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Abstract

In multi-target tracking, the maintaining of the correct
identity of targets is challenging. In the presented track-
ing method, accurate target identification is achieved by in-
corporating the appearance information of the spatial and
temporal context of each target. The spatial context of a
target involves local background and nearby targets. The
first contribution of the paper is to provide a new discrim-
inative model for multi-target tracking with the embedded
classification of each target against its context. As a result,
the tracker not only searches for the image region similar
to the target but also avoids latching on nearby targets or
on a background region. The temporal context of a target
includes its appearances seen during tracking in the past.
The past appearances are used to train a probabilistic PCA
that is used as the measurement model of the target at the
present. As the second contribution, we develop a new in-
cremental scheme for probabilistic PCA. It can update ac-
curately the full set of parameters including a noise param-
eter still ignored in related literature. The experiments show
robust tracking performance under the condition of severe
clutter, occlusions and pose changes.

1 Introduction

Tracking an object can be seen as a dynamic one-against-
everything-else classification problem. When more than
one object to track appears on the scene the problem evolves
into a dynamic multi-class problem. The problem of jointly
tracking of multiple targets is as challenging as it is interest-
ing. Interesting are applications in video surveillance where
one wishes to understand interactions between persons, and
in sports where one aims to understand patterns of play,
to name just two applications. Challenging is safeguard-
ing the proper identity of all objects, especially hard when
objects have little distinction in their appearance. The prob-
lem is further complicated by the mutual occlusion, change

in pose, and change in lighting. We aim to maintain object
identity in these conditions for the case of a fixed camera.

The traditional approach in resolving the ambiguous
identity of targets is to separate them whenever possible.
The common principle is that once a target is assigned to a
position in the image, no more targets can occupy that place.
The classical methods including the joint probabilistic data
association filter in [1] and the multiple hypotheses tracking
algorithm in [19], enforce a data association variable into
the target likelihood, which rules out configurations where
multiple targets associate with the same image region. Re-
cent methods [10, 24, 13] add a prior term to the likelihood
function in order to prevent any pair of targets from get-
ting too close. This is not a realistic condition, where prox-
imity between targets and occlusion in many application is
the crux. In general, by putting constraints on target po-
sitions, the referenced methods succeed in preventing the
coalescence of targets, but take no measure towards iden-
tity switching. In most cases, each target is searched for by
maximizing its own likelihood computed without consid-
ering the appearance of the other targets. The sensitivity of
the likelihood to appearance changes can then lead to a false
classification among targets. Some joint likelihood models
proposed in [18, 11, 25] can better describe the overlap be-
tween targets during occlusions but they still minimize the
likelihood of individual targets.

To achieve an accurate identification of targets, we pro-
pose to incorporate the appearance information from the tar-
get context. Two types of context are considered: spatial
and temporal. The spatial context of a target involves the
local background and other foreground objects present in
the current frame. The temporal context involves all prior
knowledge regarding object appearance, which has been ob-
tained up to this moment of time.

Recent work on single target tracking has pointed out the
advantage of the spatial context for tracking. In [5], the au-
thors propose to select online color features most discrimi-
nating a target object from a local background window. The
algorithm of [17] learns and maintains online a foreground-
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background discriminant function as the objective function
in the target search. The papers indicate that the improve-
ment of the distinction between the target and the surround-
ing context increases the robustness to changing appear-
ances of the object. The same principle holds for multi-
target tracking where superior distinction between targets
leads to easier identification. The first contribution of the
presented work is to develop a new probabilistic framework
for multi-target tracking by a built-in classifier for proper
distinction of the targets against their spatial context.

Another condition for accurate target identification is a
robust appearance model of each target. One desirable prop-
erty is the ability to represent a broad range of object ap-
pearances, including different views. A priori learning can
provide good models [2, 6], but may not be possible in prac-
tice. So we focus on learning a model online from the past
tracking results. Such a model should be able to detect the
reappearance of an aspect of the object, which has been
seen in the past. This will help to recover the track from
an occlusion or a temporary failure. The traditional mod-
els that can represent multiple appearances include mixture
of gaussians or eigenspace [23]. The difficulty is that the
model needs be learnt incrementally upon the arrival of new
tracking results and under the condition of a limited mem-
ory and a limited time. The algorithms for the online learn-
ing of a mixture of gaussians [22] require the input sam-
ples be statistically independent, and furthermore need time
to converge. Recent tracking algorithms therefore focus on
the eigenspace model [20, 12, 15, 9]. They rely on the re-
cursive SVD algorithm [14] to update the eigenvectors of
a data stream incrementally. Eigenvectors alone, however,
do not provide a probabilistic measure to characterize ob-
ject likelihood in the full feature space. The probabilistic
formulation of the eigenspace model, well known as the
PPCA (probabilistic PCA) [7, 16], requires an additional
parameter being the variance of the noise in non-principal
components. This parameter scales the distance from data
to the subspace of the principal components, allowing for a
natural combination with distance measures within that sub-
space. In the existing methods, this noise parameter is pre-
defined or set to a fraction of the eigenvalue of the smallest
principal component [15]. This adhoc approach has no the-
oretical justification. A rather different incremental scheme
in [4] first performs a batch PPCA on newly arrived samples
and then merges the new PPCA and the existing PPCA us-
ing a plain incremental PCA method. The problem of this
approach is inaccuracy of the estimation of PPCA for the
small number of incoming additional samples. In particular,
the method will not work when the number of new obser-
vations is smaller than the number of principal components.
The second contribution of this paper is a new incremental
scheme of the probabilistic PCA model accurately updating
the full set of parameters. Our PPCA solution is an approxi-

mation of the maximum likelihood estimation for the entire
history of observation data, and can be updated upon the
arrival of even one additional sample.

The paper is structured as follows. Section 2 presents
our framework for multi-target tracking, including the prob-
abilistic model and the inference. In section 3 we present a
new method for incremental probabilistic PCA. This algo-
rithm is used for the construction of the appearance model
of each target. The tracking results are demonstrated in sec-
tion 4.

2 Classification-based framework for track-
ing multiple targets

This section presents a novel classification-based frame-
work for multi-target tracking.

Let M be the number of the targets that we want to track,
and xi be the position of the ith target. For the simplic-
ity of the presentation, we consider only translational mo-
tion, although the method can also be extended for more
sophisticated types of motion. The goal of the tracking is
to estimate the concatenation of the position of all targets:
X = {x1, . . . ,xM}.

2.1 The probabilistic model

We propose the probabilistic model shown in Figure 1.
In this model, X = {x1, . . . ,xM} is the state vector. Let
P = {p1, . . . ,pN} denote the set of all possible positions
in the image. Z = {z1, . . . ,zN} is the set of measure-
ments where zi denotes the vectors assembled from the in-
tensities in a neighborhood of position pi. The size of this
neighborhood will be elucidated in section 3. To achieve
accurate target identification, a classifier is integrated in the
tracking by hidden class labels �1, . . . , �N . Each class la-
bel �i ∈ {0, 1, . . . ,M} indicates the label of the target at
location pi. The label 0 is the background label indicat-
ing that no target occupies the position. The main idea of
the proposed approach is that the tracker first estimates the
distribution of the label at every position, and then locates
each target at the position where the corresponding label has
highest probability.

We use superscript (t) to denote time. For �i, however,
we drop t as we use only labels at time t. Given the pre-
vious tracking result X(t−1) and the current measurements
Z(t) , inference about X(t) is made based on three distri-
butions: the predicted label distribution P (�i|X(t−1)), the
measurement distribution p(z(t)

i |�i) and the position distri-

bution p(x(t)
k |�1, . . . , �N ). The labels are assumed mutu-

ally independent, implying that there are no dependence
between the position of targets. This assumption may not
be the case sometimes, for example, in a soccer play where
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the position of the keeper is always correlated with the de-
fenders. However, it should not cause any serious prob-
lem since the label distribution usually can be estimated
sufficiently accurately from current measurements and the
predicted prior. The posterior distribution of each label
P (�i|X(t−1),z

(t)
i ) can be calculated straightforward from

p(�i|X(t−1)) and p(z(t)
i |�i). The distribution of each x

(t)
k

is then independently inferred using P (�i|X(t−1),z
(t)
i ) and

p(x(t)
k |�1, . . . , �N ).

Figure 1. The proposed probabilistic model for
multi-target tracking. xk is the position of kth tar-
get, zi is the observation at position i, �i is the class
label of position i.

The three distributions are defined as follows:
1) The predicted label distribution P (�i|X(t−1)):
The probability depends on the distance from pi to the pre-
vious position of the targets. In particular, if pi is close
to x

(t−1)
k then the chance that the kth target occupies this

position in the current frame should be high. We define:

p(�i = k|X(t−1)) ∝
{

g(pi,x
(t−1)
k ) if 1 ≤ k ≤ M

c if k = 0
(1)

where c is the prior of the background class, and
g(pi,x

(t−1)
k ) is a function decreasing with the distance

from pi to x
(t−1)
k . We use:

g(x,y) =
{

1 if |x − y| < r
0 otherwise

(2)

where r is a predefined threshold representing the maximal
displacement of a target between two successive frames.
As result, if the distance from pi to x

(t−1)
k exceeds r,

p(�i = k|X(t−1)) is zero, implying that pi cannot be the
position of the kth target in the current frame, see Figure 2.
2) The measurement distribution p(z(t)

i |�i):
The measurement distribution in each class is assumed
Gaussian. The background distribution at each location is
represented by an isotropic Gaussian learnt a priori. A pri-
ori learning is possible as the camera is fixed. For the target

r

Figure 2. The prediction of the label prior proba-
bility. In this example, only targets 1 and 3 contribute
to the label prior at pi.

distribution, we employ the probabilistic PCA model [7],
a non-isotropic model which provides more flexibility in
modelling appearance changes. Unlike the background, it
is usually impossible to learn a target distribution a priori.
Section 3 presents a method for the online construction of
this distribution from the tracking results, requiring initial-
ization of the target in the first frame only.
3) The position distribution p(x(t)

k |�1, . . . , �N ):
In the absence of any a priori bias, the probability of the kth
target is uniformly distributed over the positions with the
label k:

p(x(t)
k = pi|�1, . . . , �N ) =

δ(�i − k)∑N
j=1 δ(�j − k)

(3)

where δ() denotes the Dirac delta function. Thus, the target
will have zero probability at pixels where the class label is
different from k.

2.2 State inference and target search

We search for the k-th target by maximizing the poste-
rior probability of the position x

(t)
k over all pixel sites. The

probability is conditioned on the previous states and the cur-
rent measurements:

x̂
(t)
k = arg max

pi

p(x(t)
k = pi|Z(t), X̂

(t−1)
) (4)

where x̂
(t)
k is the estimate of x

(t)
k , and X̂

(t−1)
is the esti-

mate of the previous positions of all targets.
The posterior probability p(x(t)

k = pi|Z(t),X(t−1))
can be inferred using the conditional independence of X(t)

from X(t−1) and Z(t) given the labels �1, . . . , �N , as fol-
lows:

p(x(t)
k = pi|Z(t),X(t−1)) (5)

=
M∑

�1=0

. . .

M∑
�N=0

p(x(t)
k = pi, �1, . . . , �N |Z(t),X(t−1))

=
M∑

�1=0

. . .

M∑
�N=0

p(x(t)
k = pi|�1, . . . , �N )

N∏
j=1

p(�j |z(t)
j ,X(t−1))
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Substituting eq. (3) into eq. (5), we can represent the
distribution of target position via the distribution of pixel
labels. Moreover, the summation over �i is simplified as:

p(x(t)
k = pi|Z(t),X(t−1)) = p(�i = k|z(t)

i ,X(t−1))×

M∑
�1=0

. . .
M∑

�i−1=0

M∑
�i+1=0

. . .
M∑

�N=0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N∏
j=1,j �=i

p(�j |z(t)
j ,X(t−1))

1 +
N∑

j=1,j �=i

δ(�j − k)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)
The direct computation of this probability is intractable
since it depends on the distribution of all labels in the field.
Fortunately, the maximization of the probability in eq. (6)
can be done rather sufficiently using the following proposi-
tion.

Proposition 1 The probability of the position of a target
in (6) is monotonically increasing with the probability of
the corresponding class. Specifically, for any pair of pixel
sites pi and pi′ the inequality p(x(t)

k = pi|Z(t),X(t−1)) >

p(x(t)
k = pi′ |Z(t),X(t−1)) holds if and only if p(�i =

k|z(t)
i ,X(t−1)) > p(�i′ = k|z(t)

i′ ,X(t−1)).

The proof will be presented in the journal version of this
paper. It follows that the maximization of the probability of
the position of a target can be achieved by maximizing the
probability of the corresponding class label:

x̂
(t)
k = arg max

pi

p(�i = k|z(t)
i ,X(t−1)) (7)

The probability of a class label is calculated using the
Bayes formula as follows:

p(�i = k|zi,X
(t−1))

= p(zi|�i = k)p(�i = k|X(t−1))/p(zi|X(t−1))

=
p(zi|�i = k)p(�i = k|X(t−1))∑M

k=0 p(zi|�i = k)p(�i = k|X(t−1))
(8)

Substituting eq. (1) into (8), the equation of the target search
is elaborated as:

x̂
(t)
k = arg max

pi

p(zi|�i = k)g(pi,x
(t−1)
k )

c p(zi|�i = 0) +
∑M

k′=1 p(zi|�i = k′)g(pi,x
(t−1)
k′ )

(9)

As observed in eq. (9), while the numerator contains the
likelihood of one target p(z(t)

i |�i = k), the denominator

contains the likelihood of the background p(z(t)
i |�i = 0)

and the likelihood of the other targets p(z(t)
i |�i = k′). As

a result, the tracker not only searches for the target k but
also avoids latching on the other targets or a background
region. This is the major difference between the proposed
method and the other methods which basically maximize
the likelihood of individual targets.

There is no need to consider all targets while calculating
(9). The weight g(pi,x

(t−1)
k′ ) restricts the consideration in

the neighborhood of pi. In particular, if the target is dis-
tant from the other targets, the algorithm needs to compute
only the target likelihood and the background likelihood,
and then maximize their ratio.

Note that for the proposed model the computation of the
state probability conditioned on the entire history of the ob-
servations p(x(t)

k = pi|Z(1:t)) is intractable due to the com-
putational complexity of the probability in eq. (6). In view
of this, eq. (4) is also a reasonable approach to locate the tar-
get. This approach which works effectively in most tracking
tasks, and has been common in tracking [21, 25].

3 Online construction of the measurement
distribution using the incremental proba-
bilistic PCA

In this section, we address the construction of the mea-
surement model for each target.

The distribution of the measurement of the target k is
represented by a Gaussian with the mean vector μk and co-
variance matrix Ck:

p(z(t)
i |�i = k) = N (z(t)

i ;μk,Ck) (10)

Each target is represented by a rectangular patch in the im-
age. For the kth target, the measurement vector zi is com-
posed of the intensity values of the image patch which has
the same size as the target and is centered at pi. The size of
background measurements is the average of the size of the
targets.

The ability in representing complex data structures de-
pends on the specifics of Ck. The most simple model is the
isotropic Gaussian, where Ck = σ2

kI and I is the identity
matrix. This mode can only represent one snap-shot of the
object without much appearance variations. The full non-
isotropic Gaussian with no constraint between the elements
of Ck is most powerful but not computationally tractable
when the dimensionality of the data is high. The common
trade-off is the probabilistic PCA (PPCA) model [7]:

Ck = σ2
kI + W kW T

k (11)

W k is a dk × qk matrix, dk is the dimensionality of zi,
and qk � dk. This model provides a good balance between
the representation accuracy and the complexity. In fact, the
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hyperplane spanned by the columns of Wk is the same hy-
perplane spanned by the first qk eigenvectors of the covari-
ance matrix. So, the model is rather similar to the classical
eigenspace model, but has the advantage of the probabilistic
interpretation.

In the presented method, PPCA for each target is
estimated from the history of the past measurements
z(1,k), . . . ,z(t,k) which are obtained from the beginning to
frame t. Here, z(t,k) is the vector of intensities of the image
region at the estimated location of the kth target in frame t.
The model learnt from the past appearances will help to rec-
ognize the object in the future should these appearances re-
turn. Note however that the measurements obtained during
occlusions are not reliable. We therefore collect only the
measurements obtained when there is no overlap between
the considered target and the other targets.

3.1 Maximum likelihood solution of probabilistic
PCA

According to [7], the maximum likelihood estimation of
PPCA is:

μk =
1
t

t∑
i=1

z(i,k) (12)

σ2
k =

1
dk − qk

dk∑
i=qk+1

λi,k (13)

W k = V q,k(Λq,k − σ2
kI)1/2R (14)

where λ1,k, λ2,k, . . . , λd,k are the eigenvalues arranged in
the descending order of the observation covariance matrix:

Sk =
1
t

t∑
i=1

[z(i,k) − μk][z(i,k) − μk]T . (15)

Let v1,k, . . . ,vd,k be the corresponding eigenvectors.
Here, V q,k is the dk × qk matrix whose columns are
v1,k, . . . ,vq,k, Λq,k is the diagonal matrix whose diago-
nal elements are the λ1,k, . . . , λq,k, and R is an arbitrary
qk × qk orthogonal matrix.

The estimated covariance matrix is:

Ck = σ2
kI +

qk∑
i=1

(λi,k − σ2
k)vi,kvT

i,k (16)

=
qk∑

i=1

λi,kvi,kvT
i,k + σ2

k

dk∑
i=qk+1

vi,kvT
i,k

While λ1,k, . . . , λq,k are the variances of the first q princi-
pal components, σ2

k is the average of the variances of the
remaining dk − qk components.

Note that eq. (12)- (14) should be used only in a batch
mode, where all z(i,k), 1 ≤ i ≤ t are stored in memory,

and in addition, when the data dimensionality d is low. The
next section will present an efficient method for the estima-
tion of the high dimensional PPCA in the incremental mode
without requiring the storage of all the past measurements.

3.2 Incremental probabilistic PCA

In the incremental mode, the parameters are updated us-
ing the current parameters for each target k individually and
the new coming measurement z(t+1,k) for that target. In the
sequel we drop index k as this section holds for all targets.
The full set of parameters of a target includes the mean vec-
tor μ, the first q eigenvectors v1, . . . ,vq, the corresponding
eigenvalues λ1, . . . , λq , and the noise parameter σ2. Like
before, we use the superscript (t) to denote the estimation
of these parameters obtained at time t.

Upon the arrival of a new measurement z(t+1), the mean
vector is easily updated as:

μ(t+1) =
1

t + 1

t+1∑
i=1

z(i) =
t

t + 1
μ(t) +

1
t + 1

z(t+1) (17)

The new observation covariance matrix is:

S(t+1) =
1

t + 1

t+1∑
i=1

[z(i) − μ(t+1)][z(i) − μ(t+1)]T

=
t

t + 1
S(t) +

t

t + 1
yyT (18)

where y =
√

1
t+1 [z(t+1) − μ(t)]

We need to calculate the eigenvectors and the eigenval-
ues of S(t+1) in order to obtain the new estimation of the
parameters. The direct eigenvalue decomposition of S(t+1)

is impossible due to the high value of d.
The crucial point is to approximate S(t) by its current

estimation given in eq. (16), yielding:

S(t+1) ≈ t

t + 1
[σ(t)2I+

q∑
i=1

(λ(t)
i −σ(t)2)v(t)

i v
(t)T
i +yyT ]

(19)
We remark that in related methods [14, 8, 3], matrix S(t)

is traditionally approximated as S(t) =
∑q

i=1 λiv
(t)
i v

(t)T
i .

This approximation is less accurate than eq. (16), since it
completely removes the variances of the last d− q principal
components. Furthermore, it does not include σ. Therefore
they do not allow an update this parameter.

Let

L =
[√

λ
(t)
1 − σ(t)2v

(t)
1 , . . . ,

√
λ

(t)
q − σ(t)2v(t)

q ,y

]

(20)
Then (19) becomes:

S(t+1) ≈ t

t + 1
[σ(t)2I + LLT ] (21)
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From here to obtain the eigenvectors and eigenvalues of
S(t+1) we need only the eigenvalue decomposition of the
matrix LLT . Again, the decomposition should not be ap-
plied directly to LLT which is d × d. Instead, we set the
(q + 1) × (q + 1) matrix:

Q = LT L =
(

Σ β

βT α

)
(22)

where Σ = diag{λ(t)
1 − σ(t)2 , . . . , λ

(t)
q − σ(t)2}, α =

yT y, and β is the q × 1 vector whose elements are βi =√
λ

(t)
i − σ(t)2v

(t) T
i y.

Let the eigenvalue decomposition of Q be:

Q = UΓUT (23)

where Γ = diag{γ1, . . . , γq+1}, and UT U = I . The
eigenvectors of LLT are the columns of the matrix:

V = LUΓ−1/2 (24)

Let V = [v(t+1)
1 , . . . ,v

(t+1)
q+1 ]. Eq. (19) is rewritten as:

S(t+1) ≈ t

t + 1
[σ(t)2I +

q+1∑
i=1

γiv
(t+1)
i v

(t+1) T
i ] (25)

It follows that v
(t+1)
1 , . . . ,v

(t+1)
q+1 are the first q + 1 eigen-

vectors of S(t+1). Only the first q eigenvectors are retained
in memory. The first q + 1 eigenvalues of S(t+1) are:

λ
(t+1)
i =

t

t + 1
[σ(t)2 + γi] (26)

The d − q − 1 remaining eigenvalues have the same value
t

t+1σ(t)2 . Using eq. (13), σ is updated as:

σ(t+1)2 =
1

d − q
[λ(t+1)

q+1 + (d − q − 1)
t

t + 1
σ(t)2 ]

=
t

t + 1
[
γq+1

d − q
+ σ(t)2 ] (27)

The incremental PPCA is summarized as follows:
For each target:

1. Update the mean μ, eq. (17).

2. Update the matrix W .

(a) Set up matrix Q, eq. (22) and decompose it in its
eigenvectors and eigenvalues by eq. (23).

(b) Then, compute the matrix V by eq. (24). The
first q columns of V are the new eigenvectors.

(c) The corresponding eigenvalues λi, are calculated
by eq. (26). This yields all ingredients to com-
pute eq. (14).

3. Update the noise parameter, eq. (27).

The initial PPCA model is learnt from an initial set of mea-
surements z1, . . . ,zk using the batch mode algorithm [7].
Note that we should have k > q, otherwise the estimated co-
variance matrix would be singular. The incremental PPCA
can then start from frame k + 1. The overall complexity
is O(q3) + O(dq) per each update. Since q is small, the
algorithm is efficient and can be applied to real time appli-
cations.

4 Experiments

The tracking is initialized by specifying the position and
size of each target in the first frame. The parameters are
set as follows. The background prior c = 0.1 ensuring that
the probability of the background class is low in the vicinity
of the targets. The threshold r indicates the maximum dis-
placement in one time step, so that the algorithm can find
the target in the next frame. In the experiment, r is set as
r = 3× the average target width. The measurement distri-
bution for each target is represented by a PPCA-model with
the first q = 5 principal components. The incremental up-
date of PPCA starts after k = 2q frames. Moreover, in the
first k frames, targets are tracked independently and sim-
ply by intensity matching with the sample given in the first
frame.

The tracking results of the proposed method are shown
in Figure 3 for several video sequences. For comparison,
Figure 4 shows the results of independently applying multi-
ple instances of a single target tracker, where each target is
searched for by maximizing the ratio of its likelihood to the
background likelihood.

In Figure 3a, three persons are approaching each other
from opposite directions. An occlusion takes place at
frames 15-25 when they cross each other. Targets 2 and
3 have a slightly similar appearance, and walk at a close
distance. The independent trackers quickly lost track of the
first target at the occlusion, see Figure 4. At frame 100, the
three targets merge into one. The proposed algorithm tracks
successfully and maintains the correct identity of the targets
over the entire sequence.

A difficult example is shown in Figure 3b. The sequence
was recorded by a fixed camera, located at a high window
and looking down on people walking on a street. Due to the
distance, all targets appear similar and small. Occlusions
occur when people cross or pass behind trees. At some oc-
clusions, three people coincide. In the figure, the proposed
algorithm correctly tracks and classifies all targets except
for the moment of occlusion when target windows merge.
Immediately after, the correct identification of targets is re-
stored. In the result of independent trackers, as shown in
Figure 4, the window of targets 1,2,5 melts together at the
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frame 2 frame 15 frame 27 frame 50 frame 115

a)
frame 2 frame 35 frame 100 frame 245

b)

Figure 3. The result of the proposed algorithm for tracking multiple approaching targets with occlusions. The number
on top each target indicates its label. See also the enclosed videos.

frame 50 frame 100 frame 35 frame 100

Figure 4. The results of the independent trackers for the sequences in Figure 3.

first occlusion in frame 35. Erroneously, they stick to one
target until frame 140. The same thing occurs for targets 3
and 4. The same thing occurs for two other targets. As a
consequence, the independent trackers lose track and can-
not recover.

The power of incremental PPCA in modelling object ap-
pearance is demonstrated in Figure 5a. The figure shows
the result of the proposed algorithm for tracking two faces
under severe pose change and occlusion. A complete oc-
clusion occurs in frame 250 when one person passes be-
hind the other. Note that during occlusion the first person
makes a pose change from frontal view to side view. The
online training of a PPCA model for this person has taken
into account different views of his head before the occlu-
sion. Therefore, the algorithm successfully recognized the
profile view after occlusion since it has been seen earlier
in frame 112. The eigenimages obtained are shown in Fig-
ure 5b. They also depict different views of the head. The
algorithm failed to recapture the head however when we re-

placed the PPCA model by either a fixed template or an
adaptive template obtained by frame averaging over a short
period of time.

5 Conclusion

A new approach has been proposed for tracking multiple
targets, emphasizing on the use of the context information.
We have shown that the accuracy of the target identification
can be improved by the incorporation of information from
the spatial and temporal context of each target.

The tracker discriminates the target from nearby targets
and the background by intensity of pixels in the target win-
dow. Before searching for the next target position, all tar-
gets will be classified. Maximization of the probability of
the target label, rather than the target likelihood, avoids that
the target latches on image regions with a similar appear-
ance as the other targets or the background. By separating
targets in appearance space and not in position space, the
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frame 112 frame 215

frame 250 frame 275

a)

b)

Figure 5. a) Tracking results of the proposed algo-
rithm in the condition of occlusion and pose change;
b) The eigenimages obtained from the PPCA.

problem of target coalescence and identity switching has
been solved effectively.

The representation which makes the method work is the
Probabilistic PCA incrementally updated on line without
storage of past measurements. A robust appearance model
is constructed for each target. The model effectively rep-
resents a diverse set of appearances, effectively providing
a long-term memory, instrumental in re-detecting an object
after occlusions and severe pose changes.
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