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Abstract

This paper studies two types of spatial relationships that can be learned from training examples for object recognition. The first one
employs deformable relationships between object parts with a Gaussian model, while the second one describes pairwise relationships
between pixel intensity values using Bayesian networks. We perform experiments on a human face dataset and a horse dataset, imposing
the same amount of annotation of training data, which can be seen as sending knowledge to the learning algorithms. The result indicates
that the Bayesian network method compares favorably to the deformable model, as it can capture long-distance stable relations in the
object appearance. We also conclude that both methods are superior to strictly spatial matching by template and strictly non-spatial
classifiers.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Object is an abstract concept for which just few aspects
are valid in general, for all types of objects. In the recog-
nition of object classes, objects are usually characterized
by distinct appearances (signs), textures (tiger), features
(coins) or parts (eyes plus mouth for a face). In this paper,
we concentrate on the other common aspect of object: that
they share some spatial order. We focus on learning spatial
relationships among in the object appearance or among
object parts for the purpose of object recognition.

In the study of spatial relationships one may take a syn-
tactical approach. Tagare et al. (1995) derives a metric
between two Voronoi diagrams to describe spatial relation-
ships of similar patches. This is similar to the approach in
(Egenhofer, 1997) where they admit a relaxation of the spa-
tial constraint. At any rate, such approaches require a very
robust part-labeling scheme. They are too brittle for the
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effects of partial occlusion and undetected parts that the
method is not effective for object recognition.

Graph matching (Bunke, 2000) provides another, more
frequently explored path to describe the spatial relations
of object parts. The construction of object graphs is not
obvious. The method in (Rocha and Pavlidis, 1994), for
example, resorts to elaborate feature extractors together
with manual interactive design. A separate class is the
shock graphs capturing the object topological structure
(Sebastian et al., 2004; Siddiqi et al., 1999). This is an
important class because the extraction and subsequent
matching can be achieved efficiently. Nevertheless, the
shock graph as well as graph representation in general lack
a statistical model that can capture the variation of a col-
lection of objects (or graphs). As a consequence, these
approaches are not yet suitable for learning and recogni-
tion of object classes.

In this paper we contrast two types of spatial relation-
ships that can be learned from a set of examples for object
recognition. The first uses deformable relationships
between named entities, for examples the approaches in
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(Burl and Perona, 1996; Weber et al., 2000; Fergus et al.,
2003; Fischler and Elschlager, 1973; Felzenszwalb and
Huttenlocher, 2000). The named entities are derived by
specific part detectors, as opposed to Harris detectors
and spot detectors generating nameless points of interest.
Using parts is advised when one wishes to extend the class
of objects with a fixed spatial layout to include objects with
articulated structures. Examples are windmills and animals
with their limbs. One critical issue not fully addressed in
these approaches is that of missing parts and image clutter.
In this study, we choose a method using a translation
invariant shape configuration (Pham and Smeulders,
2004) where the problem of missing parts and image clutter
is handled efficiently.

The second type of spatial relations we study are between
pairs of intensity values on the face of the object. For that
purpose, the spatial relation of a pair of pixels is combined
with pixel intensities at either end. Such is the topic of
‘‘graphical models’’, which utilize results in graph theory
and probability theory into a single framework (Pearl,
1988; Jordan, 1999). Unlike the aforementioned graph
matching approach where each object is associated with a
separate graph, in this approach a graph describes a class
of objects. Since the class of an object can be derived easily
by holding it against the graphical model, this approach is
suited for the object class recognition problem. Graphical
models also differ from other statistical approaches that
have been applied to the object recognition problem, such
as (Sung and Poggio, 1998; LeCun et al., 1998; Cortes
and Vapnik, 1995), in that the spatial relationships among
input pixels, are described explicitly. One critical issue in
this approach is how to learn the structure from examples.
Here we consider the graphical model in (Pham et al., 2002)
that looks for the co-occurrence of pixel values over dis-
tance. This model is learned efficiently and shows superior
performance (Pham et al., 2002) in comparison with meth-
ods employing simpler structures (Schneiderman and
Kanade, 2000; Colmenarez and Huang, 1997).

We contrast the recognition performance of a model for
coarse-grain spatial relationship between parts (Pham and
Smeulders, 2004) with two models for fine-grain spatial
relation between pixels (Pham et al., 2002). We do so on
two data sets, one being human faces in frontal view as
the best example of the class of objects with a fixed spatial
layout, and the other horses faced to the right with large
variations in action and hence in the relative positioning
of the limbs. The last data set is taken as the best example
of the articulated object class. We do not aim to reach for
optimal performance but rather to understand the behavior
of spatial relation classifiers.

A proper comparison requires careful consideration of
the amount of a priori knowledge inserted in each method.
Ideally, the a priori information should be equal for all dif-
ferent methods. We consider annotation as sending infor-
mation to the learning algorithm. One mouse click in the
annotation is one message to the learning algorithm. From
that point of view, we take care that the amount clicks is
(almost) identical for all methods. For the learning phases,
object examples are extracted from images by one mouse
click per object roughly in the center of its frame. In addi-
tion, there is a few mouse clicks on one image to initialize
the part learning.

The paper is organized as follows. After the review the
methods in Section 2, we describe the datasets used for
evaluation in Section 3. The experimental results are
presented in Section 4. Finally, we draw conclusions in
Section 5.
2. Methods

In this section, we discuss part-based learning, Bayesian
network learning and Bayesian network learning with
object masking. In the first method, the object of interest
is decomposed into parts. The learning phase consists of
learning the part detectors and the spatial relationships
among them. The recognition phase consists of the detec-
tion of object parts and searching for the spatial configura-
tion optimal for a target object. In the second method,
object appearance is learned by finding optimal pairwise
relations among the pixels as well as modeling the depen-
dences of the pixel values. The runtime process includes
scanning the input image to find the best object location
according to the learned statistical model. The last method
is a variant of the second one where an object mask is
employed to reduce the effect of background pixels.

2.1. Part-based learning

Let the object consist of p parts. The training object
examples are labeled for the part positions. That is, for
each training object example j, there are p labeled points
in a two-dimensional plane (xa,j,ya,j) 2 R2, a = 1, . . . ,p.
For each object part a, a detector da is learned using the
labeled examples extracted from the corresponding labeled
points. We use the very simple template matching with nor-
malized cross correlation (Pratt, 1991) as a part learner.
Recall that the normalized cross correlation measure q
between part a template ta and a template u is

qðta; uÞ ¼

X
‘
ðtað‘Þ ��taÞðuð‘Þ � �uÞ

ð
X

‘
ðtað‘Þ ��taÞ2

X
‘
ðuð‘Þ � �uÞ2Þ1=2

ð1Þ

where ‘ is a two-dimensional index vector, ta(‘) and u(‘) de-
note pixel values of the templates at image location ‘, and
�ta and �u denote the average pixel values of the two patches.
For each detector da we estimate its performance on the
training set in terms of the detection rate ca and the false
alarm rate ba. The fact that the part detector is simple
and could be substituted by better ones is not of prime
relevance here as we study the virtue of spatial relations
among parts as detected.

The parts of one object are spatially related as modeled
by a Gaussian distribution after translation normalization.
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From the labeled points in each object example j, we can
constructed a vector zj in a (2p � 2) dimensional space by
mapping (x1,j,y1,j) to the origin

zj ¼ ðx2;j � x1;j; . . . ; xp;j � x1;j; y2;j � y1;j; . . . ; yp;j � y1;jÞ
0 ð2Þ

The normalized configuration vector z is modeled by a
Gaussian Nðz; l;RÞ. The estimation of the parameters of
the Gaussian distribution is straightforward using the max-
imum likelihood estimator (Srivastava and Khatri, 1979).

The object localization problem is treated as a graph
search problem with an objective function integrating the
performance of part detectors and the object configuration.
Let O ¼ fðha; xa; yaÞja ¼ 1; . . . ; pg be an object hypothesis
obtained from an input image, where ha is an indicator
equal 0 if part a is not detected and 1 otherwise, and (xa,ya)
is the spatial location of part a. Note that here only trans-
lation is considered. The score for f ðOÞ is

f ðOÞ ¼
X

16a6p

ha log
cað1� baÞ
ð1� caÞba

� �

þ � 1

2
ðz� lÞ0R�1ðz� lÞ

� �
ð3Þ

For the object localization task, we search for the solution
of

O� ¼ arg max
O

f ðOÞ ð4Þ

An A* search algorithm is used to obtain the optimal solu-
tion of (4), exploiting two special properties of a Gaussian
distribution to handle the missing part problem (see Pham
and Smeulders (2004) for detail).

For the image classification task, we find the best object
hypothesis O� in the input image. Consequently, the value
f ðO�Þ is used as a confidence value. If f ðO�Þ is greater than
a threshold value, the input image is classified as containing
an object instance. Otherwise, it is declared as background.
2.1.1. Part alignment in learning phase

Box 1: The part alignment algorithm.
Alignment algorithm

(1) Initialize pa,j by extracting the image patch at ‘a
in each training example j, j = 1, . . . ,N.

(2) Repeat T times
(a) update part a template ta as the mean of pa,j.

ta ¼
1

N

XN

j¼1

pa;j ð5Þ

(b) update part a in image j, pa,j

pa;j ¼ arg min
u2Nðj;‘a;mÞ

qðta; uÞ ð6Þ

where Nðj; ‘a;mÞ denotes the set of patches in
the m · m neighborhood of ‘a of image j.
One issue with the part-based approach is that it
requires annotated training data of object parts. When
the training data are collected using one mouse click as
in this study, one has to perform automatic part
annotation.

In order to label object parts in all training examples, we
use the first example to create a map of relative part posi-
tions. Let ‘a denote the center position of part a. The image
patch for part a in each training example j, denoted by pa,j,
can fluctuate within a predefined neighborhood of size
m · m of ‘a. Let Nðj; ‘a;mÞ denote the set of all image
patches in this neighborhood.

Box 1 presents an iterative algorithm for part alignment.
In each loop, the algorithm updates the template ta for each
part a and subsequently finds in the neighborhood
Nðj; ‘a;mÞ in each training example j the closest image
patch to ta in terms of normalized cross correlation.
The result serves as the updated annotation in each
example j.

2.2. Bayesian network learning

The Bayesian network method (Pham et al., 2002) treats
an image example as a feature vector v ¼ ½v1; v2; . . . ; vn1�n2

�0
for a resolution of n1 · n2. Furthermore, each vector v is
considered as an instantiation of a random variable
V ¼ ½V 1; V 2; . . . ; V n1�n2

�0. The joint distribution for each
class Pc(v), where c 2 { � 1, + 1} with �1 denoting the
background class and +1 the object class, is estimated
using a forest structured Bayesian network

P cðvÞ ¼
Yn1�n2

i¼1

P cðV i ¼ vijPi ¼ piÞ ð7Þ

where Pi denote the parent of Vi in the network structure.
The lower case notations vi and pi denote specific values of
the corresponding random variables in upper case. Each
pair (Vi,Pi) forms a directed edge of the network. This
model clearly ignores much of the dependency among near-
by pixels. Nevertheless, it is necessary for computational
reason.

The special characteristic of the method is that the net-
work structure is learned from training data rather than
fixed a priori. This is achieved by maximizing the Kull-
back–Leibler divergence between the two distributions
Pc(v). This optimization problem is equivalent to the prob-
lem of finding a maximum branching in a weighted graph
(Pham et al., 2002) where the weight W ðV i ;PiÞ for each direc-
ted edge (Vi,Pi) is

W ðV i;PiÞ ¼
X

pi

X
vi

Pþ1ðvi; piÞ log
Pþ1ðvijpiÞ
P�1ðvijpiÞ

ð8Þ

The maximum branching problem is a graph problem that
can be solved in polynomial time (Tarjan, 1977). Thus,
learning the structure is efficient. The weight W ðPi ;V iÞ indi-
cates the discriminatory power of the relation. In other
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words, a larger weight contributes more to the classifica-
tion of object versus background.

To classify an input pattern v, the log likelihood is
computed

log
P�1ðvÞ
Pþ1ðvÞ

¼
Xn1�n2

i¼1

log
P�1ðvijpiÞ
Pþ1ðvijpiÞ

ð9Þ

This step is involved with n1 · n2 additions, which is equal
to the number of input pixels. The values log{P�1(vijpi)/
P+1(vijpi)} are stored in memory for efficient computation.

For the object localization problem, we search for the
best candidate

v� ¼ arg min
v

log
P�1ðvÞ
Pþ1ðvÞ

ð10Þ

In this case, the Bayesian network classifier is treated as an
object filter operating over the image.

Again, for the image classification task we find the opti-
mal object hypothesis v* for the input image. Subsequently,
a threshold value is employed on the likelihood value of
the optimal solution log{P�1(v*)/P+1(v*)} to determine
whether or not the input image contains an instance of
the target object.

2.3. Bayesian network learning with object masking

In the Bayesian network method we make no distinction
between object and background. In effect, pixels and their
intensities in the background area will be uncorrelated with
the foreground area and hence deteriorate the result by the
random noise they produce.

Instead of using a full image patch as a feature vector,
an object mask is employed to better specify the object
example. This extension is rather simple since we only need
to rearrange the pixels under the mask into a feature vec-
tor. Specifically, the mask can be seen as a projection
matrix M as follows. Let v be an n1 · n2 vector as in the
previous section. The matrix M is binary having r rows
and n1 · n2 columns where r is the number of elements to
be selected. Each row in M has one non-zero element indi-
cating the corresponding selected component of v. The new
feature vector vM is

vM ¼ Mv ð11Þ
The process of learning and classification is left unchanged
from the standard Bayesian network method, except vM is
used in place of v.

The mask M is generated once manually for the whole
dataset such that the interior of the object silhouette is suf-
ficiently covered, masking out the remaining pixels most of
which will be background pixels.

As the pixels are features input to the classifiers, mask-
ing can be seen as feature selection. In this respect, Bayes-
ian network with object masking is closer to part-based
learning in terms of a priori knowledge than standard
Bayesian network learning. This is because part selection
in part-based learning is also a step to include interesting
features for recognition.
3. Datasets and annotation

We use two datasets in the experiments: human faces
and horses. The former is from (Weber et al., 2000), while
the latter is collected from the Internet and in part from the
Corel dataset. Note that the evaluation of object localiza-
tion performance requires images containing an object
instance. Whereas for the evaluation of image classification
performance, apart from a set of object images, another
set of background images containing no object instance is
required.
3.1. The face dataset

This dataset contains 438 face images of 28 people (after
removing nine images that are clearly different in scale
from the rest of the dataset). The original images are con-
verted to grayscale and resized by half.

The face training set consists of 216 images of 14 people
in the set of face images. We manually annotate the nose of
each human face in the training set. This step requires one
mouse click in each image. The face examples are extracted
from a frame of size 128 · 128 centered at the labeled
points. See Fig. 1(a) for examples.

We also extract 10,000 background patches of the same
size by sampling uniformly over the training images. See
Fig. 1(b) for examples.

The face test set consists of the remaining 222 images of
14 people. Fig. 1(c) shows six examples of this set.

For the image classification task, we use an additional
set of background images also provided by the authors of
(Weber et al., 2000). The images are assorted scenes around
the Caltech campus and in their Vision laboratory. There
are 451 images in total. Fig. 1(d) show five background
images of this test set.
3.2. The horse dataset

The second dataset consists of 472 horse images. All the
horses are faced to the right by flipping the images left right
when needed. The training set consists of 269 images. We
annotate the center of the horse in each image of the
training set. Again, this step requires only one click in
each image. Subsequently, training horse examples of
size 160 · 128 are extracted. See Fig. 2(a) for examples.

In addition, we extract 10,000 background patches of
the same size by sampling uniformly over the training
images. See Fig. 2(b) for examples.

The horse test set consists of the remaining 203 images.
Fig. 2(c) shows examples of this set.

For the image classification task we use 865 background
scenery images. Fig. 2(d) shows three background images
in this test set.



Fig. 1. Examples of the face dataset. (a) Training faces; (b) training background patches; (c) test face images; (d) test background images.
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It can be seen that the recognition of horses on this dataset
is hard. The images are taken outdoor with different cameras,
purposes and under various lighting conditions. Although
the horses all face to the right, there is still large variation
in pose, background, skin, rider and pace. As a consequence,
the horse recognition seems hopeless for the Bayesian net-
work methods because the structure of the horse is non-fixed.
It also seems hopeless for the part-based method because we
have a very simple part learner while the dataset contains
considerable variation in the object parts. However, our
main interest is not in high recognition results but in under-
standing the role of spatial relations for object classification.



Fig. 2. Examples of the horse dataset. (a) Training horses; (b) training background patches; (c) test horse images; (d) test background images.
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4. Experimental results

4.1. Object localization

4.1.1. Performance of part-based learning

For the face dataset, we learn eight object parts includ-
ing the two eyes, the two cheeks, the two mouth corners,
the nose, and the forehead. For the horse dataset, we learn
seven parts including the hip, neck (lower part and upper
part), front leg (lower part and upper part) and back leg
(lower part and upper part). The size of the part templates
is 32 · 32 in both cases. Each part a is allowed to move
within 15 pixels in each direction from its center position
‘a for the face dataset and 20 pixels for the horse dataset.
Finally, we let the annotation algorithm run for 20 itera-
tions (T = 20). The parameters are derived based on the
computational time of the part-learning and the A* search
algorithm in Section 2.1.

Fig. 3 illustrates the state of the parts initially and as
learned after 1, 5 and 20 iterations. It can be seen that



Fig. 3. The state of the part alignment algorithm (a) the initial state, (b)
after one iterations, (c) after five iterations and (d) after 20 iterations.

Table 1
Accuracy of object localization

Template matching (%) Part-based (%)

88.5 96.5

45.0 63.0
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the learned parts after 20 iterations are visually much
clearer than their initial states for both datasets. Fig. 4
shows the average shift of each part alignment step. The
iterative algorithm achieves stable result after about five
loops. The complete process takes less than 30 min on a
1 GHz CPU with a Matlab implementation. Note that
one may use the average shift as a criterion to terminate
the alignment procedure instead of fixing the number of
iterations. However, one still needs to check the conver-
gence condition of the average shift.

Finally, the threshold value for each detector is set such
that the error rates are equal for detection and false alarm.
That is, 1 � ca = ba (see Eq. (3)). This is known as the
equal error rate criterion.

We also performed experiments where a global object
template is used for object localization. We used the same
measure for matching as in our part detectors (Eq. (1)).
Our purpose is to examine the performance gained by the
additional complexity of the part-based method.

Table 1 presents the results of the part-based method
together with the results of global template matching on
the two datasets. Significant improvement in accuracy is
achieved, 8% on the face dataset and 18% on the horse
dataset, due to the tolerance to the variation in the object
structures.

We can observe that the result on the horse dataset is
low. This can be explained by the poor quality of the part
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(a)

Fig. 4. Average shift at each iteration, (a) on th
detectors on this dataset, namely template matching with
normalized cross correlation.

We carried out an experiment to compare the results
between manual annotation versus maximal correlation
annotation for the two eyes, nose and two mouth corners
composition. The experimental result shows that the align-
ment algorithm performs well with 92% correct localization
in comparison to the result of 91% for the manually anno-
tated data (Pham and Smeulders, 2004). In this particular
case, the algorithm reduces 80% of the amount of tedious
annotation work and achieves an equivalent result.

Fig. 5 shows examples of the detection result of the part-
based method on the two datasets. Note that the part-
based method also gives the estimated position of the
missing parts. The incorrect localization examples (the sec-
ond picture in the second row in Fig. 5(a) and (b) are due to
severe missing parts.
4.1.2. Performance of Bayesian network learning

The Bayesian networks are learned with a resolution of
32 · 32 for the face dataset and 40 · 32 for the horse data-
set. Fig. 6 shows the relations and the weights of the incom-
ing edge in the two networks learned over the two datasets.
Light pixels indicate high values for the weights, hence
incoming relationships important for recognition.
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e face dataset and (b) on the horse dataset.



Fig. 5. Example of part-based object localization on the two test sets, (a) results on the face test set, see Fig. 1(c), and (b) results on the horse test set, see
Fig. 2(c). The letters denote the detected locations of object parts. The diamonds represent detected parts of the solution while the *’s represent parts not
found. (a) Faces; (b) horses.
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For the face dataset, it can be seen that Bayesian network
learning indicates that edges to the forehead and the cheeks
have the most weights. That these edges depart from the eye
and cheek regions (data not shown) indicates that the most
important discriminating relations are found by long-dis-
tance co-occurrences of forehead and eyes and cheeks. Sim-
ilarly, for the horse dataset the Bayesian network method is
able to learn long-distance dependences among pixel values.
In particular, the relations between the head region and the
body region and between the body region and the front leg
region are clearly shown. From Fig. 6(b) and (d) it can be
learned that there is little or no contribution from the con-
text of the object. Note that unlike a complete independence
model of naive Bayes, the dependency between two vari-
ables is allowed. When long-distance dependencies are more
discriminative than nearby alternatives, they will be chosen.
Hence the learned relations are completely data driven.

Table 2 gives the localization result of the Bayesian net-
work method on the two datasets. The result on the face
dataset is worse than that of the part-based method with
the eight-part composition, which almost completely covers
the face. The result on the horse dataset is superior to that
of the part-based method. This is because Bayesian network
learning can focus on the stable regions and models the
dependences among them, including long-distance ones.

4.1.3. Performance of Bayesian network learning

with object masking

The Bayesian networks for the two object classes are
depicted in Fig. 7. For the face dataset, about half of the



Fig. 6. Bayesian network relations and their strengths (see Eq. (8)) as
learned over the training sets, (a,b) faces and (c,d) horses.

Table 2
Performance of Bayesian network learning for the object localization task
on the test sets

Dataset Localization accuracy (%)

Faces 92.5
Horses 83.0

See Figs. 1(c) and 2(c) for examples of these test sets.

Fig. 7. Bayesian network relations and their strengths (see Eq. (8)) as
learned over the training sets, (a,b) faces and (c,d) horses. Object masking
is employed for both datasets.

Table 3
Performance of Bayesian network with object masking for the object
localization task on the test sets

Dataset Localization accuracy (%)

Faces 97.0
Horses 83.0

See Figs. 1(c) and 2(c) for examples of these test sets.
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pixels are masked out. For the horse dataset, approxi-
mately one-third of the pixels are masked out.
Table 3 shows the result of Bayesian network with
object masking on the two datasets. The removal of pixels
by masking is effectively a feature selection procedure as
the pixel relations and pixel values corresponding to the
background are no longer in the classifier equation. For
those images where the background acts as noise to the
object recognition, it is done to improve the recognition
rate. The improvement is clearly shown for the face dataset
where the correct localization rate increases from 92.5% to
97%. This effect, however, is absent in the horse dataset,
where the floor of grass and sand will be highly correlated
with horse images.

Note that the computational gain is significant in both
cases. As can be seen from Eq. (9), the number of opera-
tions required for each classification is equal to the number
of features. Thus, the classification cost is reduced by half
and one-third for the face dataset and the horse dataset,
respectively.

4.2. Image classification

In the next set of experiments, we evaluate the methods
on an image classification task. The aim is to determine
whether or not a test image contains an instance of the
target object.

Fig. 8(a) and (b) shows the ROC curves for the three
methods on the face dataset and horse dataset, respectively.
One can observe that for the face dataset, the Bayesian
network method with object masking performs best. The
Bayesian network methods perform significantly better
on the horse dataset. The poor performance of the part-
based method on this dataset is because the variation in
appearance of object parts is not sufficiently captured by
the simple part learner.

For the face dataset, the equal error rates of part-based
learning, Bayesian network and Bayesian network with
object masking are 3.8%, 4.7% and 2.2%, respectively.
The results are better than the error rate of 6.0% of Weber
et al. (2000). The result of the part-based method is compa-
rable to the error rate of 3.6% of Fergus et al. (2003). For
state of the art results on this face dataset, the reader is
referred to Gao and Vasconcelos (2005), Deselaers et al.
(2005) and Fussenegger et al. (2004).

In the next experiment, we simulate object occlusion by
covering a quarter of the object in back. Fig. 9(a) and (b)
give examples of synthetic occlusion for each dataset.

The ROC curves for image classification under occlu-
sion are shown in Fig. 10, together with those curves



Fig. 9. Examples of the test set with randomly assigned occlusions, (a) occluded faces and (b) occluded horses.
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Fig. 8. ROC curves for image classification. BN indicates the Bayesian network method and masked BN indicates Bayesian network with object masking.
(a) On the face test set, see Fig. 1(c). Note that the figure is magnified around the region of equal error rates. (b) On the horse test set, see Fig. 2(c).
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Fig. 10. ROC curves for image classification, [occ] indicates the result on the datasets with occlusion. (a) On the face test set, (b) on the horse test set.
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obtained on the original datasets. The performance of all
three methods drops substantially.

The part-based method appears least sensitive to the
effect of occlusion. This is because the method is designed
to search for the best subset of part in the desired configu-
ration. One can also observe that the Bayesian network
method with object masking is more sensitive to occlusion
than without object masking. This is another sign of the
feature reduction removing the redundancy by mask-
ing the background. In short, this suggests that feature
selection in general does not help with the problem of
occlusion.

5. Discussion and conclusion

In this paper, we evaluate two statistical methods to
evaluate the use of spatial relationships in object
recognition.

We emphasize that all methods are presented with the
same set training examples with (almost) identical annota-
tion, which is one click on the center of an object in the
learning set. In this way, for the purpose of fair compari-
son, we equate the amount of annotation information
available to the methods. Due to this constraint, part align-
ment is indispensable. As a by-product, we conclude that
the alignment works well. On the face dataset automatic
alignment and manual part labeling generate the same
localization results.

For the Bayesian network methods, one can observe
that the long-distance dependencies within the face of the
object are most informative. This is due to the spatial
coherence in images implying that nearby pixels are
strongly correlated almost everywhere; typically only bro-
ken at the edges between foreground objects and the back-
ground. Hence short distance relations are commonly
correlated and less informative. Strongly correlated long-
distance relations are rare and typical for pixel pairs on
one face of an object. This observation holds true for the
faces as expected for an example of the fixed layout class
as well as for the horses.

Object masking is designed in analogy to a feature selec-
tion procedure for the Bayesian network. It improves the
recognition result significantly on the face dataset while
maintaining the result on the horse dataset. Bayesian net-
work with object masking outperforms the part-based
method on both datasets. That is, even in the case of the
flexible articulated object class, here represented by the
horse dataset, the Bayesian network performed superior.
The Bayesian networks are capable of capturing the stable
relations in the object appearance.

It should be noted, however, that for the part-based
method, the issue of part learners is critical for effective rec-
ognition. We do not use the most advanced part learners.
One method to be investigated further is the use of a local
Bayesian networks for that purpose. Alternatively, one
may consider local descriptors invariant to scale and orien-
tation as part detectors.
None of the methods copes well with severe random
patch occlusion. The part-based method is less sensitive
to occlusion than the Bayesian network methods. This is
ascribed to the tolerance to missing parts of the part-based
method. Between the two Bayesian network methods,
object masking is more sensitive to occlusion than without
object masking as expected since the masking brings the
information back to the minimum set of pixels. This result
means that feature selection by Bayesian masking is unli-
kely to solve the problem of occlusion. In applications
where occlusion is expected, it should be dealt with
explicitly.

Further research is conducted into the issue of auto-
matic feature selection. This is important for generic object
recognition where a priori knowledge is limited and the
range of object classes is huge. One approach might be to
reject regions with low weight in a learned Bayesian net-
work in an iterative fashion. The experiments show that
the background regions carry little weight in classification.

In conclusion, we have presented a study for three meth-
ods that exploit spatial relations for object recognition. The
relations are learned from training examples. By imposing
(almost) the same amount of annotation of training data,
which can be seen as sending knowledge to the learning
algorithm, we can identify the strengths and weaknesses
of each method. The part-based method and Bayesian net-
works are capable of exploiting the spatial relations for rec-
ognition. To be sure, the part-based method outperforms
global template matching on both datasets. (This is
expected as the part-based method is designed to be toler-
ant to some variation in the object structure, making the
method less brittle than global matching.) And, for the
Bayesian network method, a previous study (Pham et al.,
2002) has already shown its superior performance in com-
parison with the naive Bayes classifier, which encodes no
spatial relations at all. This leads us to conclude that both
part-based and especially pair-wise relations in Bayesian
networks are superior to strictly spatial matching by tem-
plates and strictly non-spatial classifiers.
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