans of three different subjects and two movie
sessions. In each session, a subject viewed a new Home Improvement sitcom movie for approxi-
mately 20 minutes. The 20-minute movie contained 5 interruptions where no video was present, only
a white fixation cross on a black background. All three subjects watched the same two movies. The
scans produced volumes with approximately 35,000 brain voxels, each approximately 3.28mm by
3.28mm by 3.5mm, with one volume produced every 1.75 seconds. These scans were preprocessed
(motion correction, slice time correction, linear trend removal) and spatially normalized (non-linear
registration to the Montreal Neurological Institute brainatlas).

After fMRI scanning, the three subjects watched the movie again to rate 30 movie features at time
intervals corresponding to the fMRI scan rate. In our experiments, we focus on the 13 core movie
features:amusement, attention, arousal, body parts, environmental sounds, faces, food, language,
laughter, motion, music, sadness and tools. The real-valued ratings were convolved with a hemo-
dynamic response function (HRF) modeled by two gamma functions, then subjected to voxel-wise
non-linear registration as described in 2.2.

For training and testing our model, we removed parts corresponding with video presentations of a
white fixation cross on a black background. Taking into account the hemodynamic lag, we divided
each fMRI scan and each subject rating into 6 parts corresponding with the movie on parts. On
average each movie part contained 105 discrete measurements. We then functionalized these parts
by fitting a 30 coefficient B-spline to each voxel’s discrete time course. This resulted in 18 data
sets for training (3 subjects× 6 movie parts) and another 18 for testing. We used movie 1 datafor
training and movie 2 data for prediction, and vice versa. We performed data analysis at two levels.
For each feature, first the individual brain scans were analyzed with our method, resulting in a first
sifting of voxels. First-level analysis results for a givenfeature were then subjected to second level
analysis to identify across subject predictive voxels. Pearson product-moment correlation coefficient
between manual feature rating functions and the automatically predicted feature functions was used
as an evaluation measure.

3.2 Results

All results were obtained withQ = 4 principal component dimensions, learning parameter value
γ = 0.6 and K-means clustering with 1024 clusters for all movie features. These values forQ
andγ produced overall highest average cross correlation value in a small parameter optimization
experiment (data not shown here). Little performance differences were seen for various numbers of
dimensions, indicating that the essential information canbe captured with as little as 4 dimension.
Significant performance differences across features, however, were observed for different learning
parameter values, indicating considerable variation in brain response to distinct stimuli.
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Figure 2: Left: normalized cross correlation values from cross-validation for 13 core movie features.
Right: functionalized subject3 (solid red) and predicted (dotted blue) rating for thelanguage feature
of part 5 of movie 1.

Figure 2 (left) shows the average of 2×18 cross correlation coefficients from cross validation for all
13 movie features. For featuresfaces, language andmotion cross correlation values above 0.5 were
obtained, meaning that there is a significant degree of matchbetween the subject ratings and the
predicted ratings. Reasonable predictions were also obtained for featuresarousal andbody parts.
Our results are consistent with top 3 rank entries of 2006 PBAIC in that featuresfaces andlanguage
are reliably predicted. These entries used recurrent neural networks, ridge regression and a dynamic
Gaussian Markov Random Field modeling on the entire test data benchmark, yielding across feature
average cross correlations of: 0.49, 0.49 and 0.47 respectively. Here, the feature average cross
correlation value based on the reduced training data set is 0.36. Note, that in the 2006 competition
our method ranked first in the actor category [6]. We were ableto accurately predict which actor the
subjects were seeing purely based on fMRI scans [7].

The best single result, with highest cross correlation value of 0.76, was obtained for featurelanguage
of subject 3 watching part 5 of movie 1. For this feature, firstlevel analysis of each of the 18 training
data sets associated with movie 2 produced a total number of 1738 predictive voxels. In the second
level analysis, these voxels were analyzed again to arrive at a reduced data set of 680 voxels for
building the multivariate functional linear model and determining regression functionsβ(t). For
prediction of featurelanguage, corresponding voxel time courses were extracted from the fMRI data
of subject 3 watching movie 1 part 5, and weighted byβ(t). The manual rating of featurelanguage
of movie 1 part 5 by subject 3 and the average of the automatically predicted feature functions are
shown in Figure 2 (right).

Figure 3: Glass view, gray level image with color overlay andsurface rendering of 1738 voxels from
first level analysis. Color denotes predictive power and cross hair shows most predictive location.



Figure 3 shows glass view, gray level image with color overlay and surface rendering of the 1738
voxels (approximately 40 clusters) from first level analysis. The cross hair shows the voxel location
in Brodman area 47 that was found to be predictive across mostsubjects and movie parts: it was
selected in 6 out of 18 training items (see color bar). The predictive locations correspond with
the left and right inferior frontal gyrus, which are known tobe involved in language processing.
The distributed nature of these clusters is consistent withearlier findings that processing involved
in language occurs in diffuse brain regions, including primary auditory and visual cortex, frontal
regions in the left and right hemisphere, in homologues regions [13].

As we are dealing with curves, the possibility exists to explore additional data characteristics such as
curvature. We performed an experiment with 1st order derivative functions, rather than the original
functions to exploit potentially available higher order structure. Figure 4 (left) shows the cross
correlation for 1st order derivative functions. The cross correlation values are similar to the ones
shown in Figure 2. The average cross correlation value is slightly better than for the original data:
0.38. This may indicate that higher order structures may contain more predictive power.

In order to get insight in the effect of non-linear warping on prediction performance, we conducted
an experiment in which we used convolutions of the stimulus1(t) with different forms of a HRF
function modeled by two gamma functions. Various HRF functions were obtained by varing the
delay of response (relative to onset), delay of undershoot (relative to onset), dispersion of response,
dispersion of undershoot, ratio of response to undershoot.To determinegs(t), we convolved1(t)
with 16 different HRF functions, and selected the convolved one with highest cross correlation with
fs(t) to begs(t). Hence, we parametrically modeled the HRF and learned its parameters from the
data.

Figure 4 (right) shows the results of the experiments with convolution of stimuli data with HRF
models learned from the data. As can be seen, the cross correlation values are much lower compared
to the values in Figure 2 (left). The average cross correlation value is 0.31. Hence, non-linear
warping of stimulus onto voxel time course significantly enhances the predictive power of our model.
This suggests that non-linear warping is a potential alternative for determining the best possible HRF
estimate to overcome potential negative consequences of assuming HRF consistency across subjects
or brain regions [14].

Figure 4: Left: normalized cross correlation values from cross-validation for 13 core movie features,
using 1st order derivative data. Right: cross correlation values from cross-validation for 13 core
movie features, using HRF convoluted rather than warped stimuli data.

4 Conclusion

Functional data analysis provides the possibility to fullyexploit structure in inherently continuous
data such as fMRI. The advantage of functional data analysisfor principal component analysis of
fMRI data was recently demonstrated in [10]. Here, we proposed a functional linear model that
treats fMRI and stimuli as stochastic functional measurements. Cast into an incremental pattern
searching framework, the method provides the ability to identify important covariance structure



of spatially distributed brain responses and stimuli, i.e.it directly couples activation across brain
regions rather than first localizing and then integrating function. The method is suited for unbiased
probing of functional characteristics of brain areas as well as for exposing meaningful relations
between complex stimuli and distributed brain responses. This finding is supported by the good
prediction performance of our method in the 2006 PBAIC international competition for brain activity
interpretation. We are currently extending the method withnew objective functions, dimension
reduction techniques and multi-target search techniques to cope with multiple (interacting) stimuli.
Also, in this work we made use of spatial clusters at a single hierarchical level. Preliminary results
with hierarchical clustering to arrive at ”supervoxels” atdifferent spatial resolutions, seem to further
improve prediction power.

References

[1] J. Haynes and G. Rees. Decoding mental states from brain activity in humans.Nature Neuro-
science, 7(8):523–534, 2006.

[2] J. Haynes and G. Rees. Predicting the orientation of invisible stimuli from activity in human
primary visual cortex.Nature Neuroscience, 7(5):686–691, 2005.

[3] Y. Kamitani and F. Tong. Decoding the visual and subjective contents of the human brain.
Nature Neuroscience, 8(5):679–685, 2005.

[4] S.M. Polyn, V.S. Natu, J.D. Cohen, and K.A. Norman. Category-specific cortical activity
precedes retrieval during memory search.Science, 310(5756):1963–1966, 2005.

[5] T.M. Mitchell, R. Hutchinson, R.S. Niculescu, F. Pereira, X. Wang, M. Just, and S. Newman.
Learning to decode cognitive states from brain images.Machine Learning, 57(1-2), 2004.

[6] W. Schneider, A. Bartels, E. Formisano, J. Haxby, R. Goebel, T. Mitchell, T. Nichols, and
G. Siegle. Competition: Inferring experience based cognition from fmri. In Proceedings
Organization of Human Brain Mapping Florence Italy June 15, 2006.

[7] Editorial. What’s on your mind.Nature Neuroscience, 6(8):981, 2006.

[8] K.J. Worsley, J.B. Poline, K.J. Friston, and A.C. Evans.Characterizing the response of pet and
fmri data using multivariate linear models.Neuroimage, 6, 1997.

[9] J. Ramsay and B. Silverman.Functional Data Analysis. Springer-Verlag, 1997.

[10] R. Viviani, G. Grohn, and M. Spitzer. Functional principal component analysis of fmri data.
Human Brain Mapping, 24:109–129, 2005.

[11] D.B. Rowe and R.G. Hoffmann. Multivariate statistical analysis in fmri.IEEE Engineering in
Medicine and Biology, 25:60–64, 2006.

[12] Shumeet Baluja. Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report CMU-CS-94-
163, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1994.

[13] M.A. Gernsbacher and M.P. Kaschak. Neuroimaging studies of language production and com-
prehension.Annual Review of Psychology, 54:91–114, 2003.

[14] D.A. Handwerker, J.M. Ollinger, and M. D’Esposito. Variation of bold hemodynamic response
function across subjects and brain regions and their effects on statistical analysis.NeuroImage,
8(21):1639–1651, 2004.


