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ABSTRACT

Digital video is sequential in nature. When video data is
used in a semantic concept classification task, the episodes
are usually summarized with shots. The shots are annotated
as containing, or not containing, a certain concept resulting
in a labeled dataset. These labeled shots can subsequently
be used by supervised learning methods (classifiers) where
they are trained to predict the absence or presence of the
concept in unseen shots and episodes. The performance of
such automatic classification systems is usually estimated
with cross-validation. By taking random samples from the
dataset for training and testing as such, part of the shots
from an episode are in the training set and another part
from the same episode is in the test set. Accordingly, data
dependence between training and test set is introduced, re-
sulting in too optimistic performance estimates. In this
paper, we experimentally show this bias, and propose how
this bias can be prevented using episode-constrained cross-
validation. Moreover, we show that a 17% higher classifier
performance can be achieved by using episode constrained
cross-validation for classifier parameter tuning.
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1. INTRODUCTION

Machine learning techniques have proven to be a valu-
able addition to the repertoire of a multimedia researcher.
Applications of machine learning techniques in multimedia
are found in semantic video labeling [10], video shot detec-
tion [9], audio classification [5], scene recognition [12], sports
analysis [2], emotion recognition [1], Meeting analyse [6],
and in many other areas. Moreover, multimedia researchers
have contributed to specifically designed classifiers for mul-
timedia analysis [7].

A prerequisite to good classification results is an accurate
estimation of classifier performance [3, 4]. The estimated
classification performance may be used in finding the best
parameters of the classifier and helps deciding between dif-
ferent features. Hence, the estimated classification perfor-
mance determines the quality of the classification results.

This paper shows that commonly used classifier perfor-
mance evaluation techniques need special care when applied
to multimedia classification. Much multimedia data is se-
quential in nature. For example, popular music has a verse
and a chorus, in a multimedia presentation the slides are
designed with a story in mind and in video data there is
the temporal ordering of shots. This paper will show that
sequential data requires extra effort to accurately estimate
classification performance. As an instantiation of sequential
multimedia data, we will focus on classifier estimation of se-
mantic concept detectors in video. However, the described
techniques readily apply to other types of data that share a
sequential ordering.

The organization of this paper is as follows. The next sec-
tion revisits standard classifier evaluation techniques. Then,
section 3 introduces our cross-validation method for video
classification. In section 4 the experimental setup is dis-
cussed followed by the results in section 5, and the conclu-
sions in section 6.

2. CLASSIFIER PERFORMANCE EVALU-
ATION

The error estimation of a classifier not only provides a
qualitative assessment of the classifier, it also influences the
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thermore, several classifiers require parameters, which are
tuned by maximizing the estimated performance over var-
ious settings. For example in a video classification task,
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Figure 1: An example of partitioning a video set by
using shot based 3-fold cross-validation.

Snoek et al. [10] use the estimated classifier performance to
select the best low level features. Furthermore, they find the
best parameters for a Support Vector Machine (SVM) [13]
by maximazing the estimated classifier error. In their frame-
work, inaccurate classifier performance estimation might re-
sult in choosing the wrong features, or in sub-optimal para-
meter settings. Hence, classifier error estimation affects the
quality of the classifier.

Estimating the classification error is done by training the
classifier on one set, and testing the classifier on a different
set. Thus, a straightforward approach to classifier perfor-
mance estimation is by keeping part of the available data in
an unseen hold-out set. This hold-out set should be as large
as possible, to accurately represent the class variation that
may be expected. However, keeping a large part of the data
from the training set hinders the classification performance.
The advantage of using a hold-out set is that the test-data is
completely separate from the training data. However, keep-
ing a large training set to obtain a good classifier, counter-
acts a large hold-out set for accurate error estimation.

In contrast to having a single hold-out set, the cross-
validation method rotates the hold-out set over all available
data. Cross-validation randomly splits the available data in
X folds, where each of these X folds is once used as a hold-out
set. The error estimations of all folds are averaged, yielding
the classifier error. The cross-validation procedure may be
repeated R times, to minimize the effect of the random par-
titioning. An example of cross-validation for a video set is
shown in figure 1. The advantage of using cross-validation
is the combination of a large training set with several inde-
pendent test sets. Therefore, cross-validation is the standard
procedure for classification error estimation [3, 4].

3. CROSS-VALIDATION IN VIDEO CLAS-
SIFICATION

Machine learning is heavily used in semantic video index-
ing. The aim of semantic video indexing is detecting all rel-
evant shots in a dataset to a given semantic category. Some
examples of semantic concepts are Airplane, Car, Computer
Screen, Hu Jintao, Military Vehicle, Sports. Indexed seman-
tic concepts provide a user with tools to browse, explore, and
find relevant shots in a large collection of video. With grow-
ing digital video collections, there is a need for automatic
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Figure 2: An example of narrative structure in
video: five consecutive shots showing an interview
with Lebanese President Emile Lahoud.

concept detection systems, providing instant access to dig-
ital collections. Therefore, machine learning techniques are
vital to automatic video indexing.

In a video classification task, a shot is often the granularity
of interest [8, 10]. However, a video document is the end
result of an authoring process [10], where shots are used
to convey a message. For example, a topic in news video,
may consist of several shots, as shown in figure 2. Hence,
a semantic concept might span several shots, while a video
classification task is oriented towards single shots.

The mismatch between the granularity of the classification
task and the granularity of the semantic concept requires
special care in estimating classifier performance. Consider
figure 2, and note the high similarity between shot 250 and
shot 252. The similarity between these two shots can be
expected, since they are part of the same narrative struc-
ture. However, the classification task focuses on single shots,
and does not take this semantic relation between shots into
account. Therefore, the common practice [8, 10] of esti-
mating classifier performance by cross-validation on shots is
biased. Cross-validation on shots will mix shots in a sin-
gle topic to different folds while randomly partitioning the
data. Thus, nearly identical shots will leak through to the
rotating hold-out set. This leaking of near identical informa-
tion creates a dependency between the training set and the
hold-out set, which will manifest in too optimistic estimates
for classifier performance. Moreover, if cross-validation is
used for parameter tuning, the parameters will be biased
towards near-duplicate data and might consequently fail to
find the best classifier parameters for true independent hold-
out data. Therefore, the sequential nature of video data
should be taken into account when estimating classifier per-
formance.

In order to preserve the semantic relation between shots
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Figure 3: An example of a partitioning a video set
by using episode-constrained 3-fold cross-validation.



in a topic, we propose an episode-constrained version of
cross-validation. In contrast to a shot based partitioning of
the video data, an episode-constrained partitioning treats
a whole video episode as an atomic element. With videos
as atomic elements, all shots in a video are kept together,
preventing the leaking of near-identical shots to the hold-
out set. Where the traditional method randomly distributes
shots, our method randomly distributes videos. An exam-
ple of episode-constrained cross-validation for a video set is
shown in figure 3. Besides preventing the mixing of iden-
tical shots with the hold-out set, the episode-constrained
method retains relations between shots. For example, in
commercials a relation between shots is present, where both
the content of the shots and the co-occurrence of the shots
are identical. Therefore, the episode-constrained version
of cross-validation creates truly independent hold-out data,
and will yield more accurate performance estimates of video
concept classification.

4. EXPERIMENTAL SETUP

In order to compare the episode-constrained version of
cross-validation with the shot based version of cross valida-
tion, both methods are evaluated on a large corpus of news
video. The evaluation was performed using the challenge
problem for video indexing [11]. The challenge problem
provides a benchmark framework for video indexing. The
framework consist of visual features, text features, classifier
models, a ground truth, and classification results for 101
semantic concepts’ on 85 hours of international broadcast
news data, from the TRECVID 2005/2006 benchmark [8].
The advantage of using the challenge framework is that
the framework provides a standard set of features to the
TRECVID data. Furthermore, the framework is well suited
for our experiment, since there are a large number or shots,
i.e. close to 45.000, and an abundance of semantic concepts.

The challenge data comes with a training set consisting of
the first 70% of the video data, and a hold-out set containing
the last 30% of the data. We use the training set for training
a k-nearest neighbor classifier (kNN) [3]. The features we
use are the visual features [12] that are provided with the
framework. As the classifier performance measure we adopt
average precision from the challenge framework. Average
precision is a single-valued measure that summarizes the
recall-precision curve.

5. RESULTS

The focus of the experiment is on comparing episode-

constrained cross-validation versus shot based cross-validation.

To this end, we use both cross-validation methods to esti-
mate the best value for k for a kNN classifier, where k €
{1,2,3}. To evaluate the results, we computed the same pa-
rameters for k on the hold-out set. The results are displayed
in figure 4, where the best result for each method and the
hold-out set is emphasized.

Note that we are evaluating the effect of using a different
strategy for creating random permutations of the training
data. Since there is no need to create permutations of the
hold-out set, there is only one column required for hold-out
data in figure 4.

"We did not evaluate the concept baseball, since all the ex-
amples in the training set of this concept are found in a
single video.

Shot Based Episode Constrained HoldOut

NN1 NN2 NN3 NN1 NN2 NN3 NN1 NN2 NN3
Aircraft 0.225 0.221 0.393 0.195 0.203 0.131 0.132 0.096
1. Allawi 0.271 0.248 0.420 0.164 0.153 . 0.001 0.000
Anchor 0.861 0.856 0.910 0.528 0.538 0.645 0.650 0.552
Animal 0.456 0.465 0.566 0.393 0.391 0.481 0.478 0.377
Y. Arafat 0.180 0.166 0.326 0.174 0.165 0.192 0.185 0.085
Basketball 0.384 0.355 0.548 0.053 0.055 0.038 0.036 0.036
Beach 0.233 0.211 0.416 0.126 0.127 0.044 0.036 0.129
Bicycle 0.436 0454 0427 0.757 0.750 0.056
Bird 0.783 0.779 0.755 0.753 0.847
Boat 0.289 0.280 0.276 0.285 0.094
Building 0.308 0.304 0.269 0.262 0.208
Bus 0.021 0.021 0.015
G.Bushjr. 0.310 0.290 0.019
G.Bushsr. 0.134 0.116 0.000
Candle 0.012 0.019 0.027
Car 0.378 0.372 0.161
Cartoon 0.748 0.692 0.232
Chair 0.274 0.275 0.286
Charts 0.491 0.476 0.348
B. Clinton 0.053 0.054 0.104
Cloud 0.158 0.150 0.088
Corporate leader 0.167 0.173 0.011
Court 0.122 0.125 0.105
Crowd 0.401 0.388 0.375
Cycling 0.459 0.471 0.074
Desert 0.131 0.131 0.047
Dog 0.383 0.386 0.174
Drawing 0.733 0.704 0.171
Drawing & Cartoon 0.746 0.737 0.210
Duo-anchor 0.523 0.525 . 0.353
Entertainment 0.604 0.588 . 0.265
Explosion 0.162 0.143 . 0.054
Face 0.914 0.911 . 0.810
Female 0.363 0.356 . X 0.051
Fire weapon 0.182 0177 . 0.108 0.041 0.041 0,045
Fish 0.545 0.535 X 0.434 0.848 0.597
Flag 0.278 0.255 04 0.091 0.046 0.025
Flag USA 0.355 0.334 0.5 0.187 0.048 0.021
Food 0.487 0.466 X 0.362 0.374 0.328
Football 0.201 0.206 . 0.165 0.100 0.017
Golf 0.531 0.547 . 0.246 0.082 0.076
Government building ~ 0.174 0.164 . 0.056 0.015 0.026
Government leader  0.375 0.367 . 0.249 0.155 0.108
Graphics 0.488 0.484 X 0.374 0.481 0.437
Grass 0417 0.410 . 0.290 0.127 0.055
H. Nasrallah 0.801 0.800 . 0.007 0.003
Horse 0.506 0.496 . 0.442 0.001 0.000
Horse racing 0.367 0.349 . . 0.103 0.001 0.000
House 0.112 0.115 0.206 0.037 0.034 0.057 0.006
H. Jintao 0.334 0.334 .491 0.087 0.086 0.030 0.007
Indoor 0.737 0.725 0.820 .537 0.537 0.573 0.558
J. Kerry 0.184 0.186 .267 0.041 0.041 0.000 0.000 0.006
E. Lahoud 0.676 0.671 0.824 0.681 0.304 0.289 0.220
Male 0.369 0.372 0.591 0.146 0.147 0.075 0.075 0.039
Maps 0.552 0.555 0.713 0.437 0.450 0.461 0.468 0.367
Meeting 0.335 0.323 0478 0.272 0.273 0.143 0.150 0.145
Military 0.307 0.295 0.458 0.209 0.216 0.159 0.160 0.160
Monologue 0.348 0.329 0.457 0.216 0.202 0.082 0.079 0.047
Motorbike 0.801 0.800 0.896 0.668 0.668 0.008 0,008 0.002
Mountain 0.336 0.340 04 0.301 0.215 0.210 0.187
Natural disaster 0.140 0.140 . 0.144 0.107 0.113 0.047
News paper 0.649 0.638 0.714 0.384 0.378 0.301 0.304 0.330
Night fire 0.064 0.093 0.359 0.009 0.010 0.412 0.403 0.046
Office 0.162 0.165 0.341 0.075 0.071 0.091 0.088 0.041
Outdoor 0.730 0.719 0.799 0,690 0.676 0.678 0.676 0.666
Overlayed text 0.751 0.737 0814 0,657 0.646 0.640 0.633 0.568
People 0.947 0.948 0.981 0.931 0.933 0.914 0.916 0.882
People marching 0.164 0.141 0.316 0.117 0.120 0.137 0.140 0.128
Police/security 0.070 0.072 0212 0.090 0.093 0.136 0.117 0.084
C. Powell 0.214 0.246 0.389 0.004 0.001 0.009 0.008 0.003
Prisoner 0.053 0.052 0.2 0.005 0.188 0.120 0.149
Racing 0.009 0.006 0.2! 0.001 0.003 0.003 0.001
Religious leader 0.166 0.167 0.240 0.115 0111 0.008 0.008 0.003
River 0.482 0.501 0.708 0.500 0.500 0.035 0.023 0.009
Road 0.368 0.363 0.493 0.316 0.311 0.201 0.192 0.151
Screen 0.266 0.259 0.383 0.181 0.189 .14 0.146 0.102
A. Sharon 0.251 0.251 0.409 0.389 0.389 0.003 0.003 0.005
Sky 0.466 0.459 0.606 0.414 0.411 0.340 0.342 0.329
Smoke 0.239 0.248 0.417 0.162 0.140 0.228 0.130
Snow 0.229 0.237 0.435 0.248 0.256 0.206 0.145
Soccer 0.581 0.568 0,643 0.489 0.488 0.750 0.459
Split screen 0.731 0.721 0.799 0.338 0.342 0.374 0.352
Sports 0.503 0.496 0.5 . 0.349 0.232 0.160
Studio 0.833 0.816 08 . 0.566 0.643 0.617
Swimming pool 0.441 0.346 0.635 0.187 0.186 I 0.082 0.023
Table 0.284 0.248 0.400 0.225 0.241 0.029 0.024 0,031
Tank 0.068 0.061 0.305 0.187 0.168 0.008 0.004 0.004
Tennis 0.678 0.681 0.777 0.647 0.634 0.439 0.408 0.401
T. Blair 0.336 0.336 0.616 0.403 0.404 0.006 0.004 0.061
Tower 0.246 0.242 0.396 0.260 0.250 0.132 0133 0.039
Tree 0.316 0.317 0.477 0.284 0.293 0.105 0.110 0.053
Truck 0.102 0.104 0.268 0.069 0.072 0.047 0.045 0.027
Urban 0.409 0.390 0516 0.354 0.342 0.246 0.238 0.220
Vegetation 0.303 0.300 0.471 0.292 0.287 0.159 0.158 0.095
Vehicle 0.397 0.388 0.508 0.368 0.359 0312 0.313 0.208
Violence 0.460 0.455 0.5 0.439 0.282 0.284 0.260
People walking 0.431 0418 0.5: 0.336 0313 0.313 0.287
Waterscape 0.437 0.419 . 0.466 0.361 0.370 0.210
Waterfall 0.320 0.281 0.111 0.502 0.502 0.231
Weather 0.246 0.228 0.222 0.000 .311 0.219
Mean 0.380 0.372 0.298 0.228 22 0.175

Figure 4: Classification results in average precision
for 100 concepts. Results for the k-nearest neighbor
classifier, k € {1, 2,3}, are given for both partitioning
strategies, and for hold-out data. The emphasized
numbers represent the best score for each set. Note
that episode-constrained cross-validation provides a
more accurate estimation of classifier performance.

The first thing that is striking about the results in fig-
ure 4, is the discrepancy between methods in selecting the
best classifier parameter. The shot based cross-validation



Shot Based | Episode-Constrained
Training set 0.525 0.309
Hold-out set 0.188 0.221

Table 1: The mean performance over all concepts,
using the estimated parameters as selected by each
method.

method selects £ = 3 for 97 out of 100 concepts. More-
over, the estimated average precision scores for most con-
cepts are disproportional high compared to the scores that
are obtained on the hold-out set. Consider for example the
concept Aircraft. The shot based cross-validation predicts
a score of 0.393 where the best parameter is k = 3 neigh-
bors. In contrast, the episode-constrained cross-validation
predicts a score of 0.203 where the best parameter is k = 2
neighbors. Verifying the classification performance of Air-
craft on hold-out data shows an average precision of 0.096
for k = 3 and a score of 0.132 for k = 2. Note that the per-
formance estimate of episode-constrained cross-validation is
not only closer to the hold-out performance, it also selects
the best classifier parameter.

In table 1, we present the mean performance over all con-
cepts, for both cross-validation methods. We show the es-
timated results on training data, and the results on hold-
out data. The classifier parameter, the number of k-nearest
neighbors, is tuned by selecting the maximum performance
according to the cross-validation method at hand.

In analyzing table 1, we focus on two points: 1) the ac-
curacy in estimating classifier performance and 2) the final
classification performance. Starting with point 1, we con-
sider the difference between the estimated performance on
training data, and the reported performance on hold-out
data. For shot based cross-validation there is considerable
variation between the estimated performance on training
data and the performance on hold-out data. Specifically,
the performance estimate is 0.337 too optimistic. In con-
trast, for episode-constrained cross-validation the difference
between training data and hold-out data is only 0.088. This
clearly shows that the estimated performance of the episode-
constrained cross-validation is more accurate than the per-
formance estimate based on shots. Continuing with point
2, we compare the performance on hold-out data for both
methods. It turns out that the episode-constrained method
outperforms the shot based method by 17%. Analyzing the
hold-out results per-concept, shows that episode-constrained
cross-validation yields equal or better results for 93 out of
100 concepts, and it gives better results for 67 concepts.
The shot based method gives the best results for 7 con-
cepts. These results on hold-out data show that parameter
tuning is considerably more accurate when using episode-
constrained cross-validation.

6. CONCLUSIONS

In this paper, we compare two methods of cross-validation
for estimating classification performance for semantic con-
cept detection in video. The traditional method of cross-
validation is based on shots, where we propose a method
based on whole videos. This episode-constrained method
for cross-validation prevents the leaking of similar shots to
the rotating hold-out set. Experimental results show that
the episode-constrained method yields a more accurate es-

timate of the classifier performance than the shot based
method. Moreover, when cross-validation is used for pa-
rameter optimalization, the episode-constrained method is
able to better estimate the optimal classifier parameters, re-
sulting in higher performance on validation data compared
to shot based (traditional) cross-validation.
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