
Color-Based Object Recognition on a Grid

F.J. Seinstra and J.M. Geusebroek

ISLA, Informatics Institute, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{fjseins, mark}@science.uva.nl

Abstract. Multimedia data is rapidly gaining importance along with
recent developments such as the increasing deployment of surveillance
cameras in public locations, and the need for automatic comparison of
forensic video evidence. In a few years time, analyzing the content of
multimedia data will be a problem of phenomenal proportions, as dig-
ital video may produce data at rates beyond 100 Mb/s, and multime-
dia archives steadily run into Petabytes of storage space. Consequently,
for urgent problems in multimedia content analysis, Grid computing is
rapidly becoming indispensable.
This paper explores the viability of wide-area Grid systems in adhering
to the heavy demands of a real-time task in multimedia content analysis.
Specifically, we show the application of a robot dog, capable of recog-
nizing objects from a set of 1,000 learned objects, while connected to a
large-scale Grid system comprising of cluster systems in Europe and Aus-
tralia. Our results indicate that we have reached the moment at which
real-time image and video analysis on large-scale Grids is becoming a
reality. Moreover, our approach shows the effective integration of state-
of-the-art results from two largely distinct research fields: multimedia
content analysis and Grid computing.

1 Introduction

This is the time in which information — be it scientific, industrial, or other-
wise — is generally composed of multimedia items, i.e. a combination of pictor-
ial, linguistic, and auditory data. The computerized access to the content of such
information is recognized as a tremendous challenge [14], [23], [24]. For one, this
is because the automatic deduction of semantics from multimedia data requires
sophisticated techniques for data structuring, transformation, analysis, classifi-
cation, and learning. From the nature of information creation, most of the data
is irrelevant to a specific question. The challenge is therefore to discover and in-
terpret tiny fractions of useful information in a whirlwind of meaningless noise.
Due to the increasing storage and connectivity of multimedia data, automatic
multimedia content analysis is becoming an ever more important area of research.

Multimedia content analysis (MMCA) considers all aspects of the automated
extraction of knowledge from large multimedia data sets. From these, image and
video data sets are by far the largest, and thus constitute the biggest challenge.
Fundamental research questions in this area include:

– Can we automatically find (sub-)genres in images from a statistical evalua-
tion of large image sets?

– Can we automatically learn to find objects in images and video streams from
partially annotated image sets?

Scientifically, these questions deal with the philosophical foundations of cognition
and giving names to things. From a societal perspective solutions are urgently
needed, given the rapidly increasing volume of multimedia data.

Applications abound in which MMCA is essential. The Dutch Forensic In-
stitute (NFI), for example, has an urgent need for detection of objects and
individuals in video streams from surveillance cameras. The Netherlands In-
stitute for Sound and Vision (Beeld&Geluid) aims to store digitized television
broadcasts in large repositories, generating heavy demands on accessibility. The
identification of materials and land-cover classes in Terabytes of hyper-spectral
data obtained from NASA satellites is just one example from the scientific liter-
ature [30]. To adhere to the performance requirements of such colossal MMCA
problems, parallel and distributed computing is rapidly becoming indispensable.

Even though many multimedia applications are ideal for parallel implemen-
tation [9], [10], [13], [26], [28], most multimedia researchers do not benefit from
the many cluster systems available today. This is due to the lack of programming
tools that can help non-expert parallel programmers in developing efficient high-
performance multimedia applications. Existing tools generally require detailed
parallelization knowledge beyond the expertise of the average user [15], [18],
[22]. Hence, the key to effective support for high performance multimedia com-
puting lies in the availability of a familiar (i.e. user transparent) programming

model that hides the difficulties of parallel implementation from its users.
Having a familiar programming model available is only one part of a sat-

isfactory solution. This is because in many emerging multimedia applications
the use of distributed (Grid) resources is essential [20]. The combined use of
such resources is hard, however, because these still lack the basic functionality
needed for extensive use [17]. Obviously, to further stimulate Grid computing in
the multimedia community, the abovementioned programming model must be
supported by an easy-to-use execution model .

This paper describes our results obtained by matching an existing user trans-
parent programming model (i.e. Parallel-Horus [18], [22]) with an execution
model based on Wide-Area Multimedia Services, i.e. high performance multi-
media functionality that can be invoked from sequential applications running on
a desktop machine. We evaluate our approach by applying it to a state-of-the-art
visual recognition task. Specifically, we present the application of a Sony Aibo
robot dog, capable of recognizing objects from a set of 1,000 objects, while con-
nected to a large-scale Grid system comprising of cluster systems in Europe and
Australia. Our results indicate that we have now reached the moment at which
real-time image and video analysis on large-scale Grids is becoming a reality.

This paper is organized as follows. Section 2 briefly introduces the Parallel-
Horus architecture. In Section 3 we describe our services-based approach to
wide-area multimedia computing. Section 4 discusses our robot dog application.
Future work is discussed in Section 5. Concluding remarks are given in Section 6.

2 Parallel-Horus: An Overview

Parallel-Horus [19], [22], [18] is a cluster programming framework that allows
programmers to implement parallel multimedia applications as fully sequential
programs. The Parallel-Horus framework consists of commonly used multimedia
data types and associated operations, implemented in C++ and MPI. The li-
brary’s API is made identical to that of an existing sequential library: Horus [12].
The parallel functionality is integrated with Horus such that all existing sequen-
tial code remains unchanged. This approach has the major advantage that the
important properties of the Horus library (i.e., maintainability, extensibility, and
portability) to a large extent transfer to Parallel-Horus as well.

Similar to other frameworks [4], [13], Horus is based on the abstractions of
Image Algebra [16], a mathematical notation for specifying image and video
processing algorithms. Image Algebra recognizes that a small set of algorithmic

patterns can be identified that covers the bulk of all commonly applied func-
tionality. Any operation that maps onto the functionality as provided by such
pattern is obtained by instantiating it with the proper parameters, including
the function to be applied to the individual data elements. The following pat-
terns are available in Horus: (1) unary pixel operation, e.g. negation, absolute
value, (2) binary pixel operation, e.g. addition, threshold, (3) global reduction,
e.g. sum, maximum, (4) neighborhood operation, e.g. percentile, median, (5) gen-

eralized convolution, e.g. erosion, gauss, and (6) geometric transformations, e.g.
rotation, scaling. Recently, additional and commonly used patterns have been
introduced, including iterative and recursive neighborhood operations. Current
developments include patterns for operations on large datasets, as well as pat-
terns on increasingly important data structures, such as feature vectors obtained
from earlier calculations on image and video data.

For reasons of efficiency, all Parallel-Horus operations are capable of adapting
to the performance characteristics of a parallel machine at hand, i.e. by being
flexible in the partitioning of data structures [21], [18]. Moreover, it was realized
that it is not sufficient to consider parallelization of library operations in isola-

tion. Therefore, the library was extended with a run-time approach for communi-
cation minimization (called lazy parallelization), which automatically parallelizes
a fully sequential program at runtime by inserting communication primitives and
additional memory management operations whenever necessary. Results for re-
alistic multimedia applications have shown the feasibility of the Parallel-Horus
approach, with data parallel performance consistently being found to be optimal
with respect to the abstraction level of message passing programs [22], [20].

Notably, Parallel-Horus was applied in the 2004 and 2005 NIST TRECVID
benchmark evaluations for content-based video retrieval, and played a crucial
role in achieving top-ranking results in a field of strong international competi-
tors (incl. IBM Research and Carnegie Mellon University [20], [25]). Given this
success, in combination with the observed need for heterogeneous distributed
multimedia computing, we believe that the availability of a similar system for
Grid environments will have an immediate, stimulating, and lasting effect on the
study of the many computationally demanding MMCA problems.

3 Services-Based Multimedia Grid Computing

To arrive at a system that integrates a user transparent programming model with
an efficient and easy-to-use execution model, we have combined the Parallel-
Horus programming model with the now popular services-based approach to
wide-area computing [1]. A services-based approach coincides well with the most
common types of multimedia applications, in which distribution of tasks, as well
as the parallelization thereof, is relevant (i.e., video processing, processing of
large multimedia archives, parameter sweeps over multimedia data).

Specifically, we have designed a client-server based framework, that is ex-
tended with a resource broker implementation for automatic resource detection
and allocation. The three logical components (i.e. client, server, and resource
broker) are provided by way of three APIs that allow for services provisioning,
services calling, and services registration. With these APIs, converting Parallel-
Horus code to a client and corresponding server implementation is straight-
forward. As such, dynamic systems of distributed multimedia services, in which
clients and servers can participate at will, can be created without any paralleliza-
tion and distribution effort from the user. Our robot dog application discussed
in Section 4 indeed is implemented as a dynamic system of this kind.

The wide-area extensions to our framework are implemented from scratch,
meaning that they are not based on existing Grid middleware, or Web Services
implementations [1]. Although such software systems are important for reasons
of portability, and standardized protocols for data exchange, we have decided to
currently rely on our own implementations — simply for reasons of efficiency and
ease-of-use. As a result, we have full insight in the performance bottlenecks and
potential of wide-area multimedia computing, which is often not the case when
using ’black-box’ Grid middleware. Having said this, comparison and integration
with existing Grid solutions obviously will be an important future research issue.

4 Performance Evaluation

In this section we give an assessment of our architecture’s effectiveness in pro-
viding significant performance gains. To this end, we describe the wide-area
execution of a state-of-the-art vision task. Specifically, we present the applica-
tion of a Sony Aibo robot dog, capable of recognizing objects, while connected
to a large-scale Grid system comprising of clusters in Europe and Australia [7].

4.1 Object Recognition by a Sony Aibo Robot Dog

Our example application demonstrates object recognition performed by a Sony
Aibo robot dog (see Figure 1). Irrespective of the application of a robot, the
general problem of object recognition is to determine which, if any, of a given
repository of objects appears in an image or video stream. It is a computation-
ally demanding problem that involves a non-trivial tradeoff between specificity
of recognition (e.g., discriminating between different faces) and invariance (e.g.,

Fig. 1. Object recognition by our robot dog: (1) an object is shown to the dog’s camera;
(2) video frames are processed on a per-cluster basis; (3) given the resulting feature
vectors describing the scene, a database of known objects is searched; (4) in case of
recognition, the dog reacts accordingly (see: www.science.uva.nl/˜fjseins/aibo.html).

to different lighting conditions). Due to the rapid increase in the size of multi-
media repositories consisting of ’known’ objects [7], state-of-the-art sequential
computers no longer can live up to the computational demands, making high-
performance distributed computing indispensable.

Local Histogram Invariants. In our robot application, we learn local his-
tograms of invariant features for each aspect of an object. The color invariant
features are highly invariant to illumination color, shadow effects, and shading of
the object [6]. The features are derived from a kernel based histogram of feature
responses. By exploiting natural image statistics, we model these histograms by
parameterized density functions. The parameters act as a new class of photomet-
ric and geometric invariants, yielding a very condensed representation of local
image content. In the learning phase of our system, a single condensed repre-
sentation of each observed object is stored in a database. Subsequently, object
recognition is achieved by matching local histograms extracted from the video
stream generated by the camera in the dog’s nose against the learned database.

In our approach, we first transform each pixel’s RGB value to an opponent
color representation,





E
Eλ

Eλλ



 =





0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17









R
G
B



 . (1)

The rationale behind this is that the RGB sensitivity curves of the camera are
transformed to Gaussian basis functions [5], being the Gaussian and its first and
second order derivative. Hence, the transformed values represent an opponent
color system, measuring intensity, yellow versus blue, and red versus green.

Spatial scale is incorporated by convolving the opponent color images with
a Gaussian filter. Photometric invariance is now obtained by considering two
non-linear transformations, as described in [5]. The first color invariant W iso-
lates intensity variation from chromatic variation, i.e. edges due to shading, cast
shadow, and albedo changes of the object surface. The second invariant feature
C measures all chromatic variation in the image, disregarding intensity variation,
i.e. all variation where the color of the pixels change. These invariants measure
point-properties of the scene, and are referred to as point-based invariants.

Point-based invariants are known to be unstable and noise sensitive [29].
Increasing the scale of the Gaussian filters overcomes this partially. However, ro-
bustness is traded for invariance. A better way is to construct local histograms
of responses for the color invariants. Localization is obtained by estimating the
histogram under a kernel. Kernel based descriptors are known to be highly dis-
criminative, and have been successfully applied in tracking applications [3].

Advantage of the use of an opponent color space, with additional photomet-
ric invariant transformations, is that color values are decorrelated. Hence, for
a distinctive image content descriptor, we may as well use the marginal, one-
dimensional, distributions for each of the color channels. This in contrast to the
histogram of the full 2D chromatic or 3D color space. Hence, we use the one-
dimensional channel histograms of the invariant gradients {Ww, Cλw, Cλλw},
and the edge detectors {Wx, Wy, Cλx, Cλy, Cλλx, Cλλy}, separately.

Histogram Parameterization. From natural image statistics research, it is
known that histograms of derivative filters can be well modeled by simple dis-
tributions [27]. In previous work [8], we showed that histograms of Gaussian
derivative filters in a large collection of images follow a Weibull type distribu-
tion. Furthermore, the gradient magnitude for invariants W and C given above
follow a Weibull distribution,

p(r) =
1

β

(

r

β

)γ−1

exp

{

−
1

γ

∣

∣

∣

∣

r

β

∣

∣

∣

∣

γ}

, (2)

where r represents the response for one of the invariants {Ww, Cλw, Cλλw}.
The local histogram of invariants of derivative filters can be well modelled

by an integrated Weibull type distribution [8],

p′(r) =
γ

2γ
1

γ βΓ (1/γ)
exp

{

−
1

γ

∣

∣

∣

∣

r

β

∣

∣

∣

∣

γ}

. (3)

In this case, r represents the response for one of the invariants {Wx, Wy, Cλx,
Cλy, Cλλx, Cλλy}. Furthermore, Γ (α) represents the complete Gamma function,
Γ (α) =

∫

∞

0
tα−1e−tdt.

In our implementation we convert the histogram density of all local invariant
histograms to Weibull form by first centering the data at the mode µ of the
distribution. Then, multiplying each bin frequency p(ri) by its absolute response
value |ri|, and normalizing the distribution. These transformations allow the
estimation of the Weibull density parameters β and γ, indicating the (local)
edge contrast, and the (local) roughness or textureness, respectively [8].

Color-Based Object Recognition. In our robot dog system we apply a sim-
ple algorithm for object recognition and localization, based on the described
invariant features. In the first ’learning’ phase of our experiment, an object is
characterized by learning the invariant Weibull parameters at fixed locations in
the image, representing a sort of fixed ’retina’ of receptive fields positioned at a
hexagonal grid, 2σ apart, on three rings from the center of the image. Hence, a
total of 1+6+12+18 = 37 histograms are constructed. For each histogram, the
invariant Weibull parameters are estimated. In the learning phase we present
our dog with a set of 1,000 objects under a single visual setting. For each of
these objects, the learned set of Weibull parameters is stored in a database.
In the second ’recognition’ phase, we validate the learning step by showing the
same objects again, under many different appearances, with varying lighting di-
rection, lighting color, and viewing position, using the same retinal structure.
In this manner, our robot dog has learned each of the 1,000 objects from only
one example, while being capable of recognizing more than 300 of these under
a diversity of imaging conditions that may occur in everyday life. Interestingly,
this recognition rate is higher than the recognition rate of around 200 objects
reported for a real dog [11].

Important for this paper is the fact that (on average, see the measurements
presented below) the algorithm runs at around 1 frame per 4 seconds. Moreover,
we vote over the results obtained from 8 consecutive frames. As a result, object
recognition takes approximately 30 seconds, which is not even close to real-time
performance. As shown in the remainder of this paper, this problem is overcome
by applying high-performance distributed computing at a very large scale.

4.2 Hardware Environment

Our robot dog application has been tested on multiple cluster systems located
at research institutes all over the world. The bulk of the measurements were
performed using the Distributed ASCI Supercomputer 2 (DAS-2), a 200-node
system located at five different universities in the Netherlands [2]: Vrije Univer-
siteit Amsterdam (VU, 72 nodes), Leiden University, University of Amsterdam,
Delft University of Technology, and University of Utrecht (32 nodes each). All
nodes consist of two 1-Ghz Pentium-III CPUs with up to 2 GByte of RAM,
and are connected by a Myrinet-2000 network. At the time of measurement, the
nodes ran RedHat Enterprise Linux AS 3.2.3.

All additional measurements have been performed using four different cluster
systems in Europe and one in Australia. The first system is the 272×2 Lisa cluster
located at SARA, Amsterdam, The Netherlands. All nodes consist of a 3.4-GHz
Pentium Xeon CPU, with 2 GByte of RAM, are connected by a 800 Mb/sec
Infiniband network, and run Debian Linux 3.1. The second system is the 36×2
Gaisberg cluster located at the Department of Scientific Computing, Salzburg
University, Austria. All nodes consist of two AMD Athlon MP2800+ CPUs,
with 2 GByte of RAM, are connected by a 6×6 Dolphin SGI torus network,
and run the RedHat Linux 9 operating system. The third system is the 16-
node cluster located at the Consiglio Nazionale delle Ricerche in Genoa, Italy.

All nodes in this system consist of a single 2.66-Ghz Pentium 4 Xeon CPU,
with 0.5 GByte of RAM, are connected by a Gigabit Ethernet network, and run
RedHat Enterprise Linux AS 3.2.3. The fourth system is the 8×2 Zeus cluster
located at CYFRONET AGH, University of Science and Technology, Krakow,
Poland. All nodes in this system consist of two 2.4-GHz Pentium 4 Xeon CPUs,
with 1 GByte of RAM, and run the RedHat Linux 7.3 operating system. The final
system is the 50-node Mahar cluster located at the School of Computer Science
and Software Engineering, Monash University, Melbourne, Australia. All nodes
consist of a single 3.0-GHz Pentium 4, with 1 GByte of RAM, are connected by
a Gigabit GrangeNet network, and run Debian Linux 3.3.5.

4.3 Measurements

The sequential (server-side) Parallel-Horus implementation of our robot dog ap-
plication immediately constitutes a parallel program that executes efficiently on
a cluster system. Figure 2 shows measurements obtained for using each of the
five DAS-2 clusters, one at a time. Results are given for the time spent on the
processing of a single frame, measure both at the server side and the client appli-
cation. It can be seen that the wide-area communication overhead is around 10
ms at all times, clearly an acceptable overhead. In part this is because we send
frame data in JPEG compressed form — i.e. around 10-20 Kbytes per server
call. Based on these results, we conclude that our framework is very effective
when using the DAS-2 clusters.

In Figure 3 similar results are presented for the additional clusters. It can
be seen that the wide-area overhead depends on the location of each cluster.
Still, this overhead is acceptable, even in the case of Krakow and Melbourne.
Interestingly, however, the application is not always very effective in obtaining
high performance on all clusters. This is due to non-optimal configurations of the
interconnection network (and its related software), and to high network traffic
caused by other users.

Figure 4(a) shows the speedup characteristics for the application as obtained
when using the DAS-2 cluster at the Vrije Universiteit in Amsterdam. We show

Fig. 2. Client- and server-side results for the Aibo robot dog application using input
images of size 412×318 (3-byte) pixels. Measurements for all DAS-2 clusters. Average
execution times given in seconds for one frame of video. Client located at the University
of Amsterdam. Resource broker located at CYFRONET AGH, Krakow, Poland.

Fig. 3. Client- and server-side results for the robot dog application on five alternative
clusters. Setup and data sizes as in Figure 2.

the graph for it to be compared to the graph of Figure 4(b), which shows the
speedup characteristics obtained when using four different DAS-2 clusters at the
same time. The ’base’ of the graph of Figure 4(b) is obtained by taking the
execution time of our application running on a single node using a single DAS-2
cluster, averaged over all DAS-2 clusters. This average execution time, as well
as the actual execution times obtained when using multiple DAS-2 clusters are
shown in Figure 5. Interestingly, the speedup graph of Figure 4(b) (ranging over
96 CPUs) has an identical shape as the first part of the graph of Figure 4(a)
(ranging over 24 CPUs). This indicates that there is no additional loss of per-
formance at the client side when more than one multimedia server is applied.
In other words, the obtained speedup with respect to the number of applied
multimedia servers is fully linear. Here it should be noted that a similar speedup
comparison is difficult to make when using the non-DAS-2 clusters, as each of
these has different performance and speedup characteristics. Therefore we refrain
from making such a comparison here.

Finally, a test in which we applied all available clusters resulted in a maximum
rate of over 10 frames/sec, clearly indicating that real-time multimedia Grid
computing is within reach. A video demonstration of our robot dog system can
be found at www.science.uva.nl/˜fjseins/aibo.html.

(a) (b)

Fig. 4. (a) Client- and server-side speedup for the VU results presented in Figure 2,
and (b) Client-side speedup for the four-cluster measurements presented in Figure 5.

Fig. 5. Client-side results for the robot dog application. Measurements for combined use
of two DAS-2 clusters (VU and UvA), as well as four DAS-2 clusters (i.e. also incl.
Leiden and Delft). Average performance given in seconds for one as well as sixteen
frames of video. Average single-node-single-cluster result taken from Figure 2.

5 Future Work

The work described in this paper is part of a larger strive to bring the benefits of
high-performance distributed computing to the multimedia community. While
deploying Parallel-Horus on wide-area systems was shown to be straightforward,
for the system to make effective use of available resources many fundamental
research problems remain unsolved. One aim is to improve the performance of
wide-area programs further by dynamic assignment of Parallel-Horus operations
to Grid resources. The fundamental problem is to detect those (sequences of) op-
erations that can be executed on other machines such that the overall execution
time is minimized. Our approach to this problem will be feedback driven; running
operations will be profiled to ”learn” the respective execution times. Assuming
identification of concurrently executable units, such units can be distributed to
available machines. Once performance information is available, additional ma-
chines can be requested to the running application, or dropped dynamically.

The introduction of a virtual machine (vm) for multimedia computing is key
to achieving these goals. On one hand, the vm will provide the conceptual frame-
work for devising domain-specific optimization and parallelization techniques.
On the other hand, the vm will provide a limited yet powerful set of operations
on which techniques for reliable and self-tuning execution can be focused.

6 Conclusions

Parallel-Horus, developed at the University of Amsterdam, allows researchers
in multimedia content analysis to implement high-performance applications as
sequential C++ programs, using a carefully designed set of building block op-
erations (called algorithmic patterns). In this paper we have described results
obtained by matching the Parallel-Horus programming model with an execu-
tion model based on so-called Wide-Area Multimedia Services. The resulting
framework, which integrates the efficient task parallel invocation of multimedia
services with the automatic data parallel execution of these services, requires
no parallelization or distribution effort from its users. In addition, our example
application has shown that with our wide-area extensions to Parallel-Horus we

can greatly improve speedup characteristics obtained on single cluster systems.
The distributed setup of our framework adds extra network overhead, but this
tends to be marginal in comparison to the total execution times.

Considering these features, we feel that we have succeeded in designing and
building a framework that integrates a user transparent programming model
with an efficient and easy-to-use execution model, to support a wide range of
multimedia applications. It should be noted, however, that the wide-area ca-
pabilities are still a ’proof-of-concept’. These have served well in showing the
potential of applying Grid resources in state-of-the-art multimedia processing in
a coordinated manner. However, there is still room for improvement, in func-
tionality, reliability, fault tolerance, and performance. With such improvements,
we feel that Parallel-Horus will continue to have an immediate and stimulat-
ing effect on the study of the many computationally demanding problems in
multimedia content analysis. Our robot dog application is merely one of these.

Acknowledgements

The authors would like to thank the following people for their support, and for
granting us access to their cluster systems: Prof. David Abramson, Collin Enti-
cott (Monash University, Australia), Tony Adriaansen (CSIRO, Australia), An-
dreas Uhl, Ernst Forsthofer (Salzburg University, Austria), Daniele D’Agostino,
Antonella Galizia (University of Genoa, Italy), Marian Bubak, Patryk Lason,
Lukasz Skital (University of Science and Technology, Krakow, Poland), Willem
Vermin (SARA, The Netherlands), Prof. Henri Bal, Thilo Kielmann, Kees Ver-
stoep (Vrije Universiteit, Amsterdam, The Netherlands). The authors are grate-
ful to Cees Snoek, and Michiel van Liempt for their efforts in providing us with
state-of-the-art multimedia applications. Finally, thanks go out to Edwin Stef-
fens and Arnoud Visser for providing us with a Sony Aibo robot dog.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Concepts,
Architectures and Applications. Springer-Verlag, 2004.

2. H.E. Bal et al. The Distributed ASCI Supercomputer Project. Operating Systems
Review, 34(4):76–96, 2000.

3. D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based Object Tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(4):564–577, 2003.

4. D. Crookes, P.J. Morrow, and P.J. McParland. IAL: A Parallel Image Processing
Programming Language. IEE Proceedings, Part I, 137(3):176–182, June 1990.

5. J.M. Geusebroek et al. Color Invariance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(12):1338–1350, 2001.

6. J.M. Geusebroek et al. Color Constancy from Physical Principles. Pattern Recog-
nition Letters, 24(11):1653–1662, 2003.

7. J.M. Geusebroek and F.J. Seinstra. Object Recognition by a Robot Dog Connected
to a Wide-Area Grid System. In Proceedings of ICME 2005, July 2005.

8. J.M. Geusebroek and A.W.M. Smeulders. A Six-stimulus Theory for Stochastic
Texture. International Journal of Computer Vision, 62(1/2):7–16, 2005.

9. L.H. Jamieson, E.J. Delp, C.-C. Wang, J. Li, and F.J. Weil. A Software Environ-
ment for Parallel Computer Vision. IEEE Computer, 25(2):73–75, 1992.

10. Z. Juhasz and D. Crookes. A PVM Implementation of a Portable Parallel Image
Processing Library. In Proceedings of EuroPVM’96, pages 188–196, 1996.

11. J. Kaminski, J. Call, and J. Fischer. Word Learning in a Domestic Dog: Evidence
for ”Fast Mapping”. Science, 304, June 2004.

12. D. Koelma et al. Horus C++ Reference, v. 1.1. Technical report, University of
Amsterdam, The Netherlands, January 2002.

13. P.J. Morrow et al. Efficient Implementation of a Portable Parallel Programming
Model for Image Processing. Concurrency: Pract. Exp., 11:671–685, 1999.

14. M.R. Naphade et al. Extracting Semantics from Audiovisual Content: The Final
Frontier in Multimedia Retrieval. IEEE Trans. Neural Netw., 13(4):793–810, 2002.

15. C.M. Pancake and D. Bergmark. Do Parallel Languages Respond to the Needs of
Scientific Programmers? IEEE Computer, 23(12):13–23, December 1990.

16. G.X. Ritter and J.N. Wilson. Handbook of Computer Vision Algorithms in Image
Algebra. CRC Press, Inc, 1996.

17. J.M. Schopf and B. Nitzberg. Grids: The Top Ten Questions. Scientific Program-
ming, 10(2):103–115, August 2002.

18. F.J. Seinstra et al. A Software Architecture for User Transparent Parallel Image
Processing. Parallel Computing, 28(7–8):967–993, August 2002.

19. F.J. Seinstra et al. Finite State Machine-Based Optimization of Data Parallel Reg-
ular Domain Problems Applied in Low-Level Image Processing. IEEE Transactions
on Parallel and Distributed Systems, 15(10):865–877, October 2004.

20. F.J. Seinstra et al. User Transparent Parallel Processing of the 2004 NIST
TRECVID Data Set. In Proc. IPDPS 2005, Denver, CO, USA, April 2005.

21. F.J. Seinstra and D. Koelma. P-3PC: A Point-to-Point Communication Model
for Automatic and Optimal Decomposition of Regular Domain Problems. IEEE
Transactions on Parallel and Distributed Systems, 13(7):758–768, July 2002.

22. F.J. Seinstra and D. Koelma. User Transparency: A Fully Sequential Programming
Model for Efficient Data Parallel Image Processing. Concurrency and Computation:
Practice & Experience, 16(6):611–644, May 2004.

23. A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content Based
Image Retrieval at the End of the Early Years. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(12):1349–1380, 2000.

24. C.G.M. Snoek et al. Learning Rich Semantics from Produced Video. ACM Trans-
actions on Multimedia Computing, Communications and Applications, May 2006.

25. C.G.M. Snoek and M. Worring. Multimodal Video Indexing: A Review of the
State-of-the-art. Multimedia Tools and Applications, 25(1):January, 2005.

26. J.M. Squyres, A. Lumsdaine, and R.L. Stevenson. A Toolkit for Parallel Image
Processing. In Proc. SPIE, San Diego, CA, USA, July 1998.

27. A. Srivastava et al. On Advances in Statistical Modeling of Natural Images. Journal
of Mathematical Imaging and Vision, 18:17–33, 2003.

28. R. Taniguchi et al. Software Platform for Parallel Image Processing and Computer
Vision. In Proc. SPIE, pages 2–10, San Diego, CA, USA, July 1997.

29. J. van de Weijer, T. Gevers, and J.M. Geusebroek. Color Edge and Corner De-
tection by Photometric Quasi-invariants. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(4):625–630, 2005.

30. Q. Xiao et al. Using AVIRIS Data and Multiple-Masking Techniques to Identify
and Map Urban Tree Species. Journal of Remote Sensing, 25(24):5637–5654, 2004.

