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Abstract

Much emphasis has recently been placed on the detection and recognition
of locally (weak) affine invariant region descriptors for object recognition.
In this paper, we take recognition one step further by developing features
for non-planar objects. We consider the description of objects with locally
smoothly varying surface. For this class of objects, colourinvariant his-
togram matching has proven to be very encouraging. However,matching
many local colour cubes is computationally demanding. We propose a com-
pact colour descriptor, which we call Wiccest, requiring only 12 numbers
to locally capture colour and texture information. The Wiccest features are
shown to be fairly insensitive to photometric effects like shadow, shading,
and illumination colour. Moreover, we demonstrate the features to be appli-
cable to highly compressed images while retaining discriminative power.

1 Introduction

There has always been a drive for deriving good features. Many computer vision tasks
depend heavily on local feature extraction. Object recognition is considered a typical
case where local information is gathered to obtain evidencefor recognition of previously
seen objects. Recently, much emphasis has been placed on thedetection and recognition
of locally (weak) affine invariant regions [11, 12, 13, 14, 18]. The rationale here is that
planar regions transform according to well known laws. Successful methods rely on fixing
a local coordinate system to a salient image region, resulting in an ellipse describing local
orientation and scale. After transforming the local regionto its canonical form, descriptors
like SIFT [11] are well able to capture the invariant region appearance. Indeed, for such
a setting the detection of affine regions combined with the SIFT descriptor is shown to be
better than many alternatives [12]. Given the success of these approaches, the detection
and recognition of planar regions may even be considered a (close to) solved problem.

In this paper, we take object recognition one step further bydeveloping features for
non-planar patches. We consider the description of properties of locally non-planar but
smoothly varying objects, see Figure 1. The problem is very different from the description
of planar regions. For one, interest points are less obviousto detect, and if detected,
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Figure 1: Example objects with illumination direction varied from left to right. The
example objects are increasingly hard to index by current methodology. Affine region
descriptors work well for the tea box, as it contains planar regions with rich internal
structure. For planar regions, a difference in light direction will merely cause a variation
in intensity of the surface. A slightly harder case is presented by the marmalade bottle,
but may still be recognised by affine region descriptors due to its smooth convex shape
and rich structure at its label. A large step further is the smooth type of concavities
and convexities often occurring in natural objects, represented by the red pepper. No
obvious keypoints are present, and self-shadow, shading and highlights present severe
difficulties for object descriptors. The teddy is an exampleof a smooth shape with rough
material texture. The teddy’s texture contrast depends heavily on illumination direction,
and is affected by local shading and self shadowing. Although these illustrations represent
laboratory extremes, as no ambient illumination is present, these effects also manifest
itself in normal indoor and outdoor imaging conditions.

they often do not attach to reproducible locations on the object. Furthermore, where the
appearance of planar regions is marginally affected by changes in viewing conditions,
this has drastic effects for locally convex or concave object, see Figure 1. Under these
circumstances, descriptors should handle shadow and shading effects.

Under these circumstances, object recognition based on colour invariant features have
proven to be very encouraging in the past [3, 6, 10]. Colour invariant descriptors nor-
malise the local intensity in the image, hence do not “see” shadow and shading effects.
As such, they counteract the effect of shadow and shading which cause a distorted ap-
pearance of the object as could be obtained from the intensity channel only. However,
application of colour invariance in object recognition hasnot emerged beyond a limited
number of applications, mainly being in content based imageretrieval [19]. Besides the
mere challenge in understanding the physics needed to graspcolour invariance, and make
effective use of it, two other drawbacks are visible. For one, colour invariants used so
far lack the stability and robustness to withstand compression. The argument that all im-
ages are in colour nowadays, and hence this information should be exploited, is simply
countered by the fact that almost all of these images are compressed. Compression al-
gorithms typically use most of the bits for intensity information, coding a poor estimate
of the chromaticity. Although this will not too much affect indexing based on the global
colour histogram, local colour statistics are severely altered.

A second issue against the use of colour is its computationalcomplexity. Comput-
ing power and available memory increase with Moore’s law, which makes channel wise
processing of colour images effectively no problem at today’s machines. However, for



object recognition, histograms of colour models are often evaluated, which requires a 3D
colour cube to be stored in memory for each keypoint or image region. Processing and
matching of these cubes require simply to much computation time, often circumvented by
down sampling to a 32x32x32 cube [10] or by histogram compression [1]. The result is
still an awful lot more numbers than, e.g. SIFT features, which only stores 128 values per
location. These drawbacks prevent the large scale use of colour for object recognition.

In the recent past, colour invariants have been proposed based on Gaussian scale-space
[9]. These features improve upon pixel-based invariants [5, 10] in that they overcome
the problem of noise and compression sensitivity, as a better estimate of colour value is
obtained by simply choosing a larger integration scale of the Gaussian filter. In this way,
compression artifacts are averaged, yielding a more stableresult for colour invariants.
Van de Weijeret al. [21] continued this work, and dealt with the problem of stability at
low intensities and low saturation. However, colour in natural images is often not simply
described by a single assignment of an average colour value.Many natural objects have
not a single unique colour, it is rather the blend of colours which give the objects its
distinctive visual characteristics. This is the very principle which turned colour based
histogram matching into a success in image retrieval [19] and object tracking [2]. We will
include this principle in the very heart of our feature design.

In this paper, we build onto these past successes, and develop a new class of local
colour features specifically targeted for object recognition. We derive a photometric and
geometric invariant descriptor based on the local histogram of colour edges. We analyse
how photometric transformations affect the (local) statistics of colour edges. Our main
contribution targets the dimensionality problem for colour features. The RGB histogram
(or intensity histogram alike) can have almost any shape forarbitrary images, albeit con-
straint by the physics of light reflection. The histogram of edges is tightly constraint by
local correlations. As a consequence, edge histograms follow a simple shaped probability
density. We exploit this a-priori structure in images by parameterising edge histograms
according to the statistics of natural images. We derive invariant properties of these statis-
tics, yielding only 12 numbers to adequately describe localcolour edge histograms. We
demonstrate our method on a database of highly curved and complex 3D objects. The
features are systematically tested under changes in illumination colour, illumination di-
rection, viewing direction, and image compression.

2 Preliminaries

2.1 Colour Image Formation Model

We start our analysis of colour features with a short rehearsal of the physics of colour
image formation. Symbols and reflectance models are defined in accordance with [9]. We
restrict to a model which takes a directed light source and anambient diffuse illumination
into account. Directed light is for example sunlight or spotlight, whereas ambient light is
present due to the sky or the reflectance from walls and ceiling. These light sources are
modeled locally, for the extent of a single feature. The photometric reflectance model con-
sists of a diffuse body reflection component, a specular interface reflectance component,
and an ambient illumination component [17],

E(λ ,~x) = i(~x)e(λ )R(λ ,~x)+ e(λ )ρ(~x)+a(λ ) (1)



where~x denotes the position at the imaging plane andλ the wavelength. Further,e(λ ) de-
notes the direct illumination spectrum. The ambient illumination term is given bya(λ ).
Note that the spectral distribution ofa(λ ) maybe different from the spectrum ofe(λ ),
thereby including coloured cast shadows. The combined effect of intensity flux and illu-
mination intensity variations at the object surface is given by i(~x), and encodes shading
and non-coloured shadow effects. The Fresnel reflectance yielding specular (interface) re-
flection is denoted byρ(~x). The material reflectivity is denoted byR(λ ,~x). The reflected
spectrum in the viewing direction is given byE(λ ,~x). We are especially interested in the
body reflectanceR(λ ,~x), as it is indicative for the “true” object’s colour. Hence, we aim
at deriving photometric invariant features, that is, features solely depending onR(.).

2.2 Gaussian Based Colour Measurements

In [9], a Gaussian scale-space framework for colour features has been proposed. In short,
each pixel’s RGB value is transformed into an opponent colour representation. The ra-
tionale behind this transformation is that the RGB sensitivity curves of the camera are
transformed to Gaussian basis functions, being the Gaussian and its first and second order
derivative. Hence, the transformed values represent an opponent colour system. Advan-
tage of the use of an opponent colour space is that colour values are decorrelated. Spatial
scale is incorporated by convolving the opponent colour images with a Gaussian filter,

Êklm(x,y,σi) = Gkl(x,y,σi)∗Em(x,y) , (2)

whereGkl(x,y,σi) represents the Gaussian derivative filter of derivative order k in thex-
direction and orderl in they-direction, andEm represents the opponent colour channels
E, Eλ , Eλλ . Note that we now have a spatial Gaussian times a spectral Gaussian, yielding
a combined Gaussian measurement in a spatio-spectral Hilbert space.

2.3 Local Kernel Based Histogram Estimation

Localisation and spatial extent (scale) of local histograms is obtained by weighing the
contribution of pixels by a Gaussian kernel,

hxo,yo,σo(i) = ∑
x,y

G(x− xo,y− yo;σo)δ [rσi(x,y)− i] , (3)

whereδ is the Kronecker delta function,rσi(x,y) is a discretised version of one of the
Gaussian (derivative) filter responses (eq. 2), andG(.) is the Gaussian kernel. The his-
togramh(i) is constructed by taking all pixels with discretised valuei, and adding there
weighted contribution, weighed by kernelG(.), to the histogram bini. The parameterσo

represent the size of the kernel, not to be mistaken for the scaleσi of the Gaussian filters
(eq. 2). Hence, we have an “inner” scaleσi at which point measurements are taken, which
are accumulated over an “outer” scaleσo into a local histogram.

3 Compact Invariant Descriptors for Local Histograms

3.1 Quasi Colour Invariant Derivatives

Our measurement framework, laid down in Section 2.2, allowsus to measure (smoothed)
derivatives of the reflectance function. Hence, like in [9],we adopt a differential frame-



work to derive image features. We start by deriving the threeopponent colour channels
from (eq. 1), omitting function parameters for brevity,

E(λ ,x) = ieR+ eρ +a

Eλ (λ ,x) = i(eλ R+ eRλ )+ eλ ρ +aλ

Eλλ (λ ,x) = i(eλλ R+2eλ Rλ + eRλλ )+ eλλ ρ +aλλ , (4)

indices denoting differentiation. Note that after any spatial derivative of these colour
channels, the ambient illumination terma(λ ) will vanish, as it is locally constant with
respect to the spatial coordinates. Hence,

Ex(λ ,x) = e(iRx + ixR+ρx)

Eλx(λ ,x) = e(iRλx + ixRλ )+ eλ (iRx + ixR+ρx)

Eλλx(λ ,x) = e(iRλλx + ixRλλ )+2eλ (iRλx + ixRλ )+ eλλ (iRx + ixR+ρx) . (5)

These derivatives are independent of a constant additive term to each opponent colour
channel. As such, the measured derivativesÊx, Êy, Êλx, Êλy, Êλλx, Êλλy, are invari-
ant for additive changes caused by (possibly coloured) ambient illumination, (coloured)
cast shadows, and camera offset values. Furthermore, the zero order effect of chang-
ing the colour of the light source is a shift in the distribution of colours in the opponent
colour channelŝEλ andÊλλ . By taking local differences between colour values, this con-
stant offset again is canceled out. This is effectively incorporated in colour difference
measures for well known opponent colour spaces like Luv and CIELab. Hence, taking
the spatial derivative as above yields already a fair robustness against local illumination
colour changes. Note that multiplicative intensity effects are still present in the deriva-
tives. Hence, we still have to deal with global intensity changes, local intensity effects of
shading and shadow, non-uniform illumination and with specularities. Before doing so,
we first consider the local statistics of these quasi-invariant derivatives.

3.2 Compact Features by Histogram Parameterisation

Compactness of the local histogram representation of filterresponses may be obtained
by clustering techniques like principal component analysis [1] or by quantisation of the
histogram through K-means clustering over a large set of filter responses [23]. Alterna-
tively, one could parameterise the histogram by fitting a functional through the histogram
values, and subsequently storing the parameters of the fitted function. This may yield a
condense description, provided that the functional closely approximates the histogram.
Popular functionals include fitting to a mixture of Gaussians or the normal distribution
itself. However, from natural image statistics research, it is known that histograms of
derivative filters can be well modeled by a simple distribution [20]. The local histogram
of invariants of derivative filters can be well modeled by an integrated Weibull type dis-
tribution, also known as Generalised Laplacian,

p(r) =
γ

2γ
1
γ βΓ(1/γ)

exp

{

−
1
γ

∣

∣

∣

∣
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β

∣

∣

∣

∣

γ}

. (6)

In this case,r represents edge response of a derivative filter. Furthermore, Γ(α) repre-
sents the complete Gamma function,Γ(α) =

∫ ∞
0 tα−1e−tdt. The parameterµ denotes the



origin of the distribution, the parameterβ denotes the width of the distribution, and the
γ parameter indicates the peakness of the distribution. Notethat the integrated Weibull
distribution is only under very strict circumstances closeto Gaussian. This is only the
case if the image depicts high frequency noise, such that theedge responses are normally
distributed. For general images, theγ parameter will often be within the interval[0.5. . .1]
[8]. By using the Weibull parameters, one obtains an accurate and very compact parame-
terisation of the derivative histogram.

Estimates for the parameters of the integral form of the Weibull distribution are ob-
tained by the maximum likelihood method. Transforming the estimated density to the log
domain and subsequently differentiation to the parametersµ , β , andγ, respectively, and
setting them to zero, yields the following estimators forµ andβ ,

µ̂ = ∑
i

h(ri)ri , β̂ =

[

∑
i

h(ri)(ri − µ̂)γ̂

]1/γ̂

,

whereh(.) represents the kernel based local histogram of one of the colour invariants. The
derivative of the log-likelihood toγ is given by

γ̂ + logγ̂ +Ψ(1/γ̂)−1+∑
i

h(ri)

∣

∣

∣

∣

ri − µ̂
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)

= 0 , (7)

whereΨ(.) denotes the digamma function, the logarithmic derivative of the gamma func-
tion. The final equation is optimised by a dichotomic search scheme, implying searching
for theβ̂ andγ̂ combination (by varyinĝγ) for which (eq. 7) is closest to zero.

3.3 Geometric Invariance

Before continuing with the final derivation of compact invariant colour descriptors, ge-
ometrical invariance of the Weibull parameters has to be addressed. So far, Weibull pa-
rameters were estimated from the response histogram of single derivative filters. These
responses do depend on the orientation of the image content.A trivial solution is to use
the rotationally invariant gradient magnitude, in accordance to [15]. However, one looses
discriminative power, as in that case homogeneity between edge direction over regional
scaleσo (eq. 3) is lost. Rather we aim for a coherent description of local image structure.

Consider the steerability of Gaussian derivative filters. If one takes a derivative filter
in thex andy-direction, a derivative in any other direction may be achieved by the linear
combinationEθ = Ex cosθ + Ey sinθ whereEθ is the resulting response of a derivative
filter in theθ -direction. TheEx andEy responses are orthogonal, each being characterised
by an integral Weibull type probability density, although they may have different param-
eters. From probability theory, we know that a weighed sum ofindependent random
variables result in a probability density given by the convolution of the individual den-
sities. As a consequence, the Weibull parameters span ellipses when plotted as function
of angle. The shortest and longest principal axis forβ andγ, together with the orienta-
tion of the ellipse, indicate the directional structure in the underlying edges. Rotational
invariance is achieved by estimating the longest and shortest principal axes of these el-
lipses, disregarding its orientation. Many methods existsfor elliptic fitting. As a simple
solution, and one we will apply, estimate theγ andβ for 0◦, 45◦, 90◦, and 135◦ derivative



filters (using the steering property), and use a least squarefitting to obtain the shortest and
longest axes forγ and forβ , which characterises the local histogram invariant to rotation
of the original image.

3.4 Weibull Invariant Colour Contrast Estimator

We are now in a position to derive a fully photometric and geometric invariant descriptor
from the Weibull parameters of the local colour edge histogram. First consider the mean
value µ of the Weibull parameters. In many cases, this will be close to zero, as there
often are as much rising slopes as falling slopes in an image.Deviation from zero is
due to a locally non-uniform illumination (possibly by shading). We assume the directed
light source and shading component to be slowly varying overthe image plane, such that
the illumination is locally planar, although not uniform, over the extentσo of the local
region from which statistics are taken. A planar illumination will cause an offset to the
derivative values obtained from (eq. 5). Note that this offset, when deviating from zero,
will be present in all three (derivative-) opponent colour channels. To arrive at photometric
invariance, the local histogram should be zero centred by subtracting its mean value.
Hence,µ is to be ignored.

We are still left with a multiplicative term due to the intensity of the directed light
source, the term being reflected in the widthβ of the Weibull distribution. A meaningful
measure representing the variation in the local derivatives is the average colour gradient
magnitude. As derived above, derivatives are the lowest order measures not affected by
ambient illumination and contrast manipulations. However, a larger ambient illumination
component relative to the direct illumination component reduces the contrast in the image.
In that case, normalisation becomes less stable as the average contrast diminishes, even
when the area is well illuminated . Being pragmatic, one may as well consider the local
average intensity to normalise for the intensity component, yielding only instabilities at
low intensities. Hence, we consider the local (Gaussian weighted) average intensitȳE to
normalise the width of the distribution,β ′ = β/Ē, which yields robustness against low-
intensity values, noise, and compression artifacts, as long as the average intensity is above
(compression) noise level. The latter is easily checked.

The remaining parameterγ indicates the (local) roughness or textureness, and is a
photometric invariant. In summary, by estimating of the longest and shortest principal
axes of theγ and contrast normalisedβ ′ = β/Ē parameters for each opponent colour
channel, one obtains the twelve “Wiccest” parameters describing a local region in colour
and edge (texture) content.

3.5 Summary of invariances achieved

We have theoretically shown the Wiccest parameters to be either invariant or highly ro-
bust to: global intensity changes, local intensity effectsof shading and (coloured) shadow,
non-uniform illumination, ambient illumination, coloured illumination, Euclidean trans-
formations, and (compression) noise. The remaining photometric effect which is affecting
the Wiccest features is specular reflection. However, in many cases the specularities are
either not dominating the local histogram –the specular area being much smaller than the
scaleσo of the local region–, or results in an outlier during the matching phase.



4 Experiment: Object Recognition from One Example

To assess the constancy of the proposed Wiccest feature under varying imaging condi-
tions, the features has been applied to the ALOI collection [7]. The collection consists of
1,000 objects recorded under various imaging circumstances. Specifically, viewing angle,
illumination angle, and illumination colour is systematically varied for each object. In
our experiment, we investigate object recognition by indexing only one example of each
object - a problem considered non-trivial given the varietyin imaging conditions. As ex-
ample image for each object thel8c1 image is taken, which is a frontal view of the object,
under semi-hemispherical white illumination.

To illustrate the effectiveness of the proposed features incapturing object properties,
a simple algorithm for object recognition is suggested. Oursetup should be considered
a mere baseline indication of performance. Objects are characterised by densely sam-
pling the image, locations being 2σo apart. A threshold just above noise level is set
on the contrast of the intensity channel, hence disregarding locations without edge con-
tent or very low in intensity. Matching between images is straightforwardly performed
by comparing the Wiccest parameters for each region of the query image against all re-
gions in the target image, and accumulating the best scores per query region. Regions
were compared by calculating the fraction between the respective parametersβ andγ,
score = ∑(min(β1,β2)/max(β1,β2))(min(γ1/γ2)/max(γ1,γ2)), where the sum accumu-
lates the three scores of the opponent colour channels. Although the algorithm seems ex-
pensive at first sight, remember that only 12 numbers capturethe local colour histogram.
Hence, the proposed scheme is much more efficient than local histogram matching ([3]),
and much more efficient than k-nearest-neighbour search over large collections ([11]).

We applied our algorithm to the four times down-sampled version of ALOI. In our
experiment, the scale for the derivative filters was set at a typical value ofσi = 1 pixels.
The scale for the kernels was set atσo = 7.5 pixels. In practice, an average of 29 non-
empty kernels (348 numbers) per object were indexed. For thesame collection, keypoint
extraction combined with the SIFT descriptor yields an average of 60 keypoints (7,924
numbers) per object. Object recognition performance was tested by evaluating correct
recognition rates under varying illumination direction, varying illumination colour, and
under varying object viewing direction. To evaluate the robustness against compression,
we re-indexed the example images, but now after JPEG compression at a quality of 75%
of the original image. We evaluated recognition rates as function of compression quality.

To indicate that our results are non-trivial and indeed progress on the state-of-the-art,
we included results for the method by Lowe [11] based on Laplacian keypoints and the
SIFT descriptor (program courtesy of David Lowe available from his website). Further-
more, as a second baseline, we include results for global RGBhistogram matching and
normalised rgb histogram matching, implemented as in [10].Note that histogram match-
ing is a global method, where SIFT and the proposed Wiccest features are local descriptors
which can handle occlusions and clutter (although not shownin our experiments). Results
for normalised rgb are similar to RGB, hence are not shown.

The results are shown in Figure 2. As expected, Lowe’s method[11] based on inten-
sity information is insensitive to illumination colour changes, whereas RGB histogram
matching is extremely sensitive to an illuminant change. The proposed method is fairly
colour constant, with a 27% error at the worst conditioni110. Note that this is no sinecure
for a colour based method. For variation in illumination direction, the proposed method
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Figure 2: Object recognition performance as function of varying imaging conditions.

gradually degrades until the extreme oblique illuminations l1c1 and l1c5. These condi-
tions are exceptional, and not often encountered in practice. The method is fairly robust
to a change in viewpoint, allowing the indexing of object views as far as 45 degrees
apart. RGB histogram matching performs well in this case. Most important, the proposed
method is shown to be very robust against compression, and keeps well up with the al-
ternatives. Regarding computation time, matching one images against the 1,000 in the
database takes less than half a second on a nowadays laptop. Just as a reference, for the
same setup, SIFT takes about 7 seconds per image, 0.89 seconds for calculating the SIFT
descriptor at each keypoint location, and slightly over 6 seconds for matching against the
1,000 database images. Global histogram matching takes even more time, mainly due to
the huge volume of memory that has to be matched over and over again while intersect-
ing against 1,000 histograms of 32x32x32 bins. Here, one clearly sees the advantage of
compact descriptors.

5 Conclusions

We proposed a compact object descriptor, Wiccest, requiring only 12 numbers to locally
capture colour and texture information. Although the assumptions underlying our method
seem restricted –smoothly varying surfaces, photometrically constraint by a simple re-
flectance model–, we applied the method successfully a) on a large collection of objects
(this paper); b) under different imaging conditions (this paper); c) under severe JPEG
compression (this paper); d) in MPEG compressed video retrieval (TRECVID [4, 22] -
top rank performance); e) real-time recognition of over a hundred objects by a Sony Aibo
robodog [16]. Achieving these results requires highly robust and discriminative features.

Our experiments are preliminary in that they do not include significant scale change,
occlusion, and background clutter. The proposed matching scheme accumulates local
features. Object recognition based on local features has proven to be robust to clutter
and occlusion. From our experience, the suggested approachseems fairly robust to these
effects [16, 4, 22]. However, a thorough evaluation remainsa point of future research.
Regarding scale invariance, we included scale as a free parameter in the feature design.
Hence, densely sampling Wiccest features at multiple scales implies a form of scale in-
variance. However, the matching of multi-scale Wiccest features needs to be solved.

The Wiccest features are shown to be highly robust to common photometric effects
like shadow, shading, and illumination colour, and, most important, retain their properties
and discriminative power under image compression.
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