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Abstract—This paper offers a sparse, multiscale representation of objects. It captures the object appearance by selection from a very

large dictionary of Gaussian differential basis functions. The learning procedure results from the matching pursuit algorithm, while the

recognition is based on polynomial approximation to the bases, turning image matching into a problem of polynomial evaluation. The

method is suited for coarse recognition between objects and, by adding more bases, also for fine recognition of the object pose. The

advantages over the common representation using PCA include storing sampled points for recognition is not required, adding new objects

to an existing data set is trivial because retraining other object models is not needed, and significantly in the important case where one has

to scan an image over multiple locations in search for an object, the new representation is readily available as opposed to PCA projection at

each location. The experimental result on the COIL-100 data set demonstrates high recognition accuracy with real-time performance.

Index Terms—B-spline, Gaussian derivatives, matching pursuit, multiscale, PCA, polynomial approximation, sparse representation.
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1 INTRODUCTION

AUTOMATIC learning of object models from pictorial
examples plays an important role in recent computer

vision systems. For object manipulation and robot naviga-
tion, as well as content-based image retrieval, the ability to
recognize the object view is essential.

We make a distinction between coarse and fine recogni-
tion. Coarse recognition is the ability to distinguish between
different objects. For this purpose, one can construct various
classifiers including boundary-based methods, for example
[20]. On the other hand, fine recognition is the case where the
classes are defined on a gradual or continuous scale such as
aging or pose estimation. In fine recognition, discriminative
approaches such as support vector classification [34], boost-
ing [4], or one-class learning [28] cannot be used in their
current application manner. In this paper, we focus on the
problem of both coarse and fine recognition of object views.

This paper presents a novel representation for object
models, which is the foundation for accuracy and efficiency.
The representation is built from sparse, significant details
rather than complete image arrays. The representation is
made up from literal view fragments. It is incrementally
accurate, where one may employ degrees of accuracy
depending on the task at hand. The representation is
extensible in that new objects can be learned incrementally
without involvement of the other objects. The representa-
tion is readily available when one has to scan over an image
at multiple scales and locations in search for an object.

Learning models in the new representation is based on
sparse function approximation from a large dictionary of
Gaussian derivative bases. It is related to the classic Njet
representation [10] at multiple locations by the truncated

Taylor expansion. The advantage of the approach is that,
from a rich repertoire of local signs, those that best
characterize the object are selected. We will show that
object models can be learned efficiently from examples with
the matching pursuit algorithm [13].

The new representation is related to the work of Schmid
and Mohr [25], which uses combinations of Gaussian
derivative filter responses invariant to certain image trans-
formations and imaging conditions. In this method as well as
others employing invariant descriptors [23], the input image
is matched against known views only. On the other hand, our
method provides a mechanism for matching against in-
between views that are not present in the training set and,
therefore, is capable of fine classification. In addition, the
selection of salient points to achieve sparsity in the invariant
approaches is left open. In our approach, the sparsity
property has a direct link to the approximation accuracy.

Another related method is presented in [17], where the
author adapts the matching pursuit algorithm to learn a
linear combination of second order Gaussian derivative
bases for face recognition. A major drawback of this method
is that all objects share the same set of bases, which is not
suited where the object appearances differ sharply from one
to another. In our approach, each object is projected on a
different set of bases, which allows efficient representation
and expansion to a variety of objects.

The paper is organized as follows: In Section 2, we
review previous approaches and formulate the problem.
Section 3 presents our solution to the problem. We describe
the experiments with the new approach in Section 4.
Finally, Section 5 concludes the paper.

2 FORMULATION OF THE PROBLEM

The intensity images taken from different view points of an
object d, d 2 f1; . . . ; Dg, are samples of a three-dimensional
function f ðdÞ of intensity

fðdÞðx; y; �Þ : IR3 ! IR; ð1Þ
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where x and y denote the two spatial axes while � denotes
the orientation axis. By sampling the orientation � by
P samples and the x and y direction by N samples, the set
of images for object d can be represented as a matrix F ðdÞ

F ðdÞ ¼ ffff
ðdÞ
1 ffff

ðdÞ
2 . . . ffff

ðdÞ
P

h i
; ð2Þ

where the pth column of the matrix ffff ðdÞp is a row-wise
vectorization of the pixel values of the object d at view �p,
f ðdÞðxi; yj; �pÞ for i ¼ 1; . . . ; N and j ¼ 1; . . . ; N .

Let ffff 2 IRN�N be a vector representing an input image.
For fine recognition, from the training data F ðdÞ, one tries to
learn a mapping ’ðdÞðffffÞ : IRN�N ! IR to estimate the pose
of the input object. For coarse recognition, given a training
set of D objects fF ðdÞg, one tries to learn a mapping !ðffffÞ :
IRN�N ! f1; . . . ; Dg to identify the object.

2.1 Related Work

Poggio and Edelman [18] pioneer research in view-based

representation using function approximation with radial

basis function networks [19]. Specifically, the approxima-

tion of the function ’ðdÞ : IRN�N ! IR is

’ðdÞðffffÞ ¼
XK
k¼1

�kG jjffff � �ffffffff
ðdÞ
k jj

� �
; ð3Þ

where the K coefficients �k and the centers �ffffffff
ðdÞ
k are found in

the learning phase and Gð�Þ is an appropriate basis function,

typically Gaussian [19]. In this case, the image ffff of the object

is represented by the similarities to the centers �ffffffff
ðdÞ
k which can

be seen as object image prototypes. The problem with this

approach is that one has to store the prototypes �ffffffff
ðdÞ
k , each of

which is of the size of the input image. The coarse recognition

is carried out by generating a standard view for the input

image by learning one function for each pixel, similar to the

pose function in (3) and, subsequently, comparing the

generated view with the standard views of all objects in the

database. This is computationally expensive as the image

generation and comparison is done in the high-dimensional

space of ffff .
There is a link between the type of basis function G and

a priori information about the function to be approximated.
In [19], the authors show that function ’ðdÞ in (3) minimizes
the functional

H½’� ¼
XP
p¼1

‘ �p � ’ ffffðdÞp

� �� �
þ �jjP’jj2; ð4Þ

where ’ð�Þ is the function we search for and �p is the true
value. The function ‘ð�Þ is a loss function, P’ is a constraint
operator, and � is a regularization parameter. The first term
in (4) addresses the proper fitting of the data points while
the second term penalizes overfitting. The regularization
term reflects the a priori information about the function. For
instance, when G in (3) is a Gaussian function, it is shown in
[19] that the regularization term penalizes all derivatives of
’ to obtain smooth solutions. The derivation of G for other
types of a priori knowledge is not straightforward.

The support vector estimation of functions also approx-
imates functions by a linear combination of bases as in (3)
with the prototypes being a subset of the training data

’ðdÞðffffÞ ¼
XP
p¼1

�pG jjffff � ffff ðdÞp jj
� �

; ð5Þ

where Gð�Þ is a kernel function. The link between various

kernel functions and a priori information is established in [27]

via the regularization approach as in (4). This approximation

employs the so-called �-sensitive loss function ‘

‘ðzÞ ¼ jzj if jzj � �
0 otherwise;

�
ð6Þ

where z is the difference between the true value and the

approximated value in (4). The interesting aspect of this loss

function is that the solution ’ðdÞ of (4) has a small number of

nonzero coefficients �p. Thus, only the corresponding

support vectors ffff ðdÞp , �p 6¼ 0, need to be kept. Similar to the

radial bases function approach, one problem with the

support vector method is the number of data points that

have to be stored, especially when the function to be

approximated is nonlinear.

The work of Murase and Nayar [15] is representative for

the class of methods that employ dimension reduction by

linear projection prior to recognition. The approach uses

principle component analysis (PCA), similar to the eigen-

face method in [30]. Specifically, let �ffffffff denote the average of

all training vectors

�ffffffff ¼ 1

DP

X
d;p

ffffðdÞp ð7Þ

and M denote the projection matrix learned by PCA. The

training set F ðdÞ is projected to the low-dimensional space

spanned by the row vectors of M

F
ðdÞ
PCA ¼M F ðdÞ � �ffffffff11TP

n o
; ð8Þ

where 11TP is the transpose of a vector ofP components of ones.
Murase and Nayar use cubic-spline interpolation among the
training points F

ðdÞ
PCA to learn smooth curves ����ðdÞ parameter-

ized the pose parameter �

����ðdÞð�Þ ¼ aaaaðdÞp;0 þ aaaa
ðdÞ
p;1�þ aaaa

ðdÞ
p;2�

2 þ aaaaðdÞp;3�3 for �p � � < �pþ1:

ð9Þ

The curve ����ðdÞð�Þ is a vector-valued function with the number

of components equal to the number of dimensions of the

eigenspace. The coefficients aaaaðdÞp;r are computed by solving

systems of linear equations derived from the smoothness

condition at the known points, including the periodic

condition.
At runtime, the input image ffff is also projected to the

low-dimensional space

ffffPCA ¼M ffff � �ffffffff
� �

: ð10Þ

The pose estimation function ’ðdÞðffffÞ is defined as the pose of

the closest point to the curve ����ðdÞð�Þ in terms of the sum of

squared differences

’ðdÞðffffÞ ¼ arg min
�
jjffffPCA � ����ðdÞð�Þjj2 ð11Þ
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and, for coarse recognition,

!ðffffÞ ¼ arg min
d

min
�
jjffffPCA � ����ðdÞð�Þjj2

� �
: ð12Þ

To solve the minimization problem in (11), the authors
sample the curve ����ðdÞð�Þ densely and, subsequently, search
for the closest one among the sampled points. Clearly, this is
not efficient in both memory storage and recognition time.
The problem in (12) is solved by minimizing (11) for all d.

There is an alternative approach for recognition in the
eigenspace using radial basis function networks [14]. How-
ever, a more fundamental drawback resides in the represen-
tation of the object data. The pooled eigenspace can only work
as long as all objects share common features. For a large data
set, it may be too general to be successful. This also holds true
for other techniques for linear dimension reduction; for
example, the so-called optimal linear projection [11]. Another
drawback of these approaches lies in the fact that object
learning is not incremental. When new objects are added to
the data set, to maintain the optimality condition of PCA, the
eigenspace has to be recomputed, and so do the existing object
models. One solution is to use object eigenspaces [15] that are
specific for individual objects. However, one needs to
overcome the problem of matching objects across different
low-dimensional representations.

For the class of nonlinear reduction techniques such as
kernel PCA [26], automatic selection of a proper nonlinear
model is a hard problem in itself. For other nonlinear
techniques that have been applied successful for data
visualization such as local linear embedding [22] and
isomap [29], both projection and reconstruction of a new
data point (not in the training set) are nontrivial [1]. Hence,
it is not yet clear how one may apply these methods to learn
to recognize objects efficiently.

A major drawback of all methods described in this section
is that they use the vector representation for images, which
does not exploit an essential image property, namely, spatial
coherence allowing for condensation in the image represen-
tation to a few readily computable points. This is demon-
strated by the fact that permuting the pixels in the images
does not change the results. In the rest of the paper, we
present a new approach for recognition that approximates the
function fdðx; y; �Þ in (1) directly, exploiting a rich amount of
a prior information about fdðx; y; �Þ, including the spatial
coherence property.

2.2 Problem Statement

We wish to approximate the function f ðdÞðx; y; �Þ from the
training examples F ðdÞ. To this end, let f ðdÞðx; y; �Þ be
parameterized by md 2M, where M denotes a family of
functions to be specified. The parameter md can be seen as
an object model for the object d.

The problem of learning a model for object d includes the
specification family M and, subsequently, the estimation of
md 2M from training data F ðdÞ. ChoosingM is hard because
there is no criterion for the goodness of a family of functions. It
is often defined vaguely as one that has good approximation
properties for the problem at hand and supports computa-
tional efficiency. In Section 3, we will propose the use of
sparse function approximation.

Once the object models fmdg have been learned, we
can estimate the optimal pose �ðdÞ of each object d for a

two-dimensional input image fðxi; yjÞ with the sum of
squared differences measure by solving the following
minimization problem:

�ðdÞ ¼ arg min
�

X
i;j

f ðdÞðxi; xj; �Þ � fðxi; yjÞ
� �2

: ð13Þ

For the coarse recognition task, the object identity d� can
be recognized by finding the closest view across the whole
data set

d� ¼

arg min
d

min
�

X
i;j

fðdÞðxi; xj; �Þ � fðxi; xjÞ
� �2

( )
:

ð14Þ

The minimization problem in (13) is nontrivial since the
objective function is generally nonconvex. Thus, local
optimization methods do not suffice. In addition, the
optimization problem is carried out in a high-dimensional
space that is equal to the number of pixels of the input
image. In Section 3.4, we present a solution to this
optimization problem by turning it into the problem of
piecewise polynomial evaluation.

To minimize (14), we solve (13) repeatedly for all d,
1 � d � D. The challenge of minimizing (14) without having
to solve (13) for all d is beyond the scope of the current
paper. Nevertheless, it is feasible, in real-time, for databases
with as many as 100 objects.

In short, we have to specify a family of functions M and
learn the functions in M from training data. In addition, we
have to solve the minimization problem in (13) for
recognition.

3 MODEL LEARNING AND RECOGNITION

We treat the problem of model learning for each object d as
that of the sparse multivariate function approximation [3],
[13]. The function f ðdÞðx; y; �Þ is approximated by a linear
combination of bases

f ðdÞðx; y; �Þ ¼
XK
k¼1

�
ðdÞ
k  kðx; y; �Þ; ð15Þ

where kðx; y; �Þ 2 �, a predefined dictionary ofK bases and
�
ðdÞ
k are the coefficients. Consequently, the modelmd consists

of the nonzero coefficients�
ðdÞ
k and the indices of correspond-

ing bases in the dictionary. The sparsity comes from the fact
that only a small number of �

ðdÞ
k differ from zero.

We first present our preferred dictionary � in Sections 3.1
and 3.2. After that, we discuss the learning of object models
with the chosen dictionary. Finally, in Section 3.4, we present
an efficient algorithm to recognize novel objects using the
learned models.

3.1 Gaussian Derivative Bases

The design of the dictionary � reflects the a priori information
about the object appearance. First of all, one can observe that
the functions representing images have certain general
properties. There are abrupt changes due to geometric
concavities of the object and of the projection. Other causes
include object sharp convex folds, albedo transition, and
projected shadow. In spite of these abrupt changes in the
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image, the majority of pixels are smooth by the spatial

coherence of object surfaces. The general challenge is to find a

set of functions which match comfortably to the smooth

regions almost everywhere and at the same time adapt to

abrupt changes here and there, see also Fig. 2.
The dictionary � consists of separable bases

 kðx; y; �Þ ¼  �x
k
ðxÞ �y

k
ðyÞ ��

k
ð�Þ; ð16Þ

where  �x
k
,  �y

k
, and  ��

k
are the bases in each dimension,

indexed by �xk , �yk , and ��k in the corresponding dictionary.
Our choice for the one-dimensional bases is the Gaussian

derivatives Gnðz;�; �Þ of order n at scale � and location �

Gnðz;�; �Þ ¼
@n

@zn
1

�
ffiffiffiffiffiffi
2	
p e�

ðz��Þ2

2�2 : ð17Þ

Here, the analyzing scales are sampled exponentially. The
analyzing locations are sampled equally at each scale. The
reader is referred to [9] for discussion of stepping in scale and
space. Figs. 3a, 3b, and 3c show examples of zeroth, first, and
second order Gaussian derivative bases, respectively.

Under a reasonable assumption that no new image
structure may appear at higher scale, Koenderink [9] shows
that the Gaussian kernel is the only function to be used to
probe an image at different scales. This leads to a representa-
tion for local image structures based on the Taylor expansion
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Fig. 1. Examples of an object seen from eight views, courtesy of [16].

Fig. 2. The middle lines of 2D views of the object in Fig. 1 as the pose

changes.

Fig. 3. Gaussian derivative bases (a) zero order, (b) first order, and (c) second order. The bases in the �-axis are periodic over ½0; 2	Þ, see (d).
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of the image using Gaussian derivatives (the Njets) [10]. By

employing the Gaussian derivative bases, we will show in

Section 3.4 that the recognition is based on the Njet

coefficients of images, which is a well-founded approach to

probe image content.
Finally, the addition of nonseparable bases can provide

better image approximation, for example, along an oriented

edge or around a complex structure. However, they

introduce extra computational burden and are not con-

sidered in this paper.

3.2 Piecewise Polynomial Approximation

In practice, to acquire great computational advantages, we

approximate the Gaussian derivatives, similar to recursive

implementation [6], [33], by B-spline [31], [32], see Fig. 4.

B-spline approximation to a Gaussian function has

appeared in [37].
A B-spline of order n denoted by 
nðzÞ is generated by

convolving nþ 1 times 
0ðzÞ with itself


nðzÞ ¼ 
n�1ðzÞ � 
0ðzÞ ¼ 
0ðzÞ � 
0ðzÞ � . . . � 
0ðzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nþ1 times

; ð18Þ

where � denotes convolution and 
0ðzÞ is a centered

normalized rectangle pulse


0ðzÞ ¼

1 if jzj < 1
2

1
2 if jzj ¼ 1

2

0 otherwise:

8>>>><
>>>>:

ð19Þ

The nth order derivative of the B-spline can be obtained

from the ðn� 1Þth order B-spline as follows:

@
nðzÞ
@z

¼ 
n�1 zþ 1

2


 �
� 
n�1 z� 1

2


 �
: ð20Þ

For our purpose, the cubic B-splines are represented

by piecewise polynomials. Hence, the 1D basis functions

 �x
k
ðxÞ,  �y

k
ðyÞ, and  ��

k
ð�Þ are piecewise polynomials of

degree three: 
3ðzÞ, @
4ðzÞ=@z, or @2
5ðzÞ=@z2. We will show

in Section 3.4 that efficient recognition is achieved by

polynomial calculation.

3.3 Model Learning with Matching Pursuit

Once a family of functions � has been chosen, the next step is
to estimate a specific model from a set of training examples.
Among the various methods for function approximation
from a dictionary of bases, we use the matching pursuit
algorithm of Mallat and Zhang [13] yielding a local optimum.

The matching pursuit algorithm aims to learn fðdÞðx; y; �Þ
in (15) as follows: At each step, it finds the basis most
correlated with the residual. Let h�; �i denote inner product.
Initialize the residual function �1ðx; y; �Þ

�1ðx; y; �Þ ¼ f ðdÞðx; y; �Þ: ð21Þ

Then, loop over all bases and select the index k�r of the best
basis function in �

k�r ¼ arg max
k

D
�r;  k

E
ð22Þ

with a coefficient � along that dimension

�
ðdÞ
k�r
¼
D
�r;  k�r

E
: ð23Þ

After that, update the residual function

�rþ1 ¼ �r � �ðdÞk�r  k�r ð24Þ

and continue over the next basis. The number of bases R can
be chosen a priori. Alternatively, we can stop the iteration
when a good approximation has been reached by checking
the residual

jj�rjj2 ¼
������fðdÞðx; y; �Þ �XK

k¼1

�
ðdÞ
k  kðx; y; �Þ

������2: ð25Þ

The computation of our matching pursuit algorithm is
intensive. In each iteration of the matching pursuit algorithm,
one has to compute the project of the current residual �r on all
bases  k 2 �, see (22). Fortunately, one can use the so-called
network calculations for matching pursuit as in [12]. By taking
an inner product with a basis  k on each side of (24), we haveD

�rþ1;  k

E
¼
D
�r;  k

E
� �ðdÞk�r

D
 k�r ;  k

E
: ð26Þ

Hence, the correlation between the new residual �rþ1 with a
basis  k can be computed from the existing correlation
value and the correlation between the selected basis and  k.
By storing the correlation between all pairs of bases, (26) can
be computed in a constant time.

The number of bases K can be quite large, equal to the
product of the number of bases of the 1D dictionaries, far
more than the capability of standard computer systems.
Thanks to the separable bases, we can reduce the memory
storage greatly. The correlation between two bases  k and
 k0 can be computed as (using (16))D

 k;  k0
E
¼
D
 �x

k
ðxÞ �y

k
ðyÞ ��

k
ð�Þ;  �x

k0
ðxÞ �y

k0
ðyÞ ��

k0
ð�Þ
E

¼
D
 �x

k
ðxÞ;  �x

k0
ðxÞ
ED
 �y

k
ðyÞ;  �y

k0
ðyÞ
E

D
 ��

k
ð�Þ;  ��

k0
ð�Þ
E
:

ð27Þ
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Fig. 4. The cubic B-splines (dash lines) well approximate the Gaussian

derivatives (solid lines) up to the second order.
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Thus, instead of storing one big table for the correlation
between all pairs of bases in �, we store three tables, one for
each dimension. And, each correlation value of bases in � is
obtained by just two multiplications.

In summary, the learning of an object model in (15) is
done efficiently by the matching pursuit algorithm. The
network computation technique is used where the correla-
tion between all pairs of bases are precomputed. This large
table is implemented by storing three correlation tables, one
for each dimension, and is accessed by two multiplications.

3.4 Recognition

The minimization problem in (13) is central for both coarse
and fine recognition. In the following, we will show that it
can be solved efficiently by polynomial computation.

Expanding (13), we have

�ðdÞ ¼ arg min
�

X
i;j

f ðdÞðxi; yj; �Þ � fðxi; yjÞ
� �2

¼ arg min
�

X
i;j

f ðdÞðxi; yj; �Þ2
(

�2
X
i;j

f ðdÞðxi; yj; �Þfðxi; yjÞ
)
:

ð28Þ

The first term in (28) is the energyX
i;j

fðdÞðxi; yj; �Þ2 ¼

¼
X
i;j

XK
k¼1

�
ðdÞ
k  �x

k
ðxiÞ �y

k
ðyjÞ ��

k
ð�Þ

 !2

¼
XK
k0¼1

XK
k00¼1

(
�
ðdÞ
k0 �

ðdÞ
k00

 X
i

 �x
k0
ðxiÞ �x

k00
ðxiÞ

!
 X

j

 �y
k0
ðyjÞ �y

k00
ðyjÞ

!
�  ��

k0
ð�Þ ��

k00
ð�Þ
)

¼
XK
k0¼1

XK
k00¼1

(
�
ðdÞ
k0 �

ðdÞ
k00

D
 �x

k0
;  �x

k00

ED
 �y

k0
;  �y

k00

E
 ��

k0
ð�Þ ��

k00
ð�Þ
)
:

ð29Þ

Note that each term in (29) is a product of two piecewise
polynomials, each of degree three. Hence, the energy is a
piecewise polynomial of degree six at most. In addition, this
piecewise polynomial can be precomputed since it does not
involve the input image.

The second term is the cross correlation term (ignoring
the constant factor)X

i;j

f ðdÞðxi; yj; �Þfðxi; yjÞ ¼

¼
X
i;j

XK
k¼1

�
ðdÞ
k  �x

k
ðxiÞ �y

k
ðyjÞ ��

k
ð�Þ

 !
fðxi; yjÞ

¼
XK
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The sum within the brackets is an Njet coefficient
corresponding to the basis  �x

k
in the x-axis and the basis

 �y
k

in the y-axis. Let N I
�x
k
;�y
k

denote this value. By grouping
the Njets that belong the same basis in the �-axis, we have

X
i;j
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0
@

1
A ��ð�Þ;

ð31Þ

where K� denotes the number of bases in the �-axis. We
have that (31) is the sum of piecewise polynomials of degree
three. Hence, the result is also a piecewise polynomial of
degree three.

Consider the minimization problem in (28). The first
term (29) is a piecewise polynomial of degree six and the
second term (31) is a piecewise polynomial of degree three.
Hence, the sum does not result in a piecewise polynomial of
degree greater than six. Let gð�Þ be the resulting piecewise
polynomial, which consists of Q polynomials gqð�Þ,
1 � q � Q, each of which is of degree six at most

gqð�Þ ¼
X6

�¼0

bq;��
� for �q � � < �qþ1; ð32Þ

where �q are the break points of the piecewise polynomial
gð�Þ, and bq;� are the polynomial coefficients of gqð�Þ. As a
consequence, the minimization problem (28) can be turned
into the Q minimization of gqð�Þ.

ð�ðdÞ; q�Þ ¼ arg min
�;q

X6

�¼0

bq;��
� for �q � � < �qþ1: ð33Þ

A simple approach to minimize (33) is to evaluate gpð�Þ
at a set of densely sampled points, hence, it is equivalent to
the approach of Murase and Nayar to solving (11).
However, the evaluation of a polynomial is very fast. The
evaluation of (33) at an arbitrary point � ¼ v requires only
six additions and six multiplications using Horner’s rule [8]

gqðvÞ ¼
bq;6vþ bq;5

 �

vþ bq;4

 �

vþ bq;3

 �

vþ bq;2

 �

vþ bq;1

 �

vþ bq;0:
ð34Þ

Fig. 5 depicts the computation of (28). The input
image is transformed into the Njet representation. This
can be done efficiently by convolutions exploiting the
separability and the polynomial representation of the
bases. The Njet coefficients N I

�x
k
;�y
k
, weighted by the

corresponding �
ðdÞ
k , are grouped according to the model

in (31). The resulting scalars are, in turn, the weights of
the corresponding bases in the �-axis. The final result
gðdÞð�Þ to be minimized is the sum of the weighted bases,
which is a piecewise polynomial of degree six.

Our recognition strategy compares favorably to the
approach of Murase and Nayar in both storage space and
time performance. In terms of storage space, the PCA
method has to store all sampled points in the eigenspace.
For instance, 3,600 points are required for each object for the
accuracy of 0.1 degree. On the contrary, the new method
stores the coefficients of the polynomials, which is margin-
al. Furthermore, it is independent of the accuracy; that is,
higher accuracy is obtained at no extra storage cost.

Fig. 6a shows the time performance of the two methods
with respect to the number of objects. For the case where
one object fills the image, it takes more time to compute
the Njet representation than PCA projection in this case.
However, the new method solves the minimization
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problem in (33) (including the computation of the
polynomial coefficients bq;�) faster than the minimization
in the eigenspace (11), as shown in Fig. 6b. As a result, for
compatible accuracy for a data set of 100 objects the new
method with 300 bases performs similar to PCA with six
dimensions. With 1,000 bases, it is two times faster than
the PCA method with 20 dimensions. The differences will
become more pronounced for larger data sets.

In another important case where one has to scan an input
image over multiple scales and locations in search for an
object, our method is advantageous because the Njet
representation is computed only once for the whole image,
as opposed to the PCA approach which has to do projection
for each location and scale separately. As the input image is
scanned, the basis functions in (30) move. However, the
sum within the brackets in (30) need not be carried out once
the Njet representation of the input image has been
computed. This strategy differs from operating on each
window one-by-one in that computing Njets of the input
image is involved with a set of convolution operators that
can be optimized efficiently.

4 EXPERIMENTS

We contrast the performance of the new approach to the
approach of Murase and Nayar using PCA on the COIL-100
data set [16]. This data set consists of images of 100 objects
of size 128� 128, each of which is captured at 72 poses (five
degrees apart). We convert all images into gray scale. Fig. 7
shows 20 objects randomly taken from this data set.

First of all, we followed the experiment setup of Murase
and Nayar [15]. We divided the data set into two partitions
of the same size. The training set has 36 views for each
object, at 10 degrees apart. The remaining views are used
for testing. Therefore, there are 3,600 object views in the
training set and 3,600 object views in the test set.

The parameters of the method are set as follows to ensure a
reasonable learning time. The dictionary � consists of three
1Ddictionaries. The dictionaries in thetwospatial directionsx
and yhave three scales� 2 f4; 8; 16g; in each scale, the space�
are sampled at 4, 8, and 16 (pixels) apart, respectively. In total,
there are 120 bases in each spatial 1D dictionary. In the
� direction, we examine at scale � 2 f1; 2; 4; 8g. The space is
also sampled correspondingly at 1, 2, 4, and 8 (�10 degrees).
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Fig. 5. The recognition algorithm.
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The number of discrete points sampled for our mini-

mization problem (33) and the PCA approach (11) is 3,600,

equivalent to 0.1 degree in the orientation directions.

4.1 Compactness of the Representation

First of all, we examine the visual quality of the recon-

structed images using the new representation in compar-

ison with PCA.
Fig. 8a shows examples of generated images by the new

representation using 1,000 bases for each object. For this

representation, each basis requires four storage locations,

one for the coefficient and three for the indices of the three

one-dimensional bases. For efficient recognition as dis-

cussed in Section 3.4, we also store the energy in (29) and a

number of bases in their polynomial representation (one

piecewise polynomial for each scale and derivative order in

the x and y direction for convolution, and the complete

dictionary in the � direction). Thus, the average number of

storage locations required for each of the D objects is

B

D
þ 4Rþ E; ð35Þ

where B is the storage space for the bases, R is the number

of bases, and E is the storage space for the energy. In this

experiment, B is approximately 8,000 (locations). The

storage space of the energy depends on the number of

bases in the object model. For R equals 300 and 1,000, E is

approximately 400 and 600 (locations), respectively.
For PCA, one has to store the mean and the eigenvectors

which has the same size as the input dimensionality

(N �N), and the representation in the eigenspace with

dimensionality C, see Figs. 8b and 8c. The number of

storage locations required for each of the D objects is

ð1þ CÞN2

D
þ CS; ð36Þ

where S is the number of points to be stored for each object in

the eigenspace. The storage space for PCA in this experiment

is much larger than that for the new representation.

562 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 4, APRIL 2006

Fig. 6. Time performance of the new method versus PCA with the number of principle components C on a computer with a Pentium 4 CPU 2.8 GHz
for object images of size 128� 128. For both methods, 3,600 points are sampled along the �-axis for each object. (a) The total recognition time with
respect to the number of objects. (b) Minimization time for (33) versus that for (11) in the PCA approach.

Fig. 7. Twenty objects randomly taken from the COIL-100 data set [16].
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4.2 Recognition Performance

Fig. 9a shows the coarse recognition error rate on the test
set. The method obtains an error rate of 0.17 percent with
about 300 bases only. Given the variety, object discrimina-
tion typically does not require precise descriptions. For fine
recognition, the accuracy increases as more bases are used
as shown in Fig. 9b. The pose error appears saturated after
approximately 1,000 bases.

We can observe similar behavior with the PCA approach.
Fig. 10a shows the recognition error rate on the test set as a
function of dimensionality of the eigenspace. The recogni-
tion error goes down to 0.19 percent using only six-
dimensional eigenspace for coarse classification. For a
20-dimensional eigenspace, the average pose error showed
in Fig. 10b decreases to an equal number for the new
method with 1,000 bases. Hence, in terms of accuracy, the

two methods are comparable when a 20-dimensional
eigenspace is compared to 1,000 sparse bases.

In the next experiment, we vary the size of the training set
for D ¼ 10; 20; . . . ; 100, by sampling from the COIL-100 data
set. We split each data set into a training set and a test set. We
repeat the experiment 20 times and average the results.
Fig. 11a shows the result for coarse recognition and Figs. 11b,
11c, and 11d show results for fine recognition with error in
orientation within 45, 10, and 2 degrees, respectively. As
expected, the results show that, while a small number of bases
is sufficient for object discrimination, more bases are required
for an accurate estimation of orientation. The decrease in
accuracy as the number of objects grows, however, is not
clearly observed, especially when more than 200 bases are
used. One needs a larger data set of objects to estimate this
performance degradation.

PHAM AND SMEULDERS: SPARSE REPRESENTATION FOR COARSE AND FINE OBJECT RECOGNITION 563

Fig. 8. Generated images from different representation learned on the COIL-100 training set. (a) The new method with 1,000 bases. (b) PCA with
20 dimensions (T ¼ 20). (c) PCA with 100 dimensions (T ¼ 100). The new method gives better results at a lower storage cost by exploiting the
spatial correlation in images.

Fig. 9. Recognition and pose estimation results on the COIL-100 test set. The number of evaluation points (34) for each object is 3,600 (0.1 degree
accuracy). (a) Recognition rate (%). (b) Pose estimation error (in degrees).
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4.3 On Generalization of the Algorithm with Fewer
Training Views

In this experiment, we examine the generalization perfor-
mance of the algorithm when the number of training views
decreases. For this purpose, we followed the experimental
setup as in [21], [35]. The number of training views per
objects (v) is varied. The rest of the views (72� v) are used
for testing.

Table 1 contrasts the generalization performance of the
new algorithm and those obtained in [21] and [35], in which

two methods, SNoW and support vector machine, have
generalization performance guarantees. The result of the new
algorithm is comparable to support vector machine with a
Gaussian kernel. It is worse than support vector machine with
the Kullback-Leibler kernel as reported in [35] in case of four
and eight training views per object, and is equivalent for the
other cases. In comparison to the other learning algorithms,
one observes that the new algorithm does not perform as well
when only four training views per object are available. This
condition is, however, unfavorable for the new method
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Fig. 10. The number of discrete points stored for each object is 3,600 (0.1 degree accuracy). (a) Recognition rate (%). (b) Pose estimation error (in
degrees). Recognition and pose estimation results of PCA on the COIL-100 test set.

Fig. 11. The recognition rate on data sets of different sizes. Each result is obtained by averaging over 20 subsets randomly taken from the COIL-100 data
set. The error in orientation is (a) ignored, (b) within 45 degrees, (c) within 10 degrees, or (d) within 2 degrees.
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because it learns object representation rather than discrimina-
tion, which enables fine recognition. The new algorithm
compares favorably against all other methods for 36, 18, and
8 training views per object. In particular, in comparison to
SNoW with a one-against-all scheme that learns a representa-
tion for each object, the new algorithm outperforms SNoW
from 9 to 14 percent of correct recognition for 36, 18, and
8 training views.

Figs. 12a, 12b, 12c, and 12d examine the effect of
overfitting for the four cases: 36, 18, 8, and 4 training views
per object, respectively. One observes that mild overfitting
occurs. The decrease in performance on the test set is
insignificant. This is in agreement with experiments of a

related class of learning algorithms, namely, boosting
methods [4], where it is found that the greedy stage-wise
fitting strategy employed in boosting algorithms, which is
also the strategy of the matching pursuit algorithm, are
resistant to overfitting [5], [24]. In particular, the boosting
algorithm L2Boosting [2] minimizes the same criterion as
the matching pursuit algorithm (25). This reference also
provides an explanation for the “overfitting resistance,”
where the number of bases serves as a regularization
parameter. Other theoretical study of generalization is
beyond the scope of this paper. The reader is referred to
[7], [36] for connection between sparse approximation and
support vector machine and other kernel methods.
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TABLE 1
Comparison of the Recognition Rates (%) of Various Learning Algorithms on the COIL-100 Data Set

SNOW1 with a one-against-one scheme [21], SNOW2 with a one-against-all scheme [21], support vector machine with a linear kernel (L-SVM) [21],
with a Gaussian kernel (G-SVM) [35], and with a Kullback-Leibler kernel (KL-SVM) [35], the nearest neighbor method (NN) reported in [21] and,
finally, the new algorithm with 1,000 bases.

Fig. 12. Generalization performance as a function of number of bases. (a) Thirty-eight training views, (b) 18 training views, (c) eight training views,

and (d) four training views per object.
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5 DISCUSSION AND CONCLUSION

This paper addresses the problem of coarse and fine object
recognition. We have considered three main issues in this
problem, namely, object representation, model learning
from examples, and efficient object matching.

We proposed a new representation by sparse function
approximation in both spatial dimensions together with the
orientation dimension. Thus, the generalization to unseen
views is naturally obtained. This is in contrast to previous
approaches that use low-dimensional representation by a
linear projection, such as principle component analysis, or
the view-based representation where the spatial coherence
principle is ignored. The new representation is able to
exploit a rich amount of a priori information about the object
views in general.

We have also presented a solution to the problem of
object view matching in a high-dimensional space by
polynomial computation. In particular, we showed that
the minimization problem involved in recognition phase
can be solved by evaluating polynomials of degree six at
multipoints. Hence, the computation of the new algorithm
equals the PCA approach with six principle components.

We performed experiments on the COIL-100 data set. The
results show the high visual quality of the new representation
in comparison with PCA. This is because the new representa-
tion takes into account the spatial correlation. The experi-
mental results also show that the new method performs as
well as the approach using PCA in terms of accuracy.

Experimental results show that the algorithm performs
well when eight or more training views are available for
each object. In particular, the algorithm exhibits resistance
to overfitting, as often observed with the class of greedy
stage-wise learning algorithms.

There are three significant advantages of the new
method over PCA. First, the storage of sampled points for
recognition is not required for the new approach. Instead, a
compact object model based on a polynomial representation
is employed. Second, the addition of new objects into an
existing data set in the new approach is trivial because,
unlike PCA retraining, other object models are not needed.
Third, in case one has to scan the input image for
recognition, the Njet representation is computed only once,
as opposed to PCA projection at each location.

Currently, the algorithm handles pose variation in the
horizontal plane only. Generalization to other parameters,
such as vertical pose variation and illumination direction, is
possible by extending the separable bases to the new
dimensions. Further experimentation is required to deter-
mine the feasibility in higher-dimensional parameter
spaces. Another challenge is for the algorithm to be
insensitive to some variations while capable of fine
recognition in others.

In summary, we propose a new representation for object
recognition where the object model can be learned
efficiently with a rich amount of a priori information. The
new representation also allows fast recognition by poly-
nomial computation. Overall, the method is comparable to
the PCA approach in terms of accuracy, and more efficient
in terms of storage space and recognition time. Real-time
performance is achieved for a data set of 100 objects.
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