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ABSTRACT: We present an object recognition approach using

higher-order color invariant features with an entropy-based similarity

measure. Entropic graphs offer an unparameterized alternative to
common entropy estimation techniques, such as a histogram or

assuming a probability distribution. An entropic graph estimates en-

tropy from a spanning graph structure of sample data. We extract

color invariant features from object images invariant to illumination
changes in intensity, viewpoint, and shading. The Henze–Penrose

similarity measure is used to estimate the similarity of two images.

Our method is evaluated on the ALOI collection, a large collection of
object images. This object image collection consists of 1000 objects

recorded under various imaging circumstances. The proposed

method is shown to be effective under a wide variety of imaging con-

ditions. VVC 2007 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 16, 146–

153, 2006; Published online in Wiley InterScience (www.interscience.wiley.

com). DOI 10.1002/ima.20082
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1. INTRODUCTION

Humans are capable of distinguishing the same object from millions

of different images. Machines on the other hand have significant

difficulty with this seemingly trivial task. One of the reasons that

computational object recognition is such a hard problem is that

machines take sensory information very literally, making object

recognition vulnerable to accidental scene information. Such acci-

dental variations include scale, illumination color, viewing angle,

background, occlusion, shadows, shading, light intensity, high-

lights, and many more (Smeulders et al., 2001).

One approach to dealing with such photometric variations is

found in the use of invariant features. Invariant features remain

unchanged under certain operations or transformations and are used

for various object recognition approaches. For example, the physi-

cal laws of image formation can be used to factor out accidental

scene effects. The dichromatic reflection model by Shafer (1985)

integrates body and surface reflection properties. This model may

be extended upon, to obtain color invariant measurements (Forsyth,

1990; Funt and Finlayson, 1995; Geusebroek et al., 2001; Gevers

and Stokman, 2004).

To compare object images, a similarity measure between image

features is required. Often, similarity measures that require some

parameter tuning are used in order to be applicable to other datasets

or features. An example of such a parameter is the bin-size for his-

togram matching. A generic alternative is found in the use of

unparametric similarity measures. We use entropic graphs (Hero

et al., 2002) to compute an unparametric similarity between image

features.

Color invariant features for object recognition are discussed is

this paper. We employ an unparametric entropic similarity mea-

sure to match object images. Furthermore, the object recognition

scheme is evaluated on a large dataset with real-world imaging

conditions.

A. Related Work. A popular method for object recognition is to

apply salient point detectors. This method deals with problems,

such as partial matching and occluded images. Specifically, Schmid

and Mohr (1997) use salient point detection for indexing gray

images. The detected points are subsequently made robust for scale

changes and transformed to be rotationally invariant. In a similar

approach, rotational and scale invariant keypoints allows for robust

object detection (Lowe, 2004). Scale Invariant Feature Transform

(SIFT) features are extracted and matched against a database. A

Hough transform gives high probability to multiple features

matched in one image. One problem with the interest point

approach is the repeatability of the salient point detection. For

example, detection may vary depending on pose, illumination, and

background changes. Thus, salient points are not guaranteed to be

the same over various imaging conditions. Moreover, for images

without high curvature the method might not detect any salient

points at all.

An alternative approach is given by Schiele and Crowley (2000)

who take multiscale histograms of local gray value structure in an

image. Translation invariance is given by the use of histograms.

Rotational invariance is achieved by using several rotated versionsCorrespondence to: J. C. van Gemert; e-mail: jvgemert@science.uva.nl
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of a steerable filter in steps of 208. This technique proves robust for
rotated, occluded, and cluttered scenes. Grayscale images, however,

lack a significant amount of information compared with color

images. In our opinion, using color features in an object recognition

approach is favorable, as color is a highly discriminative property

of objects.

A biologically inspired object recognition method is presented

with SEEMORE (Mel, 1997). Object matching is achieved with his-

tograms of 102 different filters. Each filter responds to different

image features like contour, texture, and color. Experiments are per-

formed over a collection of 100 images. The highest experimental

recognition rate of 97% is achieved with color and shape features.

By using only color features, 87% recognition is achieved, as

opposed to 79% without color. Thus color information may signifi-

cantly improve object recognition.

Funt and Finlayson (1995) propose color invariant histograms

for illumination-independent object recognition. Under the assump-

tion of a slowly varying illumination, computed color ratios of

neighboring pixels are color invariant. The color ratio is computed

by taking derivatives of the logarithm of the color channels. Object

recognition experiments were conducted for differing illuminations.

Results show that histograms of color ratios outperform color histo-

grams. Histogram bin size is usually set in an ad hoc manner, where

the best bin size for a specific application is experimentally deter-

mined. Kernel density estimation tries to overcome the problem of

selecting a suitable bin size for a histogram.

Color invariant histograms may be improved upon by using vari-

able kernel density estimation (Gevers and Stokman, 2004). Here,

an error propagation method is introduced to estimate the uncer-

tainty of a color invariant channel. This associated uncertainty is

used to derive the optimal parameterization of the variable kernel

used during histogram construction. In this way, a robust estimator

of invariant density is constructed. However, noise characteristics

of the camera system are often not available.

A solution to image matching without the use of histograms is

found in assuming prior knowledge about the probability distribu-

tions. A popular approach is mixture of Gaussian estimation (West-

erveld and de Vries, 2004). However, not all processes can be

described with a fixed parameterized model. Furthermore, assuming

one distribution might severely over-simplify the complexity of the

data.

Entropic graphs (Hero et al., 2002) offer an unparameterized al-

ternative to histograms, circumventing choosing and fine tuning pa-

rameters such as histogram bin size or density kernel width. Alter-

natively, classifiers such as support vector machines may be used

for object recognition (Pontil and Verri, 1998). A support vector

machine (Vapnik, 1995) finds the best separating hyperplane

between two classes. In contrast to support vector machines,

entropic graphs allow to estimate information theoretic measures,

like entropy, divergence, mutual information, and affinities.

In our approach, we extend the work of Schiele and Crowley

(2000), Funt and Finlayson (1995), Gevers and Stokman (2004),

and Hero et al. (2002), combining higher-order color invariant fea-

tures with an entropy graph-based similarity measure. We extract

color invariant features from object images, invariant to viewpoint,

shadow and shading. As opposed to using a histograms or kernel

density estimations, we employ entropic graphs. The Henze–Pen-

rose similarity measure is then used to compute the similarity of

two images. Finally, we evaluate our method on a large collection

of object images. The object image collection consists of 1000

objects recorded under various imaging circumstances.

The paper is organized as follows. The next section discusses

the color invariant model, Section 3 introduces entropic graphs

and the Henze–Penrose (HP) similarity measure. Section 4

presents experimental results, and the Conclusions are given in

Section 5.

2. COLOR INVARIANT FEATURES

Color is defined in terms of human observation. There is no one-to-

one mapping of the spectrum of a light source to the perceived

color. The Gaussian color model described in Geusebroek et al.

(2000) approximates the spectrum with a smoothed Taylor series.

In accordance with the human visual system, the Gaussian color

model uses second-order spectral information. The zeroth-order de-

rivative measures the luminance, the first-order derivative the

\blue-yellowness," and the second-order the \red-greenness" of a

spectrum.

A RGB image is measured in the Red, Green, and Blue sensitiv-

ity components of the light. The RGB sensitivities have to be trans-

formed to the Gaussian spectral derivatives. In Geusebroek et al.

(2000) an optimal transformation matrix with the Taylor expansion

in the point k0 ¼ 520 nm and with a Gaussian spectral scale of rk

¼ 55 nm is derived under the assumption of standard REC 709 CIE

RGB sensitivities:
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When comparing images of the same object, differences in mea-

surement due to the scene environment pose a problem. Taking two

pictures of an object yields two different representations of the

same scene. Differences in lighting conditions and in camera rota-

tion change the recorded measurements of the scene. Image invari-

ants deal with the problem to measure the information in a scene,

independent of properties not inherent to the recorded object. Color

invariance aims at keeping the measurements constant under vary-

ing intensity, viewpoint, and shading. In Geusebroek et al. (2001),

several of these color invariants for the Gaussian color model are

described. A property C invariant for viewpoint, shadow and shad-

ing invariance, is given by

Ckmxn ¼ @n

@xn

1

Eðk; xÞ
@m

@km
Eðk; xÞ; m � 1; n � 0; ð2Þ

where E is the energy. The C invariant normalizes the spectral infor-

mation with the energy E and computes the spatial derivatives inde-

pendent of the spectral energy. Note that the derivatives on the

right-hand side of the equation represent measurements in the Gaus-

sian color model. This makes the local spatial neighborhood invari-

ant for intensity changes like shadow and shading.

Each pixel can be described with a color invariant feature vec-

tor. For example a second-order spatial representation of a pixel E
yields the invariant counterparts of

fCk;Ckx;Cky;Ckxx;Ckxy;Ckyy;

Ckk;Ckkx;Ckky;Ckkxx;Ckkxy;Ckkyyg:
ð3Þ

Note that only color information is used as all luminance informa-

tion is discarded.

Vol. 16, 146–153 (2007) 147



The invariant expressions up to second order are given by,

Ck ¼ Ek

E
; Ckx ¼EkxE�EkEx
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E2
;
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E
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2
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;
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E3
:

Indices denote differentiation by Gaussian convolution.

3. ENTROPIC GRAPHS

This section advocates entropic difference measures as an alterna-

tive to commonly used difference measures. The entropy measures

the information content of a random variable. The information in

one variable may be used to describe another, by using the mutual

information between the two variables. High mutual information

implies a high similarity between the two random processes. The

difference between two probability distributions is given by the

Kullback–Leibler (KL) divergence. The KL divergence between

p(x) and q(x) may be seen as the average error by describing distri-

bution p(x) with a distribution q(x). Entropic distance measures are

theoretically sound and can capture nonlinear relations between

probability distributions. Several applications of entropy can be

found, for example, in image registration (Studholme et al., 1999),

image retrieval (Vasconcelos, 2004), video modeling (Brand and

Kettnaker, 2000), and saliency detection (Kadir and Brady, 2001).

The entropy of high-dimensional features is hard to estimate.

Two methods to compare images are (1) histogram matching and

(2) assuming a fixed probability density function. Entropy may be

estimated from a histogram. A histogram is a fast and easy to com-

pute method, making no assumptions on the underlying probability

distribution. However, the problem of selecting a suitable histogram

bin size is more of an art than science. Moreover, for a fixed resolu-

tion per dimension, the number of bins increases exponentially in

the number of dimensions. Kernel density estimators are a general

case of histogram methods (Wand and Jones, 1995). Nevertheless,

the problems of selecting the size of the kernel and the curse of

dimensionality also apply to kernel density estimation. Another so-

lution to estimating entropy is by assuming prior knowledge about

the probability distributions. When the probability distributions

can be described with a parameterized model the computation of

the entropy becomes feasible. However, not all processes can be

described with a fixed parameterized model. Furthermore, assuming

one distribution might severely over-simplify the complexity of the

data.

Entropic graphs provide an unparameterized, efficient way to

estimate the entropy of high-dimensional data (Hero et al., 2002).

An entropic graph is any graph whose normalized total weight (sum

of the edge lengths) is a consistent estimator of Rényi’s a-entropy.
Examples of entropic graphs are the Minimum Spanning Tree and

the k-nearest neighbor graph. One advantage of combinatorial

methods is that the computation and storage complexity increase

linearly in feature dimension. Additionally, graph-based estimators

have fast asymptotic convergence rates and bypass the complication

of choosing and fine tuning parameters such as histogram bin size

or density kernel width.

Rényi’s a-entropy (Rényi, 1961) is a generalization of the Shan-

non entropy and is defined by

Haðf Þ ¼ 1

1� a
log

Z
X

f aðxÞ dx: ð4Þ

The a-entropy converges to the Shannon entropy H(f) ¼ �$ f(x) log
f(x) dx, as a ? 1. For a lesser than 1, the tails in the distribution are

heavily weighted in the entropy.

The a-entropy can be estimated by the length of a minimal

graph through sample points. Given a set Xn ¼ {x1, x2, . . . , xn} of n
i.i.d vectors in a d-dimensional feature space, the length of a graph

is given by

LgðXnÞ ¼
X

e2GðXnÞ
jejg: ð5Þ

The graph G is over a suitable substructure, e.g. k-nearest neighbor
graphs (see Fig. 1). Furthermore, e are edges in a graph connecting

pairs of Xi’s and |e| denotes the Euclidean distance. The weighting

g [ (0,d) relates to the value of a in the a-entropy as a ¼ (d�g)/d,
where d is the dimensionality of the feature space.

The entropic graph estimator

ĤaðXnÞ ¼ 1

1� a
log LðXnÞ=na � log c ð6Þ

is an asymptotically unbiased and consistent estimator of the a-
entropy, where c is a constant independent of the data.

Entropic graphs can be used to estimate several similarity mea-

sures. These similarity measures include the a-mutual information,

a-Jensen difference divergence, the HP affinity, and the a-

Figure 1. An example of a 4-nearest neighbors graph. [Color figure
can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

148 Vol. 16, 146–153 (2007)



geometric–arithmetic mean divergence. For a ? 1, the a-divergence
reduces to the KL divergence, and the a-mutual information to the

Shannon mutual information. When a approaches 1, central differen-

ces between the two densities become highly pronounced. When a
approaches 0, tail differences between two densities f and g become

most influential. Therefore, if the feature densities differ in regions

where there is a lot of mass one should choose a close to 1 to ensure

locally optimum discrimination. Alternatively, if the tails or extreme

values of the distribution describe the important events, a should be

chosen close to 0.

One measure of similarity between probability distributions f
and g is the Henze-Penroze (HP) (1999) affinity,

DHP ¼ 2pq

Z
f ðxÞgðxÞ

pf ðxÞ þ qgðxÞ dx; ð7Þ

where p [ [0,1] and q ¼ (1 � p).

In Neemuchwala and Hero (2005), an entropic graph algorithm

for the Henze-Penroze affinity is introduced for given sample points

{Xi}
m
i ¼ 1 of f, and {Yi}

n
i ¼ 1 of g. For given samples, the value for p

in Eq (7) is directly related to the number of samples: p ¼ m
mþn. The

entropic graph algorithm to estimate the HP affinity is given by

1. Construct the k-nearest neighbor graph on the sample points

{X}| {Y};
2. Keep only the edges that connect an X-labeled point to an Y-

labeled point;

3. The HP-test affinity is given by the number of edges retained,

divided by (m þ n)k for normalization.

This algorithm constructs an entropic graph on the edges that con-

nect classes {X} and {Y}. Counting the connecting edges implies a

power weighting with 0. Therefore, the value for a in the estimated a-
entropy is 1, emphasizing central differences between the two classes.

Figures 2 and 3 show two-dimensional examples of the HP affin-

ity. The examples show sample points {X} and {Y} drawn from the

same uniform distribution, and from a slightly different distribution,

respectively. The affinity between the points drawn from the same

distribution is significantly higher.

4. EXPERIMENTS

Performance is evaluated with an object recognition task on the

ALOI dataset (Geusebroek et al., 2005). The ALOI collection con-

sists of 1000 objects recorded under various imaging circumstances.

For each object the viewing angle, illumination angle, and illumina-

tion color are varied. See Figures 4–6 and 10 for examples of the

collection.

The combination of a large image dataset with a considerable

variety of appearance offers a formidable challenge for object rec-

ognition. Object recognition is the problem of matching one appear-

ance of an object against a standardized version. One object may

give rise to millions of different images, as camera conditions may

be varied endlessly. In our recognition experiment, one prototypical

version of each object in the ALOI dataset is indexed and the diver-

sity of recorded object variations in the collection are used for

querying. An object is perfectly recognized when for all different

variations the correct indexed object is returned. In this case, one

may assume that the object can be recognized under a wide variety

of real-life imaging circumstances.

A. Implementation. Entropic graphs are constructed with k-
nearest neighbor search. The nearest-neighbor search is imple-

mented using the approximation algorithm by Nene and Nayar

(1997). The nearest-neighbor search is simple to implement and ef-

ficient in high dimensions. The algorithm proposed in Nene and

Nayar (1997) constrains possible nearest neighbors of a point p
inside a high-dimensional hypercube around p. For each dimension

i, the points outside the limits i � e and i þ e are discarded where

the value of e is typically small. For given distributions, e can be set
to an optimal value. For unknown data, however, e may be empiri-

cally estimated. An offline sorted data structure makes discarding

the points outside the hypercube efficient. In the case of entropic

graph construction, this data structure needs to be computed for

each query.

We extend the nearest-neighbor algorithm specifically for

entropic graph construction. Particularly, the approximate nearest-

neighbor algorithm is transformed to an optimal, exact algorithm.

An entropic graph computes the k-nearest neighbors for each query

Figure 2. Example of the HP affinity in two dimensions. The sample
points {X} (circle) and {Y} (square) are drawn from the same uniform

distribution. The calculated affinity is 0.85. [Color figure can be

viewed in the online issue, which is available at www.interscience.
wiley.com.]

Figure 3. Example of the HP affinity in two dimensions. The sample

points {X} (circle) and {Y} (square) are drawn from slightly different uni-

form distributions. The calculated affinity is 0.41. [Color figure can be
viewed in the online issue, which is available at www.interscience.

wiley.com.]
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image Q with every database image D. For each point p in the

image D, the Euclidean distance to the kth nearest neighbor, which

is furthest away, is stored. These distances are subsequently used as

the e values in computing the neighbors to p in Q. Because this e
value is the point furthest away in D, all points discarded can never

be a k-nearest neighbor of Q| D. Hence, yielding an optimal value

for e, thus an exact, and more efficient entropic graph algorithm.

Before constructing the entropic graphs, we preprocess the

images to extract features. The values of the color invariant N-jet

are subsampled, thresholded, and whitened. We compute the sec-

ond-order color invariant N-jet by convolution with a Gaussian of r
¼ 2. Because of Gaussian smoothing, there is a high correlation

between neighboring pixel values. Therefore, we keep only 1 pixel

in a block of 4 pixels. Subsampling will significantly increase the

speed of the entropic graph construction. Color invariance is

achieved by dividing by the intensity. Hence, the invariants are

unstable when the intensity approaches zero. All pixels with inten-

sity lower than 15 gray values are discarded. As the nearest-neigh-

bor search uses a hypercube, whitened (or sphered) data are

required. Whitening is achieved by dividing all data by a precom-

puted standard deviation for each invariant feature. About 1000 ref-

erence images are used for the calculation of the standard deviation.

The extracted features are input for the entropic graph matching.

A single match on a standard PC takes 600 ms. Given the size of

the dataset, all computations have been performed on the Distrib-

uted ASCI Supercomputer 2 (DAS-2), a wide-area distributed com-

puter located at five different universities in The Netherlands (Bal

et al., 2000). DAS-2 consists of five Beowulf-type clusters, one of

which contains 72 nodes, and four of which have 32 nodes (200

nodes in total). All nodes consist of two 1.0 GHz Pentium III CPUs,

at least 1.0 GB of RAM, and are connected by a Myrinet-2000

network.

We used the parallel Horus framework introduced in Seinstra

and Koelma (2004). The Parallel-Horus framework is a software

architecture that allows nonexpert parallel programmers to develop

fully sequential multimedia applications for efficient execution on

homogeneous Beowulf-type commodity clusters. The core of the

architecture consists of an extensive software library of data types

and associated operations commonly applied in multimedia proc-

essing. To allow for fully sequential implementations, the library’s

application programming interface is made identical to that of

Horus, an existing sequential library.

B. Results. We used the ALOI collection (Geusebroek et al.,

2005) for evaluation of object recognition performance. For each

object, 49 different appearance variations are evaluated. The 49 var-

iations consist of 12 illumination color variations, 13 rotated views

of the object, and 24 different illumination directions. Object recog-

nition requires reference images and query images. The reference

images are the ones recorded with white illumination and frontal

camera with all lights turned on. The 49 query images per object

are all matched against the 1000 reference images, making a total

of 49,000 queries.

We compare our method with a standard work in object recogni-

tion (Gevers and Smeulders, 1999). This method uses histogram

intersection on color invariant pixel values. The number of bins that

Figure 4. Example object from the ALOI collection,

viewed under 12 different illumination color temperatures.
[Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 5. Example object from the ALOI collection, viewed from different viewing directions. [Color figure can be viewed in the online issue, which is

available at www.interscience. wiley.com.]

Figure 6. Example object from the ALOI collection, viewed under 24 different illumination directions. Each row shows the recorded view by
one of the three cameras. The columns represent the different lighting conditions used to illuminate the object. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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is used for the histograms is 32 per dimension, which is identical to

value used in the original article. Object recognition results on the

ALOI collection are computed for RGB histograms and for normal-

ized rgb histograms.

Figure 7 shows the number of objects correctly recognized for

an increasing error tolerance. Each of the 49 viewing condition

gives rise to a possible mistake. Therefore, the graph displays the

number of objects perfectly recognized if we allow 0 errors, to

1000 objects recognized if we allow all 49 mistakes. A desirable

graph starts high and has a steep ascend. Our method starts at 141

objects and for a 5% error (2 errors) 291 objects are recognized. For

histogram intersection no objects are recognized perfectly. Further-

more, it does not matter much if RGB or normalized rgb is used.

However, the object recognition results based on entropic graphs

significantly outperforms color histograms.

To acquire some insight in the results for both object recognition

methods, we analyzed the recognition rate for each of the 49 view-

ing conditions. Figure 8 shows the object recognition performance

of both methods grouped by color temperature and rotation direc-

tion. See Figures 4 and 5 for examples of these conditions. Note the

considerable increase in recognition error for both methods under

changes in illumination color (i250, . . . , i110). Hence, both meth-

ods are not color constant, where the normalized color histograms

suffer the most. Under different viewing angles (r30, . . . , r330) our

Figure 7. Correct cumulative object recognition. The number of object correctly recognized for an increasing error tolerance. The legend indi-

cates different experiments with RGB for histogram intersection on RGB values, rgb for histogram intersection on normalized rgb values, and
egraphs for our entropic graph algorithm. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 8. Number of objects recognized, grouped by

color temperature and rotation direction. The conditions

are abbreviated with letters. The prefix i indicates illumi-

nation color and r represents degrees of rotation. The
legend indicates different experiments with RGB for his-

togram intersection on RGB values, rgb for histogram

intersection on normalized rgb values, and egraphs for

our entropic graph algorithm. [Color figure can be
viewed in the online issue, which is available at

www.interscience.wiley.com.]
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proposed method shows a high degree of robustness. The error for

histogram intersection under different angles does not favor normal-

ized or raw RGB values. Figure 9 shows the object recognition per-

formance of both methods for each camera and illumination direc-

tion. See Figure 6 for examples of these conditions. For the lighting

directions l1 and l5, performance degrades for both methods. This

result is to be expected as the light shines only on a small part of

the object. Performance further decreases as the position of the

Figure 9. Number of objects recognized, grouped by camera and illumination direction. The conditions are abbreviated with letters. The prefix
c conforms to camera position and l denotes the light source. The legend indicates different experiments with RGB for histogram intersection on

RGB values, rgb for histogram intersection on normalized rgb values, and egraphs for our entropic graph algorithm. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com.]

Figure 10. 141 ALOI objects perfectly recognized by our method. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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camera (c1 vs c3) is farther away from the frontal position, where

camera 3 is particulary difficult for the histogram-based method.

The raw RGB histograms suffer most from changes in lighting

directions, which is to be expected as no steps are taken to account

for intensity changes. For all experiments, our method significantly

outperforms the histogram-based methods.

For 1000 objects with 49 viewing conditions per object, we rec-

ognize 141 objects perfectly. That is, the number of objects that cor-

rectly match all different recordings. Given the diversity in record-

ing circumstances, we may safely assume the objects will be recog-

nized under a high variety of real-life imaging conditions. Figure 10

displays the perfectly recognized objects. These objects have no

apparent visual similarity, indicating that our approach is not biased

towards specific type of objects.

5. DISCUSSION AND CONCLUSIONS

In this paper, an unparameterized entropy estimator in combina-

tion with color invariant features are used for object recognition.

We use color invariant features that keep image measurements

constant under varying intensity, viewpoint, and shading. For

similarity matching, we employ a measure based on entropic

spanning graphs. Entropic graphs provide an alternative to tradi-

tional approaches of image matching such as assuming a fixed

probability distribution or histogram binning. The parameters

required are the number of nearest neighbors and the value for

a in the a-entropy. The number k of the k-nearest neighbors is

not critical; however, a higher k adds more robustness. The

value of a is set through the power weighting g, it determines

the importance of the tails in a probability distribution. There-

fore, a is an additional degree of freedom of the entropy, where

a ¼ 1 is equivalent to the Shannon entropy. We introduce a

new, efficient and exact entropic graph matching algorithm,

based on an approximate nearest-neighbor algorithm. Despite an

efficient algorithm, one drawback to entropic distance measures

is that they are computationally more expensive than that of tra-

ditional approaches. Object recognition performance reported on

a large dataset show that color invariant entropic graph matching

significantly outperforms histogram-based methods.
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