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Abstract. We present a novel method for predictive modeling of human brain
states from functional neuroimaging (fMRI) data. Extending the traditional canon-
ical correlation analysis of discrete data to the domain of stochastic functional
measurements, the method explores the functional canonical correlation between
stimuli and fMRI training data. Via an incrementally steered pattern searching
technique, subspaces of voxel time courses are explored to arrive at (spatially dis-
tributed) voxel clusters that optimize the relationship between stimuli and fMRI
in terms of redundancy. Application of the method for prediction of naturalistic
stimuli from unknown fMRI data shows that the method �nds highly predictive
brain areas, i.e. brain areas relevant in processing the stimuli.

1 Introduction
Prediction of brain states directly from non-invasive measurements of brain activity has
emerged as a powerful alternative to correlation of external stimuli with characteristic
brain activity. The advantage of inverting the task from correlating external stimuli with
brain activity to predicting stimuli from brain activity is that it facilitates evaluation of
spatially distributed brain responses to complex uncontrolled stimuli [1]. Prediction of
brain states from brain activity data, however, is a challenging task in its own right, re-
quiring advanced data processing methods that go beyond conventional mass univariate
data analysis of functional neuroimage data.

Various multivariate pattern classi�cation approaches have recently been proposed
for prediction of brain states directly from fMRI measurements. In these approaches, a
classi�er is trained on fMRI data to discriminate between different known brain states
and then applied to predict brain states from unknown fMRI data. Several neuroimage
studies (e.g., [2], [3]) successfully predicted complex stimuli from fMRI using multi-
variate pattern classi�cation approaches, showing their ability to identify response pat-
terns across the full spatial extent of the brain without attempting to localize function.

Here, we extend on the incremental functional multivariate regression method pro-
posed in [4], which exploits the continuous nature of external stimuli and brain pro-
cesses. Cast into an incremental pattern searching framework, this method performs
functional principal component regression to �nd distributed voxel clusters that opti-
mize a linear model in terms of F-statistic. In this work, we pursue canonical correla-
tion analysis rather than principal component analysis in order to fully exploit correlated
variation in stimuli and brain activity data. We show that in comparison to functional
principal component analysis, functional canonical correlation analysis captures func-
tional subspaces that are more appropriate for prediction of brain states.



2 Method
In the remainder, we consider stimuli and fMRI data as continuous functions of time,
sampled at the scan interval and subject to observational noise. The functional form of
the discrete data points is obtained by �tting a continuous curve through them.

2.1 Functional Data Representation
The four-dimensional fMRI data I(x, t), where x ∈ <3 denotes the spatial position of a
voxel and t denotes its temporal position, de�nes the predictor set, i.e. the independent
variable set. The image I(x, t) is preprocessed to arrive at a (spatially) normalized data
set. We represent each voxel time course in functional form by f (t), with t denoting the
continuous path parameter. The vector f = [ f1, ..., fS ]T of S functionalized voxel time
courses contains the complete set of independent variables.

We represent the stimuli data by the functional 1(t), t being the continuous time pa-
rameter. We register 1(t) to each voxel time course fs(t) in order to be able to compare
equivalent time points on stimulus and brain activity data, i.e. to capture subtle localized
variations in Haemodynamic delays across brain regions and subjects. Curve registra-
tion here reduces to �nding the small shift and nonlinear transformation that minimizes
a global alignment criteria in least squares sense. Registration of 1(t) to all voxel time
courses S results in the dependent variable set g(t) = [g1(t), ..., gS (t)]T .

2.2 Functional Canonical Correlation
We employ canonical correlation analysis to capture the relationships between the two
sets of functions f(t) and g(t). Functional canonical correlation analysis [5] explores the
dominant modes of correlation between each pair of functions fs(t)and gs(t). Canon-
ical weighting functions η(t) and ξ(t) are sought that maximize the sampled squared
correlation of ∫

η(t) fs(t)dt and
∫

ξ(t)gs(t)dt (1)

across all pair of functions. The correlation that results from the maximizing weight
functions η1(t) and ξ1(t) is the �rst canonical correlation ρ1. The corresponding �rst
pair of canonical loadings are de�ned as

fs1 =

∫
η1(t) fs(t)dt and gs1 =

∫
ξ1(t)gs(t)dt. (2)

The second pair of canonical weight functions η2(t) and ξ2(t) that maximize the cor-
relation ρ2 is found in the same manner. This second set is orthogonal to the �rst, i.e.
satis�es the constraints∫

η1(t)η2(t)dt = 0 and
∫

ξ1(t)ξ2(t)dt = 0. (3)

This process in repeated until Q main modes of correlation have been found. In order to
arrive a small number of meaningful modes of correlation, we regularize the weighting
functions by penalizing their roughness ( see [5] for more detail).



2.3 Overall Fit Function
To determine the amount of shared variance, we make use of the redundancy index
[6], which is analogous to the R2 statistic in multiple regression. This index provides
a summary measure of the ability of the set of independent variables f(t) to explain
variation in the dependent variables g(t). Here we compute

R =
1
Q

Q∑

q=1
(ρ2

q
1
S

S∑

s=1
g2

sq) (4)

where 1
S
∑

s g2
sq is the amount of shared variance in g(t) explained by ξq(t) and the

squared canonical correlation ρ2
q is the amount of variance in ξq(t) that can be explained

by ηq(t). We use this measure as the overall �t function that drives the search for voxel-
time courses that are strongly related to the external stimuli.

2.4 Incremental Subspace Exploration
In order to efficiently �nd the subset of voxels that maximizes the overall �t R, we use
the incremental search technique described in [7]. With help of this technique, at each
increment a re�ned voxel subset is obtained and evaluated in terms of equation 4. At
increment i, the subset of voxels time courses S i ⊂ S gives rise to canonical weight
functions ηi

q(t) and ξi
q(t) and loadings

f i
sq = ρq

∫
fs(t)ηi

q(t) and gi
q = ρq

∫
g(t)ξi

q(t). (5)

Then, the set Fi = [fi
1, ..., fi

S ] is explored using gi = [gi
1, ..., gi

Q] as pilot. In short, el-
ements are selected from Fi that have smallest Euclidean distance to gi and form one
or more spatially distributed clusters of a prede�ned size. These voxel elements are as-
sumed to have some relationship with the stimulus and form the basis for computations
at increment i + 1. This process is continued until convergence is reached with voxel
subset S ⊂ S , yielding scalar vector ρS and vector of weight functions ηS(t) and ξS(t).

2.5 Brain State Prediction
We use ρS, ηS(t) and ξS(t) for prediction of brain states from new and spatially nor-
malized fMRI data. The voxel time courses at spatial locations corresponding to those
resulting from incremental exploration are extracted from this fMRI data and function-
alized into �f(t) = [ �f1(t), ..., �fS(t)]T . Then, following [8], prediction reduces to

�g(t) = �FξS(t) (6)
where the S × Q canonical correlation loadings matrix �F has elements

�fsq = ρq

∫
�fs(t)ηq(t) (7)

and �g(t) is the vector of predicted stimuli. We de�ne the mean of �g(t) as the stimulus
that gave rise to the brain response represented by �f(t) = [ �f1(t), ..., �fS (t)]T . Hence, we
have brain locations that are likely involved in processing the external stimulus as well
as characterizations of the relationship between activity at these areas and the stimulus.



3 Experiments and Results

3.1 Experiment

Evaluation of our method is done on a data subset from the brain activity interpretation
competition [9, 10], involving fMRI scans of three different subjects and two sessions.
In each session, a subject viewed a new Home Improvement sitcom movie for approx-
imately 20 minutes. All three subjects watched the same two movies. The scans pro-
duced volumes with approximately 35.000 brain voxels, each approximately 3.28mm
by 3.28mm by 3.5mm, with one volume produced every 1.75 seconds. These scans
were preprocessed (motion correction, slice time correction, linear trend removal) and
spatially normalized to the Montreal Neurological Institute brain atlas.

After fMRI scanning, the three subjects watched the movie again to rate 30 movie
features at time intervals corresponding to the fMRI scan rate. In our experiments, we
focused on the 13 core movie features: Amusement, Attention, Arousal, Body Parts,
Environmental Sounds, Faces, Food, Language, Laughter, Motion, Music, Sadness and
Tools. The real-valued ratings were convolved with a standard hemodynamic response
function, then subjected to voxel-wise non-linear registration as described in 2.1.

For training and testing our model, we divided each fMRI scan and each subject
rating into 6 parts corresponding with movie on parts and functionalized these parts by
�tting a 30 coefficient B-spline to their discrete data points. This resulted in 18 data sets
for training (3 subjects × 6 movie parts) and another 18 for testing. We used movie 1
data for training and movie 2 data for prediction, and vice versa, with parameter values
as in [4]. Functional cross correlation between manual feature rating functions and the
automatically predicted feature functions was used as an evaluation measure.

3.2 Results

Average cross correlation results of 2 × 18 cross validations for all 13 movie features
are shown in �gure 1a. Also shown are previous results based on principal component
regression. As can be seen, canonical correlation analysis produces higher cross cor-
relation values for all features except for feature �Motion�. Four features exceed the
0.5 threshold, indicating that there is a signi�cant degree of match between the sub-
ject ratings and the predicted ratings. The average cross correlation across features for
canonical correlation analysis is 3.7, against 3.2 for principal component regression. In
almost all cross validation predictions, the number of voxels used were signi�cantly
smaller for canonical analysis than for principal component analysis.

The highest average cross correlation value of 6.9 is obtained for feature �Faces�,
with the best single result of 7.8 for prediction of subject 3 watching part 2 of movie
1. For this feature, �rst level analysis of each of the 18 training data sets associated
with movie 2 produced a total number of 480 predictive voxels. In the second level
analysis, these voxels were analyzed again to arrive at a reduced data set of 104 voxels
for performing canonical correlation analysis and determining weight functions. Figure
2 shows gray level image with color overlay and surface rendering of a subset of the
104 voxels from second level analysis. The cross hair shows the voxel location in the
occipital lobe that was found to be predictive across most subjects and movie parts.



Fig. 1. Left: cross correlation values from cross-validation for 13 core movie features, using prin-
cipal component analysis (PCR) and canonical corelation analysis (CCR) Right: gray level image
with color overlay and surface rendering of a subset of predictive voxels from second level anal-
ysis. Color denotes predictive power and cross hair shows most predictive location.

4 Conclusion
We have proposed an incremental functional canonical correlation analysis method for
prediction of brain states from fMRI. In comparison with the principal component re-
gression method in [4], the proposed method produces better prediction results using a
smaller amount of spatially distributed brain voxel clusters. We conclude that functional
canonical correlation analysis captures important modes of correlation between fMRI
and stimuli data that are very suited for prediction of stimuli based on new fMRI data.
Given the high prediction results, we emphasize that our method is very promising for
identifying and characterizing complex brain responses to intricate external stimuli.
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