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Abstract

Much emphasis has recently been placed on the detectionegogdnition

of locally (weak) affine invariant region descriptors forj@tt recognition.

In this paper, we take recognition one step further by deietpfeatures
for non-planar objects. We consider the description of abjevith locally

smoothly varying surface. For this class of objects, coliomariant his-

togram matching has proven to be very encouraging. Howewatching

many local colour cubes is computationally demanding. Véppse a com-
pact colour descriptor, which we call Wiccest, requiringyoh2 numbers
to locally capture colour and texture information. The Véistfeatures are
shown to be fairly insensitive to photometric effects likeadow, shading,
and illumination colour. Moreover, we demonstrate theudesg to be appli-
cable to highly compressed images while retaining discrative power.

1 Introduction

There has always been a drive for deriving good features.yMamputer vision tasks
depend heavily on local feature extraction. Object redigmiis considered a typical
case where local information is gathered to obtain evidémce=cognition of previously
seen objects. Recently, much emphasis has been placed detdution and recognition
of locally (weak) affine invariant regions [11, 12, 13, 14].18he rationale here is that
planar regions transform according to well known laws. 8stul methods rely on fixing
a local coordinate system to a salient image region, resyili an ellipse describing local
orientation and scale. After transforming the local regits canonical form, descriptors
like SIFT [11] are well able to capture the invariant regigap@arance. Indeed, for such
a setting the detection of affine regions combined with th€lr'*lescriptor is shown to be
better than many alternatives [12]. Given the success akthpproaches, the detection
and recognition of planar regions may even be considerelbse(to) solved problem.

In this paper, we take object recognition one step furthedéneloping features for
non-planar patches. We consider the description of priggeof locally non-planar but
smoothly varying objects, see Figure 1. The problem is véfgrént from the description
of planar regions. For one, interest points are less obviowdetect, and if detected,

*This work is sponsored by the Netherlands Organisation égerfiific Research (NWO). Part of the paper
is written during the author’s visit to the Robotics ReskaBzoup, University of Oxford.



Figure 1. Example objects with illumination direction \edifrom left to right. The
example objects are increasingly hard to index by currenthauwlogy. Affine region
descriptors work well for the tea box, as it contains plaregians with rich internal
structure. For planar regions, a difference in light diatwill merely cause a variation
in intensity of the surface. A slightly harder case is présery the marmalade bottle,
but may still be recognised by affine region descriptors duéstsmooth convex shape
and rich structure at its label. A large step further is theoastin type of concavities
and convexities often occurring in natural objects, repmésd by the red pepper. No
obvious keypoints are present, and self-shadow, shadiddhighlights present severe
difficulties for object descriptors. The teddy is an examgfla smooth shape with rough
material texture. The teddy’s texture contrast dependsillyaan illumination direction,
and is affected by local shading and self shadowing. Altihdhgse illustrations represent
laboratory extremes, as no ambient illumination is presemse effects also manifest
itself in normal indoor and outdoor imaging conditions.

they often do not attach to reproducible locations on theabjFurthermore, where the
appearance of planar regions is marginally affected by gbsuin viewing conditions,
this has drastic effects for locally convex or concave abjsee Figure 1. Under these
circumstances, descriptors should handle shadow andngheffiects.

Under these circumstances, object recognition based onrciolvariant features have
proven to be very encouraging in the past [3, 6, 10]. Colovariant descriptors nor-
malise the local intensity in the image, hence do not “seatstw and shading effects.
As such, they counteract the effect of shadow and shadinghadause a distorted ap-
pearance of the object as could be obtained from the inteas@nnel only. However,
application of colour invariance in object recognition ma¢ emerged beyond a limited
number of applications, mainly being in content based intagrieval [19]. Besides the
mere challenge in understanding the physics needed to goksyr invariance, and make
effective use of it, two other drawbacks are visible. For,awour invariants used so
far lack the stability and robustness to withstand comjpwass he argument that all im-
ages are in colour nowadays, and hence this informationldtzuexploited, is simply
countered by the fact that almost all of these images are m@sapd. Compression al-
gorithms typically use most of the bits for intensity infation, coding a poor estimate
of the chromaticity. Although this will not too much affectdexing based on the global
colour histogram, local colour statistics are severelgrafd.

A second issue against the use of colour is its computaticoralplexity. Comput-
ing power and available memory increase with Moore’s lawiclwimakes channel wise
processing of colour images effectively no problem at té&slayachines. However, for



object recognition, histograms of colour models are ofteruated, which requires a 3D
colour cube to be stored in memory for each keypoint or imag@n. Processing and
matching of these cubes require simply to much computaitiog, toften circumvented by
down sampling to a 32x32x32 cube [10] or by histogram congioeg1]. The result is
still an awful lot more numbers than, e.g. SIFT featureschuinly stores 128 values per
location. These drawbacks prevent the large scale use @iiccfar object recognition.

In the recent past, colour invariants have been proposeditmsGaussian scale-space
[9]. These features improve upon pixel-based invariantsl(§ in that they overcome
the problem of noise and compression sensitivity, as atbesténate of colour value is
obtained by simply choosing a larger integration scale ef@aussian filter. In this way,
compression artifacts are averaged, yielding a more stakldt for colour invariants.
Van de Weijeret al. [21] continued this work, and dealt with the problem of slibat
low intensities and low saturation. However, colour in matimages is often not simply
described by a single assignment of an average colour vilaay natural objects have
not a single unique colour, it is rather the blend of coloutrsclv give the objects its
distinctive visual characteristics. This is the very pijihe which turned colour based
histogram matching into a success in image retrieval [18]abject tracking [2]. We will
include this principle in the very heart of our feature dasig

In this paper, we build onto these past successes, and dexalew class of local
colour features specifically targeted for object recognitiWe derive a photometric and
geometric invariant descriptor based on the local histogvhcolour edges. We analyse
how photometric transformations affect the (local) stat$sof colour edges. Our main
contribution targets the dimensionality problem for caléeatures. The RGB histogram
(or intensity histogram alike) can have almost any shaparfaitrary images, albeit con-
straint by the physics of light reflection. The histogram dfies is tightly constraint by
local correlations. As a consequence, edge histogranawallsimple shaped probability
density. We exploit this a-priori structure in images bygraeterising edge histograms
according to the statistics of natural images. We derivariant properties of these statis-
tics, yielding only 12 numbers to adequately describe looc&dur edge histograms. We
demonstrate our method on a database of highly curved anglerr8D objects. The
features are systematically tested under changes in iflatioin colour, illumination di-
rection, viewing direction, and image compression.

2 Preliminaries

2.1 Colour Image Formation M odel

We start our analysis of colour features with a short retaarsthe physics of colour
image formation. Symbols and reflectance models are definactiordance with [9]. We
restrict to a model which takes a directed light source anahalpient diffuse illumination
into account. Directed light is for example sunlight or dighit, whereas ambient light is
present due to the sky or the reflectance from walls and geillinese light sources are
modeled locally, for the extent of a single feature. The phwtric reflectance model con-
sists of a diffuse body reflection component, a specularfaxte reflectance component,
and an ambient illumination component [17],

E(A,X) =1(X)e(A)R(A,X)+e(A)p(X)+a(A) 1)



whereX denotes the position at the imaging plane Anttie wavelength. Furtheg(A ) de-
notes the direct illumination spectrum. The ambient illoation term is given by(A).
Note that the spectral distribution afA) maybe different from the spectrum efA),
thereby including coloured cast shadows. The combinedteffeintensity flux and illu-
mination intensity variations at the object surface is gibg i(X), and encodes shading
and non-coloured shadow effects. The Fresnel reflectaetdinyg specular (interface) re-
flection is denoted byp(X). The material reflectivity is denoted IB(A ,X). The reflected
spectrum in the viewing direction is given B(A,X). We are especially interested in the
body reflectanc®(A,X), as it is indicative for the “true” object’s colour. Hencee\aim

at deriving photometric invariant features, that is, feasusolely depending dR(.).

2.2 Gaussian Based Colour M easurements

In [9], a Gaussian scale-space framework for colour feathas been proposed. In short,
each pixel's RGB value is transformed into an opponent colepresentation. The ra-

tionale behind this transformation is that the RGB serigitigurves of the camera are

transformed to Gaussian basis functions, being the Gauasits first and second order
derivative. Hence, the transformed values represent aoraup colour system. Advan-

tage of the use of an opponent colour space is that colouesate decorrelated. Spatial
scale is incorporated by convolving the opponent colougiesavith a Gaussian filter,

éklm(x’ Y, O-I) = le (Xv Y, O-I) * Em(X, y) s (2)

whereGy (x,Y, 6i) represents the Gaussian derivative filter of derivativeeokdn the x-
direction and ordef in they-direction, andgy, represents the opponent colour channels
E, E,, E,,. Note that we now have a spatial Gaussian times a spectrakiaa yielding

a combined Gaussian measurement in a spatio-spectrartlierce.

2.3 Local Kernel Based Histogram Estimation

Localisation and spatial extent (scale) of local histoggasnobtained by weighing the
contribution of pixels by a Gaussian kernel,

Neoyo.do(i) = 3 G(X—Xo.Y — Yoi G)8 [Fo, (%.y) 1] . 3)
Xy

whered is the Kronecker delta functiomg (X,y) is a discretised version of one of the
Gaussian (derivative) filter responses (eq. 2), @&{d is the Gaussian kernel. The his-
togramh(i) is constructed by taking all pixels with discretised valuand adding there
weighted contribution, weighed by kerr®(.), to the histogram bin The parameteo,
represent the size of the kernel, not to be mistaken for thle st of the Gaussian filters
(eq. 2). Hence, we have an “inner” scakeat which point measurements are taken, which
are accumulated over an “outer” scakginto a local histogram.

3 Compact Invariant Descriptorsfor Local Histograms

3.1 Quas Colour Invariant Derivatives

Our measurement framework, laid down in Section 2.2, allasv® measure (smoothed)
derivatives of the reflectance function. Hence, like in {9 adopt a differential frame-



work to derive image features. We start by deriving the tloggonent colour channels
from (eq. 1), omitting function parameters for brevity,

E(A,x) =ieR+ep+a
Ex(AX)=i(eaR+eRy)) +erp+ay
Exx(A.X) =i(enaR+26\Ry +eRyy)+enp+any (4)

indices denoting differentiation. Note that after any slalerivative of these colour
channels, the ambient illumination teraiA ) will vanish, as it is locally constant with
respect to the spatial coordinates. Hence,

Eax(A,X) = e(iRyx+ixRy) + € (IR« +ixR+ px)
Eaax(A,X) = e(iRnx +ixRaa) + 28, (iRyx +ixRy) +e (IRc+ixR+px) . (5)

These derivatives are independent of a constant additive ti@ each opponent colour
channel. As such, the measured derivati@sEy, Exx, Eay, Exax, Eaay, are invari-
ant for additive changes caused by (possibly coloured) emldiumination, (coloured)
cast shadows, and camera offset values. Furthermore, theomer effect of chang-
ing the colour of the light source is a shift in the distrilautiof colours in the opponent
colour channel&, andE, ,. By taking local differences between colour values, this-co
stant offset again is canceled out. This is effectively ipooated in colour difference
measures for well known opponent colour spaces like Luv alfitl &. Hence, taking
the spatial derivative as above yields already a fair rotmsst against local illumination
colour changes. Note that multiplicative intensity effeate still present in the deriva-
tives. Hence, we still have to deal with global intensitymi@s, local intensity effects of
shading and shadow, non-uniform illumination and with spexities. Before doing so,
we first consider the local statistics of these quasi-imvdrilerivatives.

3.2 Compact Features by Histogram Parameterisation

Compactness of the local histogram representation of fiéseponses may be obtained
by clustering techniques like principal component analy$] or by quantisation of the
histogram through K-means clustering over a large set ef fiksponses [23]. Alterna-
tively, one could parameterise the histogram by fitting afiomal through the histogram
values, and subsequently storing the parameters of the fittection. This may yield a
condense description, provided that the functional cloapproximates the histogram.
Popular functionals include fitting to a mixture of Gaussian the normal distribution
itself. However, from natural image statistics researtls known that histograms of
derivative filters can be well modeled by a simple distribatj20]. The local histogram
of invariants of derivative filters can be well modeled by ategrated Weibull type dis-
tribution, also known as Generalised Laplacian,

y
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In this casey represents edge response of a derivative filter. Furthexri¢o) repre-
sents the complete Gamma functidiigr) = [yt tetdt. The parameten denotes the
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origin of the distribution, the paramet@rdenotes the width of the distribution, and the
y parameter indicates the peakness of the distribution. Nhatiethe integrated Weibull
distribution is only under very strict circumstances cltsé&aussian. This is only the
case if the image depicts high frequency noise, such thadfe responses are normally
distributed. For general images, thparameter will often be within the intervgl.5...1]
[8]. By using the Weibull parameters, one obtains an acewratl very compact parame-
terisation of the derivative histogram.

Estimates for the parameters of the integral form of the Weidtistribution are ob-
tained by the maximum likelihood method. Transforming teneated density to the log
domain and subsequently differentiation to the parametefs andy, respectively, and
setting them to zero, yields the following estimators fioand 3,

1/y
fr=%h(rjri . B= lzh(fi)(ri—ﬁl)yl ;
I ]
whereh(.) represents the kernel based local histogram of one of tioeicimivariants. The
derivative of the log-likelihood tg is given by
N N N ri—fl|’ . ri — [
y+logy+W(1/y) —l+zh(ri)‘ ' B“ (l— ylog| - [3“ D =0, )
|

whereW(.) denotes the digamma function, the logarithmic derivativhhe gamma func-
tion. The final equation is optimised by a dichotomic seauntteme, implying searching
for the B andy combination (by varying) for which (eq. 7) is closest to zero.

3.3 Geometric Invariance

Before continuing with the final derivation of compact ir@at colour descriptors, ge-
ometrical invariance of the Weibull parameters has to beesded. So far, Weibull pa-
rameters were estimated from the response histogram degilegivative filters. These
responses do depend on the orientation of the image comienitzial solution is to use
the rotationally invariant gradient magnitude, in accotato [15]. However, one looses
discriminative power, as in that case homogeneity betwege direction over regional
scaleoy (eg. 3) is lost. Rather we aim for a coherent description cdilimage structure.
Consider the steerability of Gaussian derivative filtef@nle takes a derivative filter
in thex andy-direction, a derivative in any other direction may be agbéby the linear
combinationEg = ExcosB + Eysin@ whereEg is the resulting response of a derivative
filter in the 8-direction. TheEy andE, responses are orthogonal, each being characterised
by an integral Weibull type probability density, althoudfey may have different param-
eters. From probability theory, we know that a weighed sunindépendent random
variables result in a probability density given by the cduation of the individual den-
sities. As a consequence, the Weibull parameters spasedliwhen plotted as function
of angle. The shortest and longest principal axisandy, together with the orienta-
tion of the ellipse, indicate the directional structurehie uinderlying edges. Rotational
invariance is achieved by estimating the longest and s$topréncipal axes of these el-
lipses, disregarding its orientation. Many methods exmt®lliptic fitting. As a simple
solution, and one we will apply, estimate thandp for 0°, 45°, 90°, and 135 derivative



filters (using the steering property), and use a least sdiftng to obtain the shortest and
longest axes foy and for3, which characterises the local histogram invariant totiara
of the original image.

3.4 Welbull Invariant Colour Contrast Estimator

We are now in a position to derive a fully photometric and getsia invariant descriptor
from the Weibull parameters of the local colour edge hisiagrFirst consider the mean
value u of the Weibull parameters. In many cases, this will be claseero, as there
often are as much rising slopes as falling slopes in an im&gviation from zero is
due to a locally non-uniform illumination (possibly by slrag). We assume the directed
light source and shading component to be slowly varying tweimage plane, such that
the illumination is locally planar, although not uniformves the extent, of the local
region from which statistics are taken. A planar illuminatwill cause an offset to the
derivative values obtained from (eq. 5). Note that thiseiffsvshen deviating from zero,
will be presentin all three (derivative-) opponent coloacnels. To arrive at photometric
invariance, the local histogram should be zero centred Iracting its mean value.
Hence,u is to be ignored.

We are still left with a multiplicative term due to the intégsof the directed light
source, the term being reflected in the wigtlof the Weibull distribution. A meaningful
measure representing the variation in the local derivatisghe average colour gradient
magnitude. As derived above, derivatives are the lowestrarteasures not affected by
ambient illumination and contrast manipulations. Howgadarger ambient illumination
component relative to the direct illumination componeduees the contrast in the image.
In that case, normalisation becomes less stable as thegaveoatrast diminishes, even
when the area is well illuminated . Being pragmatic, one nmeawall consider the local
average intensity to normalise for the intensity compongietding only instabilities at
low intensities. Hence, we consider the local (Gaussiaghted) average intensity to
normalise the width of the distributio8’ = 3/E, which yields robustness against low-
intensity values, noise, and compression artifacts, agdsrthe average intensity is above
(compression) noise level. The latter is easily checked.

The remaining parameter indicates the (local) roughness or textureness, and is a
photometric invariant. In summary, by estimating of thegest and shortest principal
axes of they and contrast normalise@ = 3/E parameters for each opponent colour
channel, one obtains the twelve “Wiccest” parameters d®sgra local region in colour
and edge (texture) content.

3.5 Summary of invariances achieved

We have theoretically shown the Wiccest parameters to bereitvariant or highly ro-
bust to: global intensity changes, local intensity effedtshading and (coloured) shadow,
non-uniform illumination, ambient illumination, colowtéllumination, Euclidean trans-
formations, and (compression) noise. The remaining phetaaeffect which is affecting
the Wiccest features is specular reflection. However, inyntases the specularities are
either not dominating the local histogram —the speculaa beégng much smaller than the
scaled, of the local region—, or results in an outlier during the rhatg phase.



4 Experiment: Object Recognition from One Example

To assess the constancy of the proposed Wiccest feature wagng imaging condi-
tions, the features has been applied to the ALOI collectidnThe collection consists of
1,000 objects recorded under various imaging circumstar®gecifically, viewing angle,
illumination angle, and illumination colour is systematlg varied for each object. In
our experiment, we investigate object recognition by irdgxonly one example of each
object - a problem considered non-trivial given the variatimaging conditions. As ex-
ample image for each object thgel image is taken, which is a frontal view of the object,
under semi-hemispherical white illumination.

To illustrate the effectiveness of the proposed featurespiuring object properties,
a simple algorithm for object recognition is suggested. €riup should be considered
a mere baseline indication of performance. Objects areactenised by densely sam-
pling the image, locations beingog apart. A threshold just above noise level is set
on the contrast of the intensity channel, hence disregaidications without edge con-
tent or very low in intensity. Matching between images isigfintforwardly performed
by comparing the Wiccest parameters for each region of tleeygmage against all re-
gions in the target image, and accumulating the best scamrequery region. Regions
were compared by calculating the fraction between the mtispeparameterg andy,
score= Y (min(B1, B2)/ max(B1,B2))(min(y1/y2)/ max(yi, y2)), where the sum accumu-
lates the three scores of the opponent colour channelsodgtinthe algorithm seems ex-
pensive at first sight, remember that only 12 numbers capiertocal colour histogram.
Hence, the proposed scheme is much more efficient than l@tatham matching ([3]),
and much more efficient than k-nearest-neighbour searaharge collections ([11]).

We applied our algorithm to the four times down-sampled ivaref ALOI. In our
experiment, the scale for the derivative filters was set gpal value ofg; = 1 pixels.
The scale for the kernels was setagt= 7.5 pixels. In practice, an average of 29 non-
empty kernels (348 numbers) per object were indexed. Fasahe collection, keypoint
extraction combined with the SIFT descriptor yields an agerof 60 keypoints (7,924
numbers) per object. Object recognition performance wstedeby evaluating correct
recognition rates under varying illumination directiomrying illumination colour, and
under varying object viewing direction. To evaluate theustbess against compression,
we re-indexed the example images, but now after JPEG cosipreat a quality of 75%
of the original image. We evaluated recognition rates astfan of compression quality.

To indicate that our results are non-trivial and indeed pgsg on the state-of-the-art,
we included results for the method by Lowe [11] based on Laalakeypoints and the
SIFT descriptor (program courtesy of David Lowe availalbtef his website). Further-
more, as a second baseline, we include results for global Ri&Bgram matching and
normalised rgb histogram matching, implemented as in [l0}e that histogram match-
ing is a global method, where SIFT and the proposed Wiccasiffes are local descriptors
which can handle occlusions and clutter (although not shownar experiments). Results
for normalised rgb are similar to RGB, hence are not shown.

The results are shown in Figure 2. As expected, Lowe’s mefhbjdbased on inten-
sity information is insensitive to illumination colour ages, whereas RGB histogram
matching is extremely sensitive to an illuminant changee ploposed method is fairly
colour constant, with a 27% error at the worst condifititD. Note that this is no sinecure
for a colour based method. For variation in illuminationediion, the proposed method
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Figure 2: Object recognition performance as function of/iay imaging conditions.

gradually degrades until the extreme oblique illuminadititl andl1c5. These condi-
tions are exceptional, and not often encountered in pecilibe method is fairly robust
to a change in viewpoint, allowing the indexing of objectwseas far as 45 degrees
apart. RGB histogram matching performs well in this casestNtaportant, the proposed
method is shown to be very robust against compression, agyaskeell up with the al-
ternatives. Regarding computation time, matching one @aagainst the 1,000 in the
database takes less than half a second on a nowadays lapsb@as.h reference, for the
same setup, SIFT takes about 7 seconds per image, 0.89 sdoondlculating the SIFT
descriptor at each keypoint location, and slightly over&sgels for matching against the
1,000 database images. Global histogram matching takesneoee time, mainly due to
the huge volume of memory that has to be matched over and gaér ehile intersect-
ing against 1,000 histograms of 32x32x32 bins. Here, orerlglsees the advantage of
compact descriptors.

5 Conclusions

We proposed a compact object descriptor, Wiccest, requaiy 12 numbers to locally
capture colour and texture information. Although the agstizns underlying our method
seem restricted —smoothly varying surfaces, photomdiricanstraint by a simple re-
flectance model—-, we applied the method successfully a) arge tollection of objects
(this paper); b) under different imaging conditions (thapgr); c) under severe JPEG
compression (this paper); d) in MPEG compressed videcexetr{ TRECVID [4, 22] -
top rank performance); e) real-time recognition of over adrad objects by a Sony Aibo
robodog [16]. Achieving these results requires highly sitand discriminative features.

Our experiments are preliminary in that they do not includaificant scale change,
occlusion, and background clutter. The proposed matchthgree accumulates local
features. Object recognition based on local features hageprto be robust to clutter
and occlusion. From our experience, the suggested appsegchs fairly robust to these
effects [16, 4, 22]. However, a thorough evaluation remaiqmint of future research.
Regarding scale invariance, we included scale as a freengteain the feature design.
Hence, densely sampling Wiccest features at multiple sdaiplies a form of scale in-
variance. However, the matching of multi-scale Wiccestufiess needs to be solved.

The Wiccest features are shown to be highly robust to comnmatopmetric effects
like shadow, shading, and illumination colour, and, mogiontant, retain their properties
and discriminative power under image compression.
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