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Abstract

We propose a method for reconstruction of human brain stitestly from func-
tional neuroimaging data. The method extends the traditiomultivariate re-
gression analysis of discretized fMRI data to the domairntadlsastic functional
measurements, facilitating evaluation of brain respotse®mplex stimuli and
boosting the power of functional imaging. The method sezsdbr sets of voxel
time courses that optimize a multivariate functional lineedel in terms oR?-
statistic. Population based incremental learning is uedddntify spatially dis-
tributed brain responses to complex stimuli without atténgpto localize func-
tion first. Variation in hemodynamic lag across brain araas @among subjects
is taken into account by voxel-wise non-linear registraid stimulus pattern to
fMRI data. Application of the method on an internationalt teenchmark for
prediction of naturalistic stimuli from new and unknown fiiBata shows that
the method successfully uncovers spatially distributatispaf the brain that are
highly predictive of a given stimulus.

1 Introduction

To arrive at a better understanding of human brain funcfienctional neuroimaging traditionally
studies the brain’s responses to controlled stimuli. Giletl stimuli have the benefit of leading to
clear and often localized response signals in fMRI as theyspecifically designed tatact only
certain brain functions. The drawback of controlled stimahat they are a reduction of reality: one
cannot be certain whether the response is due to the redumtidue to the stimulus. Naturalistic
stimuli open the possibility to avoid the question whether tesponse is due to the reduction or
the signal. Naturalistic stimuli, however, carry a highoimhation content in their spatio-temporal
structure that is likely to instigate complex brain stafése immediate consequence hereof is that
one faces the task of isolating relevant responses amidplegpatterns.

To reveal brain responses to naturalistic stimuli, advdrsignal processing methods are required
that go beyond conventional mass univariate data analydmvariate techniques generally lack
suficient power to capture the spatially distributed respom$ieedbrain to naturalistic stimuli. Mul-
tivariate pattern techniques, on the other hand, have thecia to identify patterns of information
when they are present across the full spatial extent of thia bvithout attempting to localize func-



tion. Here, we propose a multivariate pattern analysis @yt for predicting naturalistic stimuli
on the basis of fMRI data. Inverting the task from correlgtstimuli with fMRI data to predicting
stimuli from fMRI data makes it easier to evaluate brain ceses to naturalistic stimuli and may
extend the power of functional imaging substantially [1].

Various multivariate approaches for reconstruction ofrbstates directly from fMRI measurements
have recently been proposed. In most of these approachessier is trained directly on the fMRI
data to discriminate between knowtfdrent brain states. This classifier is then used to predaat br
states on the basis of new and unknown fMRI data alone. Symoaghes have been used to predict
what percept is dominant in a binocular rivalry protocol [2hat the orientation is of structures sub-
jects are viewing [3] and what the semantic category is oéctisj[4] and words [5] subjects see on
a screen. In one competition [6], participants trainedguatanalyzers on fMRI of subjects viewing
two short movies as well as on the subject’s movie featuiagsat Then participants employed the
analyzers to predict the experience of subjects watchimgrd movie based purely on fMRI data.
Very accurate predictions were reported for identifying pinesence of specific time varying movie
features (e.g. faces, motion) and the observers who cogauakiies [7].

We propose an incremental multivariate linear modelingreggh for functional covariates, i.e.
where both the fMRI data and external stimuli are continudinss approach diers fundamentally
from existing multivariate linear approaches (e.g. [8pttmstantly fit a given model to the data
within the linear framework under the assumption that both data and the model are discrete.
Contemporary neuroimaging studies increasingly use regbtution fMRI to accurately capture
continuous brain processes, frequently instigated byimootis stimulations. Hence, we propose
the use of functional data analysis [9], which treats datahe processes giving rise to them, as
functions. This not only allows to overcome limitations iaumoimaing studies due to the large
number of data points compared to the number of samples,|dmBHows to exploit the fact that
functions defined on a specific domain form an inner productorespace, and in most circum-
stances can be treated algebraically like vectors [10].

We extend classical multivariate regression analysis d®fllata [11] to stochastic functional mea-
surements. We show that, cast into an incremental pattanctgag framework, functional multi-
variate regression provides a powerful technique for fNdB$ed prediction of naturalistic stimuli.

2 Method

In the remainder, we consider stimuli data and data prodbgdMIR| scanners as continuous func-
tions of time, sampled at the scan interval and subject terwbtional noise. We treat the data
within a functional linear model where both the predictamil @redictor are functional, but where
the design matrix that takes care of the linear mapping beige two is vectorial.

2.1 The Predictor

The predictor data are derived directly from the four-disienal fMRI datal (x, t), wherex € R3
denotes the spatial position of a voxel andenotes its temporal position. We represent each of
the S voxel time courses in functional form bi(t), with t denoting the continuous path parameter
ands = 1, ..., S. Rather than directly using voxel time courses for predictiwe use their principal
components to eliminate collinearity in the predictor $&@llowing [10], we use functional principal
component analysis. Viviani et al. [10] showed that funadibprincipal components analysis is
more dfective than is its ordinary counterpart in recovering tlymal of interest in fMRI data, even

if limited or no prior knowledge of the hemodynamic functionexperimental design is specified.
In contrast to [10], however, our approach incrementallgras in on stimuli-related voxel time
courses for dimension reduction (see section 2.5).

Given the set 0§ voxel time courses represented by the vector of functidigls: [ f1(t), ..., fs(t)]",
functional principal components analysis extracts maird@soof variation inf(t). The number
of modes to retain is determined from the proportion of theavece that needs to be explained.
Assuming this i€Q, the central concept is that of taking the linear combimatio

fa = f gt 1)



wherefg is the principal component score value of voxel time coukgg in dimensiorg. Principal
componentsy(t), q = 1, .., Q are sought for one-by-one by optimizing

1 S
t) = max= » f2 2
aq(t) aa(t)S; 4 @

whereaq(t) is subject to the following orthonormal constraints

f aq()?dt =1 f ax(t)ag(t)dt = 0,k < q. (3)
t t

The mapping off4(t) onto the subspace spanned by the f@¥gtrincipal component curves results in
the vector of scalark = [fs, ..., fsg]. We define theS x Q matrix F = [fy, ..., fs]T of principal com-
ponents scores as our predictor data in linear regressioat i3, we perform principal component
regression withF as model, allowing to naturally deal with temporal corrielas, multicollinearity
and systematic signal variation.

2.2 The Predictand

We represent the stimulus pattern by the functiafgl t being the continuous time parameter. We
registerg(t) to each voxel time cours&(t) in order to be able to compare equivalent time points
on stimulus and brain activity data. Alignment reduces tdifig the warping functioms(t) that
produces the warped stimulus function

9s(t) = g(ws(1)). (4)

The time warping functioms(t) is strictly monotonic, dierentiable up to a certain order and takes
care of a small shift and nonlinear transformation. A gloliédnment criteria and least squares
estimation is used:

wx(t) = min [(g(wi(0) - ). (5)

Registration ofy(t) to all voxel time course$ results in predictand dag(t) = [gi(t), ...,gs(t)]",
whereg(t) is ¢(t) registered onto voxel times-courdé¢t). Our motivation for using voxel-wise
registration over standard convolution of stimulfs) with the hemodynamic reponse function, is
the large variability in hemodynamic delays across bragioms and subjects. A non -linear warp
of g(t) does not guarantee an outcome that is associated with fphgsiology, however it allows
to capture unknown subtle localized variations in hemodyinadelays across brain regions and
subjects.

2.3 The Model

We employ the predictor data to explain the predictand dittama linear modeling approach, i.e.
our multivariate linear model is defined as

g(t) = FB(1) + () (6)

with B(t) = [B1(t), ..., Bo(t)]" being theQx 1 vector of regression functions. The regression functions
are estimated by least squares minimization such that

YR ERtN2
B0 = i ft(g(t) FB ()2, @)

under the assumption that the residual functiefts = [ei(t), ..., es(t)]T are independent and nor-
mally distributed with zero mean. The estimated regreskiontions provide the best estimate of
g(t) in least squares sense:

a(t) = FA(). (8)

Given a new (sub)set of voxel time courses, prediction ofiragtis pattern now reduces to comput-
ing the matrix of principal component scores from this neweasal weighting these scores by the

estimated regression functiof).



2.4 The Objective

The overall fit of the model to the data is expressed in ternaipfsted?? statistic. The functional
counterpart of the traditiond®? is computed on the basis gft), its meang(t) and its estimation
9(t). For the voxel se§,

S

ds(t) = D (gs(0) - G(1))? )
s=1
S

Gs(t) = D (0s(0) - 6:(1))? (10)
s=1

are derived, where the first term is the variation of the raspabout its mean and the second the
error sum of squares function. The adjusted R-square famidithen defined as
_8s()/S-Q-1

gs(t)/S-1
where degrees of freedofh— Q — 1 andS - 1 adjust the R-square. Our objective is to find the set
of voxel time courses defined as

Rs(t) =1 (11)

S= rsngsx ft Rs-(t)dt (12)

whereS* denotes a subset of the entire collection of voxels timesms8 extracted from a single
fMRI scan. That is, we aim at finding spatially distributedkgbresponses that best explain the
naturalistic stimuli, without making any prior assumpsabout location and size of voxel subsets.

2.5 The Search

In order to dficiently find the subset of voxels that maximizes Equatior),(®2 use Population-
Based Incremental Learning (PBIL) [12], which combines &&nAlgorithms with Competitive
Learning. The PBIL algorithm uses a probability vector tplexe the space of solutions. It in-
crementally generates solutions by sampling from that gty vector, evaluates these solutions
and selects promising ones to update the probability vedtere, at increment the probability
vectorp' = [p}, ..., ps] is used to generate a population MfsolutionsM' = [m,...,m\], where
each member is an S-vector of binary values; = [, ... mg]. A value of 1 for m,s means
that for solutionn the corresponding voxel time cour$gt) is included in the predictor set, while
a value 0 indicates exclusion. Each memiméris evaluated in terms of its adjust&d value, and
the members with highest values form the joint probabiliégterp*. A new probability vector is
subsequently constructed for the next generation via ctitivedearning:

Pt =0 +(1-y)p". (13)
The learning parameter controls the search: a low value enables to focus entirelthermost
recent voxel subset while a low value ensures that prewi@edected voxel subsets are exploited.
In order to ensure spatial coherence and limit computatad,lwe employ the PBIl algorithm not
on single time courses, but on averages of spatial clustersxel time courses. That is, we first

spatially cluster voxel locations as shown in Figure 1, tbempute average time course for each
cluster and then explore the averages via PBIL for modetimgl

2.6 The Prediction

The subset of voxel time courses that results from populatEsed incremental learning defines
the most predictive voxel locations and associated reigredanctions. Given new and spatially

normalized fMRI data, represented ty) = [ f1(t), ..., fs(t)]T, prediction of a stimulus then reduces
to computing

a(t) = FB(). (14)
In here §(t) is the vector of predicted stimuli of which the mean is cdased to be the sought stim-
ulus. The matrix- is the principal component scores matrix obtained fromgyering functional
principal components analysis on subkgt), with S referring to the set of most predictive voxels
as determined by training.



Figure 1: Examples of K-means clustering of voxel locatiosisig Euclidean distance. Left: 1024-
means clustering output. Right: 512-means clusteringuufifferent gray values indicateftir-
ent clusters in a spatially normalized brain atlas.

3 Experiments and Results

3.1 Experiment

Evaluation of our method is done on a data subset from the P@@burgh brain activity interpre-
tation competition (PBAIC) [6, 7], involving fMRI scans ditee diferent subjects and two movie
sessions. In each session, a subject viewed a new Home lempeny sitcom movie for approxi-
mately 20 minutes. The 20-minute movie contained 5 inte¢ionp where no video was present, only
a white fixation cross on a black background. All three subje@tched the same two movies. The
scans produced volumes with approximately 35,000 brairlgoxeach approximately 3.28mm by
3.28mm by 3.5mm, with one volume produced every 1.75 secdrfisse scans were preprocessed
(motion correction, slice time correction, linear trenchval) and spatially normalized (non-linear
registration to the Montreal Neurological Institute brattas).

After fMRI scanning, the three subjects watched the movegratp rate 30 movie features at time
intervals corresponding to the fMRI scan rate. In our experits, we focus on the 13 core movie
features:amusement, attention, arousal, body parts, environmental sounds, faces, food, language,
laughter, motion, music, sadness and tools. The real-valued ratings were convolved with a hemo-
dynamic response function (HRF) modeled by two gamma fanstithen subjected to voxel-wise
non-linear registration as described in 2.2.

For training and testing our model, we removed parts coording with video presentations of a
white fixation cross on a black background. Taking into aotdlie hemodynamic lag, we divided
each fMRI scan and each subject rating into 6 parts correpgrwith the movie on parts. On
average each movie part contained 105 discrete measurenwatthen functionalized these parts
by fitting a 30 coéicient B-spline to each voxel's discrete time course. Thiilted in 18 data
sets for training (3 subjects 6 movie parts) and another 18 for testing. We used movie 1fdata
training and movie 2 data for prediction, and vice versa. \&dgsmed data analysis at two levels.
For each feature, first the individual brain scans were aealyvith our method, resulting in a first
sifting of voxels. First-level analysis results for a givieature were then subjected to second level
analysis to identify across subject predictive voxels.r&aaproduct-moment correlation dbeient
between manual feature rating functions and the autonfigtipedicted feature functions was used
as an evaluation measure.

3.2 Results

All results were obtained witl®Q = 4 principal component dimensions, learning parameterevalu
v = 0.6 and K-means clustering with 1024 clusters for all movidudess. These values fap
andy produced overall highest average cross correlation valleesmall parameter optimization
experiment (data not shown here). Little performandiedinces were seen for various numbers of
dimensions, indicating that the essential information loarcaptured with as little as 4 dimension.
Significant performance fierences across features, however, were observedfferatit learning
parameter values, indicating considerable variation &rbresponse to distinct stimuli.
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Figure 2: Left: normalized cross correlation values fromssrvalidation for 13 core movie features.
Right: functionalized subject3 (solid red) and predictagot{ed blue) rating for theanguage feature
of part 5 of movie 1.

Figure 2 (left) shows the average 0k2.8 cross correlation cdigcients from cross validation for all
13 movie features. For featuréges, language andmotion cross correlation values above 0.5 were
obtained, meaning that there is a significant degree of magtiveen the subject ratings and the
predicted ratings. Reasonable predictions were alsorwaddor featuresrousal andbody parts.
Our results are consistent with top 3 rank entries of 2006 IEBA that featuresfaces andlanguage
are reliably predicted. These entries used recurrent heeraorks, ridge regression and a dynamic
Gaussian Markov Random Field modeling on the entire testldechmark, yielding across feature
average cross correlations of: 0.49, 0.49 and 0.47 respbctiHere, the feature average cross
correlation value based on the reduced training data seB& Olote, that in the 2006 competition
our method ranked first in the actor category [6]. We were béecurately predict which actor the
subjects were seeing purely based on fMRI scans [7].

The best single result, with highest cross correlationevall0.76, was obtained for featuasnguage

of subject 3 watching part 5 of movie 1. For this feature, fargel analysis of each of the 18 training
data sets associated with movie 2 produced a total numbet3& firedictive voxels. In the second
level analysis, these voxels were analyzed again to artigeraduced data set of 680 voxels for
building the multivariate functional linear model and detaing regression functiong(t). For
prediction of featuréanguage, corresponding voxel time courses were extracted fromNti data

of subject 3 watching movie 1 part 5, and weightedagt). The manual rating of featutanguage

of movie 1 part 5 by subject 3 and the average of the autonligtipeedicted feature functions are
shown in Figure 2 (right).

Figure 3: Glass view, gray level image with color overlay andace rendering of 1738 voxels from
first level analysis. Color denotes predictive power andgtmir shows most predictive location.



Figure 3 shows glass view, gray level image with color owedad surface rendering of the 1738
voxels (approximately 40 clusters) from first level anadySihe cross hair shows the voxel location
in Brodman area 47 that was found to be predictive across sutigects and movie parts: it was
selected in 6 out of 18 training items (see color bar). Thaliptive locations correspond with
the left and right inferior frontal gyrus, which are knownle involved in language processing.
The distributed nature of these clusters is consistent &atfier findings that processing involved
in language occurs in fiuse brain regions, including primary auditory and visuatexq frontal
regions in the left and right hemisphere, in homologuesreg[13].

As we are dealing with curves, the possibility exists to erphdditional data characteristics such as
curvature. We performed an experiment with 1st order dévizdunctions, rather than the original
functions to exploit potentially available higher orderusture. Figure 4 (left) shows the cross
correlation for 1st order derivative functions. The crosgelation values are similar to the ones
shown in Figure 2. The average cross correlation valuegsthi better than for the original data:
0.38. This may indicate that higher order structures mayaiomore predictive power.

In order to get insight in theffect of non-linear warping on prediction performance, wedtmted
an experiment in which we used convolutions of the stimuifts with different forms of a HRF
function modeled by two gamma functions. Various HRF fumtsi were obtained by varing the
delay of response (relative to onset), delay of undershetat{ve to onset), dispersion of response,
dispersion of undershoot, ratio of response to undershtmtdeterminegs(t), we convolvedy(t)
with 16 different HRF functions, and selected the convolved one withdsijcross correlation with
fs(t) to begs(t). Hence, we parametrically modeled the HRF and learnedaitampeters from the
data.

Figure 4 (right) shows the results of the experiments withvotution of stimuli data with HRF
models learned from the data. As can be seen, the crossatmmelalues are much lower compared
to the values in Figure 2 (left). The average cross cormatialue is 0.31. Hence, non-linear
warping of stimulus onto voxel time course significantly anbes the predictive power of our model.
This suggests that non-linear warping is a potential atiéra for determining the best possible HRF
estimate to overcome potential negative consequenceswufiisy HRF consistency across subjects
or brain regions [14].

Cross correlation between manual ratings and automatic predictions
T T T T T T

131
12F
(ANs
10

al

Sainess

Moton SRR

Laughter

f Language

Envsounds

Arousal

8 Attention

—= MW e @ @
— T T

Amusement

Cross carrelation between manual ratings and automatic predictions
T T T T T T

Tools

B8 Sadness

Music
i Motion

8 Language

Envsounds

Arousal

i Attention

Amusement

Figure 4. Left: normalized cross correlation values frowssrvalidation for 13 core movie features,
using 1st order derivative data. Right: cross correlatialues from cross-validation for 13 core
movie features, using HRF convoluted rather than warpeuiitdata.

4 Conclusion

Functional data analysis provides the possibility to fkploit structure in inherently continuous
data such as fMRI. The advantage of functional data analgsigrincipal component analysis of
fMRI data was recently demonstrated in [10]. Here, we predos functional linear model that
treats fMRI and stimuli as stochastic functional measurgmeCast into an incremental pattern
searching framework, the method provides the ability taiife important covariance structure



of spatially distributed brain responses and stimuli, itedirectly couples activation across brain
regions rather than first localizing and then integratingction. The method is suited for unbiased
probing of functional characteristics of brain areas ad waeglfor exposing meaningful relations
between complex stimuli and distributed brain responsdss finding is supported by the good
prediction performance of our method in the 2006 PBAIC imi¢ional competition for brain activity
interpretation. We are currently extending the method wighv objective functions, dimension
reduction techniques and multi-target search techniquesge with multiple (interacting) stimuli.
Also, in this work we made use of spatial clusters at a singdeahchical level. Preliminary results
with hierarchical clustering to arrive at "supervoxelstiiterent spatial resolutions, seem to further
improve prediction power.
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