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Abstract. This paper conceives of tracking as the developing distinction of a foreground against the background.
In this manner, fast changes in the object or background appearance can be dealt with. When modelling the target
alone (and not its distinction from the background), changes of lighting or changes of viewpoint can invalidate
the internal target model. As the main contribution, we propose a new model for the detection of the target using
foreground/background texture discrimination. The background is represented as a set of texture patterns. During
tracking, the algorithm maintains a set of discriminant functions each distinguishing one pattern in the object
region from background patterns in the neighborhood of the object. The idea is to train the foreground/background
discrimination dynamically, that is while the tracking develops. In our case, the discriminant functions are efficiently
trained online using a differential version of Linear Discriminant Analysis (LDA). Object detection is performed by
maximizing the sum of all discriminant functions. The method employs two complementary sources of information:
it searches for the image region similar to the target object, and simultaneously it seeks to avoid background patterns
seen before. The detection result is therefore less sensitive to sudden changes in the appearance of the object than in
methods relying solely on similarity to the target. The experiments show robust performance under severe changes
of viewpoint or abrupt changes of lighting.
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1. Introduction

Tracking an object is one of the basic tasks of computer
vision. Many approaches to tracking focus on follow-
ing the dynamics of the target alone or on detecting
outliers in a background model. For such approaches,

∗This work was done while the first author was at the Intelligent
Sensory Information Systems group, Faculty of Science, University
of Amsterdam, The Netherlands.

the implicit assumption is that some properties of the
foreground or of the background are constant or at least
predictable. In the reality of complex scenes, however,
any constancy assumption can be violated by a wide
range of common circumstances. They include partial
or complete occlusion, changes in illumination, and
rotation of the target yielding a different facet of the
object into view. In these cases, it is best to combine
information of both layers and to view tracking as a
foreground-background classification problem. In this
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paper, tracking is conceived as dynamic discrimination
of the target against the local background learned on-
line during the progression of the tracking.

In general, tracking is easy when the appearance of
the target may be assumed constant from one frame
to the other. Then, a good approach is to search for
the almost identical region in the next frame. The re-
gion is then classified as target and the remaining area
as background. This well-known template matching
may be too static when the target undergoes varia-
tion in its appearances. One solution is to rely on
invariant features like the histogram of the template
Comaniciu et al. (2000) or color invariants Nguyen
and Smeulders (2004). Another approach updates the
template in answer to changes in target’s appearance
(Jepson et al., 2001; Nguyen and Smeulders, 2004;
Matthews et al., 2004; Ross et al., 2004). The third
group of methods use a complete target model which
covers the variety of variations in the appearance of the
target (Black and Jepson, 1996; Cootes et al., 2002;
Ravela et al., 1996). This approach requires the model
to be learned in advance.

While template trackers focus on the object ap-
pearance, they tend to ignore background data
which are equally important. Information taken from
the background can serve as negative examples
to be avoided by the target. The target is ef-
fectively identified as anything outside the back-
ground class. A similar behavior is observed in
the human vision system where surrounding infor-
mation is very important in localizing an object
(Torralba and Sinha, 2001; Davon, 1977).

To date background information is employed mainly
by trackers assuming a fixed camera. Some recent
methods relieve the assumption and demonstrate suc-
cess in using background information for a moving
camera (Collins and Liu, 2003; Avidan, 2004; Tao
et al., 2000; Wu and Huang , 2000). The remaining
limitations, however, include the poor discriminatory
power of features used, the sensitivity to the Gaussian
model assumption and failure in dealing with dras-
tic changes in the appearance of the target and/or the
background.

In extension of preliminary work (Nguyen and
Smeulders, 2004), this paper provides a novel track-
ing method using foreground/background discrimina-
tion paradigm. Unlike the aforementioned methods, our
method uses texture features for the discrimination and
thereby gaining better discriminatory power than color.
Rather than maximizing a similarity measure with the

target as in common template matching, the target is
distinguished from the background by maximizing a
discriminant score. Hence, the method will be more
robust to changes in the scene parameters. We aim at
an algorithm which is robust to severe changes in view-
point and lighting conditions. Our method does not re-
quire any prior knowledge of the target. In addition, we
also make no assumptions on the background neither
in homogeneity or constancy. The background is per-
mitted to show internal variations as long as target is
distinguishable.

An overview of related work is given in Section 2.
Section 3 presents our discriminative approach for the
target detection. The section discusses the representa-
tion of object appearance and how object matching is
performed. Section 4 describes the tracking algorithm,
the online training of foreground/background texture
discriminant functions, and the updating of object and
background texture templates. Section 5 presents the
specialization of the algorithm for the case of tracking
in a confined area. Section 6 shows the tracking re-
sults with a comparison with two other state-of-the-art
trackers.

2. Related Work

Tracking by discriminating the foreground from the
background has been proposed mostly when the cam-
era is fixed. In this case, the background is stationary
or changing slowly. Many methods also require the ap-
pearance of the target to be known.

In the common background subtraction, the fore-
ground is segmented by thresholding the error between
an estimate of the background image and the current
image (Wren et al., 1997). Another common back-
ground model is a mixture of Gaussians represent-
ing multiple states of background color (Friedman and
Russell, 1997; Stauffer and Grimson, 1999; Hayman
and Eklundh, 2003). In the method of Stauffer et al. in
Stauffer and Grimson (1999), the background color at
each pixel is modelled by a mixture of Gaussians that
can change with time to accommodate changes in light-
ing, repetitive motions, and long term scene changes.
This model is further extended in Hayman and Ek-
lundh (2003) where the pixel likelihood is composed
of Gaussians learned from the neighboring pixels. In
Jojic et al. (2003), model the pixel intensity by a mix-
ture of Gaussians taken from an epitome, a repository
of Gaussians learned in advance. By allowing pixels at
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different locations to share common Gaussian compo-
nents, the epitome provides a condensed representation
of the image. In Rittscher et al. (2000), propose a rather
different approach that uses the hidden Markov model
to classify the pixel intensity to various states includ-
ing foreground, background and shadow. The model
is capable of representing the dynamic transition of a
pixel between states. It may impose a temporal conti-
nuity constraint on the duration of a pixel in a specific
state.

Apart from scalar features like intensity or color of
individual pixels, recent methods tend to use features
composed of responses to a bank of neighborhood fil-
ters. Such features are more powerful for the repre-
sentation of complex image structures. In Sidenbladh
and Black (2003), various types of Gaussian derivative
filters are designed to extract edge, ridge and motion
information. Other methods use Gaussian filters Isard
and MacCormick (2001), or Laplacian of Gaussians
Sullivan et al. (2000) to characterize image textures.
The distribution of the filter responses are learned a
priori for each location of the background and the fore-
ground. Probabilistic models in use include histograms
Sidenbladh and Black (2003), mixture of Gaussians Is-
ard and MacCormick (2001), the Laplacian distribution
Sullivan et al. (2000) and the Gibbs model Roth et al.
(2004). The last model can handle some dependency
of the filter responses. The likelihood model learned
for each layer is then used to compute the image like-
lihood or the posterior probability of the foreground,
to be maximized for tracking. Such maximization im-
plies the maximization of the likelihood ratio between
the foreground and the background at the location of
the target. Note that in this approach, the appearance
of the foreground is assumed to be known.

Background information has appeared useful for
tracking with a moving camera. In Tao et al. (2000),
propose an expectation-maximization (EM) algorithm
to cluster image pixels into the two layers using sim-
ilarity based on intensity, shape and motion. In Wu
and Huang (2000), Wu and Huang employ a different
EM algorithm for the foreground/background classifi-
cation integrated with dynamic feature transformation.
The transformation is trained by Linear Discriminant
Analysis (LDA) on the currently segmented layers. It
maps the original color of pixels into a space with better
distinction between the foreground class and the back-
ground class. In Avidan (2004), tracking is performed
by maximizing the score of a Support Vector Machines
classifier trained to detect a given category of targets.

A large number of training examples of potential tar-
gets are needed here to achieve a good classification,
requiring offline training. In Collins and Liu (2003),
Collins and Liu explicitly note the importance of the
foreground/background contrast for tracking perfor-
mance. They propose to switch the mean-shift tracking
algorithm between various combinations of the three
color channels as to select the color features that best
distinguish the object histogram from the background
histogram. The features are ranked by a variance test
for the separability of the two histograms. The method
uses background data in a local context window only.
The authors report improved performance compared
to the original mean-shift algorithm. A similar scheme
of online feature selection is applied for particle filter
tracking in Chen et al. (2004). Here the separability
of the histograms is measured by the Kullback-Leibler
distance.

In conclusion, most methods considering the max-
imization of the difference between the foreground
and the background require a fixed camera and a pri-
ori learning of the target’s appearance. Few meth-
ods can track with a moving camera, but their limi-
tations can be noted. First, the pixel color has limited
discriminatory power, while extension of methods to
higher dimensional features is not obvious, nor will
the use of more dimensions guarantee better results.
Secondly, while many methods use EM for density es-
timation, it produces accurate results only when the
assumption on the data distribution is valid in each
layer. In particular, EM segmentation works well for
statistically simple target and background composi-
tion with texture homogeneity. It often fails for clut-
tered scenes, where the distribution of observations
is quickly changing and multimodal. In addition, all
the methods appear ineffective in dealing with dras-
tic changes in the appearance of the target and/or the
background.

3. Discriminative Target Detection Using Texture
Features

In the presented algorithm, the tracked object is de-
tected by maximizing the distinction against the back-
ground in the space of texture features. Compared to
intensity and color, textures have a higher discrimi-
natory power, while preserving a good locality. The
foreground/background distinction is quantified by a
discriminant function that is trained online.
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3.1. Object Appearance Representation

First we consider the representation of object textures.
Let I (p) denote the intensity function of the current
frame. Assume that the target region is mapped from a
reference region � via a coordinate transformation ϕ

with parameters θ. Object textures are then analyzed
for the transformation compensated image I (ϕ(p;θ))
using Gabor filters (Jain and Farrokhnia, 1991). These
filters have been used in various applications for visual
recognition (Daugman, 1993; Gong et al., 1996) and
tracking (Chomat and Crowley, 1999). Each pair of
Gabor filters has the form:

Gs(p) = cos

(
p
r

· nν

)
exp

(
− ‖p‖2

2σ 2

)
(1)

Ga(p) = sin

(
p
r

· nν

)
exp

(
− ‖p‖2

2σ 2

)
,

where σ, r and ν denote the scale, central frequency,
and orientation, respectively, and nν = {cos ν, sin ν}.
Setting these parameters to a range of values creates
a bank of filters. Denote them G1, . . . , G K . The ob-
ject texture at pixel p ∈ � is characterized by vector
f (p) ∈ RK which is composed of the response of im-
age I (ϕ(q;θ)) to the Gabor filters:

[ f (p)]k =
∑
q∈R2

Gk(p − q)I (ϕ(q;θ)), (2)

where [ f (p)]k denotes the kth component of f (p).
When necessary, we also use the notation f (p;θ) to
explicitly indicate the dependence of f on θ. The ap-
pearance of a candidate target is represented by the
ordered collection of the texture vectors at n sampled
pixels p1, . . . , pn ∈ �, see Fig.1:

F = [ f (p1), . . . , f (pn)]. (3)

Figure 1. Illustration for the representation of object appearance.

In implementation, p1, . . . , pn is a down-sampled ver-
sion of the object region.

3.2. Object Matching

Target detection amounts to finding the parameters θ
that give optimal F according to two criteria:

1. The similarity betweenF and a set of object features
FO, computed as in Eq. (2):

FO = [
f o

1, . . . , f o
n

]
. (4)

The order of the vectors inF andFO is also valuable
information. That is, f (pi ) should match specifi-
cally to f o

i , since both of them represent pi . This
order information is ignored in the related approach
(Collins and Liu, 2003), as it is based on histogram
matching.

2. The contrast between F and a set of background
template features:

FB = {
f b

1, . . . , f b
M

}
, f b

j ∈ RK .

(5)

These are the texture vectors of the background pat-
terns in the vicinity of the current target position.
The set of background patterns is obtained online
by sampling in a context window surrounding the
object, as the example in Fig. 2. This criterion im-
plies that each f (pi ) in the target window should be
distinguished from all f b

j .

As we consider the tracking in the condition of vary-
ing appearances of both foreground and background,
the two above sets of features are dynamic quantities
requiring updating over time.

The search for an image region with the features F
satisfying the two mentioned criteria is performed by
maximizing the sum of a set of discriminant functions
each computed for one vector in F :

max
θ

n∑
i=1

gi ( f (pi ;θ)). (6)

Here, gi ( f (pi ;θ)) is the discriminant function dis-
criminating the object texture at pixel pi from all
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Figure 2. Illustration for the construction of target/background texture discriminant functions. The target is then detected by maximizing the
discriminant score.

Figure 3. The allowed region for target patterns undergoing appearance changes in (a) the method minimizing the distance to the target model,
and (b) the method maximizing the target/background discriminant score.

background textures. We choose gi to be a linear func-
tion:

gi ( f ) = aT
i f + bi ,

(7)

where ai ∈ RK , bi ∈ R are parameters. Each gi is
trained such that:

gi
(

f o
i

)
> 0 and ∀ f ∈ FB : gi ( f ) < 0, (8)

see Fig. 2.
For target detection, the method based on maximiza-

tion of gi can tolerate more variations in the target’s
appearance than the common approach that minimizes
a distance measure to the target model f o

i . This is
illustrated in Fig. 3. In case of distance minimization,

the appearance of the target should not vary outside the
sphere centered at f o

i and passing through the near-
est background pattern. Otherwise, the algorithm will
lock on the nearest background pattern instead of the
target. For the proposed discrimination-based method,
the allowed region for target patterns undergoing ap-
pearance changes is much larger, being the half space
resulting from the thresholding of gi at the maximal
score of gi among the background patterns, as shown in
Fig. 3(b).

Furthermore, since gi is linear with respect to
image intensities following from Eqs.(2) and (7),
the solution of the maximization of g will remain
the same when the intensities in the image are
multiplied with any factor. This implies invariance
of the tracker even to abrupt changes in global
illumination.
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With the definition of gi in (7), Eq. (6) is rewritten
as:

max
θ

n∑
i=1

aT
i f (pi ;θ) + bi . (9)

The constant parameters bi do not affect the maximiza-
tion result, and hence are removed from Eq. (9). Plug-
ging Eq. (2) into Eq. (9) and rearranging terms, we can
rewrite the equation for target search as:

max
θ

∑
q∈R2

I (ϕ(q;θ))w(q), (10)

where

w(q) =
n∑

i=1

K∑
k=1

aik Gk(pi − q), (11)

and aik denotes the kth component of ai . As observed,
(10) is the inner product of image I (ϕ(q;θ)) and func-
tion w. In particular, if only translational motion is
considered, ϕ(q;θ) = q +θ, and hence, object match-
ing boils down to the maximization of the convolution
of the image I (q) with the kernel w over possible po-
sitions of the target.

3.3. Construction of the Discriminant Functions

In principle, any linear classifier can be used for train-
ing gi . However, in view of the dynamic characteristic
of the training set, the selected classifier should allow
for training in incremental mode. Also it should be
computationally tractable in real-time tracking. To this
end, we adopt the LDA (Linear Discriminant Analysis)
Duda et al. (2001). Function gi minimizes the cost
function:

min
ai ,bi

(
aT

i f o
i + bi − 1

)2 +
M∑

j=1

α j
(
aT

i f b
j + bi + 1

)2

+λ

2
‖ai‖2, (12)

over ai and bi . Here, α j are the weighting coeffi-
cients of the background patterns normalized so that∑M

j=1 α j = 1. They are introduced in the general mode
of tracking in a non-confined area, where the back-
ground set is constantly expanded, to put emphasis on
recently observed patterns over old patterns. The reg-
ularization term λ

2 ‖ai‖2 is added in order to overcome

the numerical instability due to high-dimensionality of
texture features.

The solution of Eq. (12) is obtained in closed form:

ai = κi [λI + B]−1[ f o
i − f̄ b

]
(13)

where

f̄ b =
M∑

j=1

α j f b
j , (14)

B =
M∑

j=1

α j
[

f b
j − f̄ b

][
f b

j − f̄ b
]T

, (15)

κi = 1

1 + 1
2

[
f o

i − f̄ b
]T

[λI + B]−1
[

f o
i − f̄ b

] .

(16)

The discriminant functions depend only on the object
features f o

i , the mean vector f̄ b and the covariance
matrix B of all texture patterns in the background.
These quantities can efficiently be updated during
tracking.

Note that the background is usually non-uniform.
Therefore one mean pattern f̄ b is unlikely to be suffi-
cient for an accurate representation of background tex-
tures. The diversity of background patterns is encoded
in the covariance matrix B instead. This representation
model would be a crude approximation for a large set
of background patterns. However, it can represent pro-
vides the small set of patterns in the context window
with reasonable accuracy.

4. Tracking in a Non-Confined Area

This section describes the algorithm for the general
case without any restriction on the area where the track-
ing takes place. On the other hand, Section 5 will give
a version of the algorithm for the tracking in a confined
area and in the condition where a priori learning of a
background model is possible.

The data flow of the algorithm is given in Fig. 4.

4.1. Updating of the Foreground Model

The feature vectors f o
i need to be updated con-

stantly to follow up the varying appearance of the
foreground. On the other hand, a hasty updating is
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Figure 4. The flow diagram of the tracking algorithm.

sensitive to sudden tracking failure and stimulates
drift of the target window. A slower updating can
be obtained by a compromise between the latest
model and the new data. This is done by the simple
decay:

f o (t)
i = (1 − γ ) f o (t−1)

i + γ f (pi ;θ) (17)

where the superscript (t) denotes time, and 0 < γ < 1
is the predefined decay coefficient.

4.2. Updating of the Background Model

The set of background patterns FB is sampled online in
a context window surrounding the target window, see
Fig. 2.

As the background moves, constantly new patterns
enter the context window and some other patterns leave
the window. FB is expanded to include newly appear-
ing patterns. Each new pattern f b

j is given a time-
decaying weighting coefficient α j which controls the
influence of the patterns in Eq. (12). In other words,
we keep all observed patterns in FB but gradually de-
crease their weights α j with time to enable the tracker
to forget obsolete patterns that have left the context
window.

At every tracking step, the Gabor filters are applied
for image I (p) at m fixed locations in the context win-
dow, yielding m new background texture vectors de-
noted by f b

M+1, . . . , f b
M+m , where M is the current

number of background patterns. The weighting coeffi-
cients are then distributed over the new and the old
elements in FB so that the total weight of the new
patterns amounts to γ while that of the old patterns
is 1 − γ . Therefore, each new pattern is assigned an

equal weighting coefficient α j = γ /m. Meantime, the
coefficient of every existing pattern in FB is re-scaled
with the factor 1−γ . Let f̄ b

new = 1
m

∑M+m
j=M+1 f b

j . The
update equations for f̄ b and B are:

f̄ b(t) = (1 − γ ) f̄ b(t−1) + γ f̄ b
new, (18)

B(t) = (1 − γ )B(t−1) + (1 − γ ) f̄ b(t−1)
f̄ b(t−1) T

− f̄ b(t)
f̄ b(t) T + γ

m

M+m∑
j=M+1

f b
j f b T

j . (19)

The equations allow for efficient updating of the back-
ground model in the incremental mode.

5. Tracking in a Confined Area

This section presents the specialization of the algorithm
for tracking in a confined area. In many surveillance
applications, the background is limited to a confined
area like a room, a corridor or a courtyard. In this case,
the set of background patterns is fixed. This allows for
the construction of a stable and complete representation
model for all background samples. Such a background
model needs no updating, making the tracking more
robust to drifts compared to the short-term model used
in the previous section.

The algorithm in this case differs from the general
version in Section 4 by the construction of the back-
ground model only, see Fig. 5.

We learn a complete background model from a few
training images which are taken a priori and cover all
main views of the area. Note that recording background
images in advance is often more feasible than the com-
mon approach that records views of the target (Black
and Jepson, 1996). One simple global representation
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Figure 5. The flow diagram of tracking in a confined area.

model will not suffice for the usually large number of all
possible background patterns. Therefore, we represent
the patterns by a set of local models. From the training
images, a repository of overlapping contexts are ex-
tracted, each a rectangular region in a background train-
ing image. We call them reference contexts. For each
reference context, a mean vector f̄ b

c and a covariance
matrix Bc of the Gabor feature vectors are calculated as
in Eqs. (14) and (15), respectively, with equal weights
for all patterns in the context. Let C be the number of
the contexts. We then have c = 1, . . . , C background
models: f̄ b

1, B1, . . . , f̄ b
C , BC . In each tracking step, the

algorithm selects just one local model with index c(t)

to construct the vectors ai :

a(t)
i = κ

(t)
i

[
λ(t)I + Bc(t)

]−1[
f o (t)

i − f̄ b
c(t)

]
. (20)

The context indicated by this index is considered most
similar to the image data in the surrounding of the target
window. The use of the reference contexts reduces the
number of background patterns at t while allowing for
a flexible representation of the background under all
camera viewpoints.

To find the optimal c(t), each background pattern in
the current context window is matched to every ref-
erence context in the repository by the Mahalanobis
distance. The relevance of the current context to a
reference context is measured by the sum of Maha-
lanobis distances of all background patterns in the

current context to the reference context:

Mc=
∑

f b ∈ current context

(
f b− f̄ b

c

)T
B−1

c

(
f b− f̄ b

c

)
.

(21)

The reference context with the minimalMc is selected:

c(t) = arg min
1≤c≤C

Mc. (22)

The mean vector and the covariance matrix of
this index are then used for the computation of
the foreground/backround discriminant function as in
Eq. (20).

6. Results

This section shows tracking results for real video se-
quences, demonstrating the capabilities of the proposed
algorithm. We also provide insight in the limitations by
actively seeking for conditions of failure.

In the current implementation, translational motion
is assumed. For the extraction of texture features, the
algorithm uses a set of twelve Gabor filters created for
scale σ = 4 pixels, and r = 1

2σ and six directions
of ν equally spaced by 30◦. The increase of the num-
ber of directions does not change the tracking perfor-
mance. The selection of the scale is based on a trade-off
between the discrimination power and the representa-
tion accuracy. Large size filters have more power in
discriminating foreground textures from background



Robust Tracking Using Foreground-Background Texture Discrimination 285

textures but also decrease the representation accuracy
due to the overlap with the background. The target re-
gion is set to a rectangle although it is not essential.
Object pixels p1, . . . , pn are sampled with a spacing
by σ . The same spacing is applied for the background
pixels in the context window. For the updating of the
object and background texture templates, we set the
decay coefficient γ = 0.05 in accordance with the
appearance change. The regularization coefficient λ is
set to a fraction of the trace of the covariance matrix:
λ = λ′tr(B), making the resulting discriminant func-
tions invariant to illumination changes. Experiments
show that satisfactory regularization is achieved with
the values of λ′ in the range 0.001–0.1. We have used
λ′ = 0.004.

6.1. Tracking under Severe Variations of Target
Appearance

This subsection shows the tracking performance of the
algorithm under severe changes of lighting and view-
point. We also compare the proposed algorithm with
three other state-of-the-art trackers, namely:

1. an intensity sum-of-squared-differences (SSD)
tracker (Lucas and Kanade , 1981) modified to
achieve better performance,

2. the tracker of Collins and Liu (2003),
3. the WSL tracker by Jepson et al. (2001).

Note that the SSD tracker uses a fixed template, while
the proposed algorithm updates the foreground model
during tracking. So, to remove any advantage of the
proposed algorithm that might come from the model
updating, we also update the template of the SSD
tracker in the same way. In every frame the template is
recalculated as a weighted average between the latest
template and new intensity data, where the weight of
the new data is γ = 0.05. The averaging operation re-
sults in a smoothed template which is also resilient to
viewpoint changes in some degree. Unlike the proposed
approach, the SSD algorithm does not use background
information.

The method of Collins and Liu (2003) involves a
set of mean-shift trackers (Comaniciu et al., 2000). All
the mean-shift trackers use the same scale parameter
that is set equal to the height of target window. As
suggested in Collins and Liu (2003), in each frame
we update the reference histogram as a weighted av-
erage of the histogram of the current target region and

the original histogram of the target in the first frame.
In the experiment, we used equal weights for both
histograms.

The results of the WSL algorithm were provided by
the authors of Jepson et al. (2001) themselves.

The above algorithms have been applied for several
test image sequences, and the results are shown in Figs.
6, 7, 8, and 9. In this figures, sub-figures a, b, c, d show
the results of the proposed algorithm, the SSD tracker,
the method of Collins and Liu (2003), and the WSL
tracker in Jepson et al. (2001) respectively.

6.1.1. Severe Changes of Lighting. In Fig. 6, the tar-
get is a book placed upright on a shelf. The camera pans
back and forth. The table is lit with two light sources: a
main lamp of the room and a smaller table lamp placed
nearby. In the beginning, the table lamp is off. When
the table lamp turns on, the target becomes brighter. As
a consequence, the SSD tracker locks on the shadow
of the book on the wall, because this region is more
similar to the current template, see frame 90 Fig. 6(b).
The tracker of Collins and Liu (2003) also lost the track.
Furthermore, it developed a drift even before the illumi-
nation change, possibly due to the low discriminatory
power of the color histogram. The change of illumina-
tion did not affect the proposed tracker together with
the WSL tracker as shown in Fig. 6(a) and (d). De-
spite many more sudden changes which were created
by switching one of the lamps on and off, the results
of both trackers remain accurate. The success of the
WSL tracker is due to the illumination independence
of the appearance model proposed by this method, as
well as the adaptiveness to new appearances of the
target.

6.1.2. Severe Changes of Viewpoint. Figure 7 shows
an example of head tracking. Initially the head is at
the frontal view pose. The background is non-uniform,
and the camera pans back and forth, keeping the head in
the center while showing completely different views of
the head. The proposed tracker could capture even the
back view of the head previously unseen. As shown
in Fig. 7(b), the SSD tracker also exhibits a robust
performance under slight pose changes of the head,
but it gives wrong results when the head pose changes
severely as in frames 26 and 52. Nevertheless, the SSD
tracker did not lose track and well recovered from the
drift when the head returned back to the frontal view.
This success can be explained by the uniqueness of the
black hair in the scene. Similar results are observed in
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Figure 6. Tracking results of different trackers under severe change in illumination. The outer rectangle in (a) indicates the context window.

Fig. 7(c). Where in the previous sequence, the WSL-
tracker followed all changes in illumination intensity,
the results are not very good here since the WSL-
method was not designed to handle severe changes in
viewpoint.

A clear example where the proposed algorithm out-
performs the other trackers is shown in Fig. 8. The
figure shows the tracking result for a sequence where
a mousepad is flipped around its vertical axis, switch-
ing between the light front side and the completely
black back side. The proposed algorithm recovered
perfectly when the unseen dark side comes into view.
It could also successfully lock back on the front side

as in frame 108. The results indicate that the pro-
posed tracker prefers an unseen object region over a
background region. As shown in Fig. 8(b), (c d), all
the three other trackers drifted off at the first flip at
frame 30, because these trackers still look for the front
side of the mousepad which has a similar color as the
wall.

6.1.3. Occlusions. All the four algorithms were
successful in many sequences with partial and short-
time occlusions. In the example shown in Fig. 9, the
WSL tracker gives the best result as it tracks the
rotational motion accurately. The algorithm (Collins
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Figure 7. Tracking results under rotation of object.

and Liu, 2003) develops minor drifts sometime. The
robustness of the proposed algorithm to occlusions
is explained by the temporal filter in Section 4.1
which slows the template updating and keeps the
templates valid even when the target is occluded.
However, slow updating appears not effective in
dealing with severe occlusions. For a more sophis-
ticated technique of occlusion handling, see also
Nguyen and Smeulders (2004).

To conclude this subsection, Fig. 10 demonstrates
the tracking result of the proposed algorithm for the
Dudek face sequence used in Jepson et al. (2001).
In this sequence, tracking the face of the man is dif-
ficult due to many challenging conditions including
changes in illumination, head pose, facial expression,
and background settings, as well as partial occlu-
sions and zooms. However, the proposed algorithm
produces good results. It does not calculate the scal-
ing, but follows the face accurately, and for most of
the time, keeps the face in the center of the target
window.

6.2. Failure Cases

Apart from the strengths of the proposed algorithm, we
deliberately searched for cases of failure:

6.2.1. Background Regions of Similar Appearance
as the Target. As the algorithm is based on fore-
ground/background discrimination, its performance
can degrade in case of poor separability between two
layers. As an example,Fig. 11 shows a sequence which
is somewhat similar to the sequence of Fig. 8. The main
difference, however, is a dark region under the table.
Although the algorithm successfully detects the back
side of the mousepad after the first aspect change in Fig.
11b, it did not survive the second change and locked on
the dark region of the background. The explanation for
the failure is the similarity in appearance of the dark
region and the target before the aspect transition. It is
important to note that the algorithm does not avoid this
background region despite its presence in the context
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Figure 8. Tracking results under severe change of view point.

window for a long period of time. This indicates a short-
coming of LDA which allows the discriminant function
to have positive score even for some negative training
examples.

6.2.2. Highly Textured Object Under Viewpoint
Changes. Figure 12 shows another failure case. In
this sequence, the camera keeps tracking a cube-shaped
child’s toy while slowly moving around it. The back-
ground is highly cluttered with strong edges, mak-
ing it difficult to achieve an accurate representation
of the background patterns. In addition, the target is
highly textured, causing drift when the camera moves
to another aspect of the target as shown in Fig. 12(b).
Here, the ability of the algorithm to take the spatial

relationship between object patterns into account be-
comes a drawback as the tracker “remembers” a high
energy pattern of the object too long. It sticks to the
pattern during aspect transition. Once the target win-
dow has drifted, it cannot recover since the tracker
now wrongly assigns the object to be a part of the
background.

6.2.3. Gradual Drift. Adaptiveness can also become
a problem when models are wrongly updated. While the
slow updating scheme of the templates actually helps
to overcome sudden appearance changes in both the
layers, it appears ineffective in dealing with gradual
drifts. This also causes tracking failure in other adaptive
tracking algorithms. The problem can also be observed
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Figure 9. Tracking results under occlusion.

in Fig. 12. The small drifts are accumulated slowly over
a period of time, and eventually ruin the templates. It is
hard to solve this problem in the condition of adaptive
models used for both foreground and background. A

thorough solution, however, can be achieved when the
model of one layer is stable.

We remark that the mentioned problems remain rel-
evant for other standard tracking algorithms as well
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Figure 10. The results of the proposed tracker for the Dudek face sequence used in Jepson et al. (2001).

Figure 11. A failure example of the proposed algorithm.

Figure 12. A failure example of the proposed algorithm.

including the SSD trackers. Note also that while the last
two conditions are very hard for any updating scheme,
they may be repaired in case of tracking in a confined
environment as discussed in Section 5 and for experi-
ments in the next paragraph.

6.3. Quantitative Evaluation

We have also evaluated the methods quantitatively. The
tracking accuracy is measured as the ratio of the overlap
between the groundtruth object region and the target
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Figure 13. The result of the version of the proposed algorithm that uses a prior background model for the sequence in Fig. 12.

Figure 14. Some of the background training images used for the experiment in Fig. 13.

window to the average area of these two regions:

ω = 2
|Robject ∩ Rwindow|

|Robject| + |Rwindow| (23)

where Robject denotes the groundtruth region of the ob-
ject, Rwindow denotes the target window provided by
the tracker, and ‖ denotes the area. Groundtruth data
were created by manually selecting the image region
considered by human as the best match of the object.

We have collected a test set of 22 videos each has at
least one difficult condition like change of view point,
change of illumination or partial occlusion. The value
of ω is evaluated for each frame. For each sequence we
then calculate the following statistics: ωmin: the mini-
mum value of ω, ω̄: the average of ω, and τ : the fraction
of time where ω exceeds 50%. These quantities are then

Table 1. Quantitative performance measures
for the different trackers. ω̄: the average over-
lap of the detected target and the groundtruth,
ωmin: the minimum overlap, τ the fraction of time
where ω exceeds 50%. These quantities are av-
eraged over 22 test sequences.

ω̄ ωmin τ

Proposed tracker 80% 62% 13%
SSD tracker 65% 38% 26%
Collins and Liu tracker 50% 16% 42%

averaged over the test sequences and shown in Table 1.
Note that the numbers shown should not be consid-
ered as accurate statistics for the algorithms due to the
small size of the test set. However, they do provide an
accurate comparison of performance of the methods
evaluated.

6.4. Tracking in a Confined Environment

Figure 13 shows the results of the version of the algo-
rithm that uses a complete background model. We used
five training images of the background taken from five
different view angles as shown in Fig. 14. From each
image, 48 reference contexts were extracted, giving
240 contexts in total. Due to the low dimensionality
of the feature space, the computational expense of the
selection of the appropriate context is just marginal
compared to the target search. On the other hand, the
stable model obtained yields better tracking results. As
observed in Fig. 13(b), the target frame is still shifted
a bit into the background at the aspect transition, but
it did not loose the track and locked back to the right
object in Fig.13(c).

7. Conclusion

The paper has shown the advantage of discrimi-
nating the object information from the background
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information for object tracking under severe changes
in target appearance, especially changes in viewpoint
and changes in illumination. We propose a new ap-
proach to tracking based on discrimination of object
textures from background textures. The texture fea-
tures allow for a good separation between the fore-
ground and the background. While the representation
of the background by a set of patterns is robust to
background motion, weighting the patterns in a time-
decaying manner allows to get rid of outdated patterns.
The algorithm keeps track of a set of discriminant func-
tions each separating one pattern in the object region
from the background patterns. The target is detected
by the maximization of the sum of those discriminant
functions, taking into account the spatial distribution of
object textures. The discriminative approach prevents
the tracker from accepting background patterns, and
therefore enables the tracker to identify the correct ob-
ject region even in case of substantial changes in object
appearance.
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