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Quasi-Periodic Spatiotemporal Filtering
Gertjan J. Burghouts and Jan-Mark Geusebroek

Abstract—This paper presents the online estimation of temporal
frequency to simultaneously detect and identify the quasiperiodic
motion of an object. We introduce color to increase discriminative
power of a reoccurring object and to provide robustness to ap-
pearance changes due to illumination changes. Spatial contextual
information is incorporated by considering the object motion at
different scales. We combined spatiospectral Gaussian filters and
a temporal reparameterized Gabor filter to construct the online
temporal frequency filter. We demonstrate the online filter to re-
spond faster and decay faster than offline Gabor filters. Further,
we show the online filter to be more selective to the tuned frequency
than Gabor filters. We contribute to temporal frequency analysis in
that we both identify (“what”) and detect (“when”) the frequency.
In color video, we demonstrate the filter to detect and identify the
periodicity of natural motion. The velocity of moving gratings is
determined in a real world example. We consider periodic and
quasiperiodic motion of both stationary and nonstationary objects.

Index Terms—Color, time-frequency analysis, video signal pro-
cessing.

I. INTRODUCTION

THE temporal frequency of a moving object may be an
important property of that object. Real world applications

illustrate this, for instance when monitoring the oscillatory
beating of a heart. Further, for periodically moving objects,
the temporal frequency of the periodic motion directly re-
lates to the velocity of the motion [1]. The velocity of waves
propagating through water follows directly from its motion
periodicity and its spatial frequency [2]. The velocity of waves
is a direct consequence of an harmonic mechanical system,
described by the wind force and the depth, width, and mass
of the water, which is in equilibrium. The measurement of an
object’s periodic motion hence may enable the estimation of
both the object’s velocity and environmental properties derived
thereof. Estimating velocity from motion periodicity is robust,
since periodicity is invariant to the object’s distance. On the
contrary, estimated motion from optical flow [3] varies with the
object’s distance. In addition, periodic motion has proven to be
an attentional attribute [4], which may facilitate target detection
in video (see, e.g., visual surveillance in [5]).

To measure the periodicity of object motion, we propose a
temporal frequency filter that measures the reoccurrence of an
object’s surface during a time interval. Note that the class of pe-
riodic temporal events is more rigid than the class of stochas-
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tically defined dynamic textures [6]. The temporal frequency
filter cannot measure both the frequency and the timing of an
occurrence of periodic motion with arbitrary precision [7]. The
challenge for detecting and identifying temporal frequency is
thus to find the right trade-off between timing and frequency
analysis. Time-frequency analysis based on the Fourier trans-
form of the video signal [5], [8], [9] ignores temporal discrim-
ination. However, the Fourier transform extracts maximum in-
formation about the frequency composition of the signal. Gabor
filtering provides the optimal joint resolution in both time and
frequency, obtaining equal temporal width at all frequencies [7],
[10]. Hence, the Gabor temporal frequency filter measures both
the frequency identification (“what”) and the frequency detec-
tion (“when”).

We embed a temporal frequency filter in the Gaussian scale-
space paradigm [11] to incorporate the spatial and temporal
scale in its measurement. Larger spatial scales incorporate con-
textual information, hence avoiding pixel matching. A temporal
scale allows the periodicity of object motion to be resolved in
suitable time windows. For the analysis of temporal frequency, it
is natural to measure the temporal signal in the Fourier domain.
A Gaussian measurement in the Fourier domain, tuned to a par-
ticular frequency, boils down to a Gabor measurement [7] in the
temporal domain. For online filtering, only the past is available.
We deal with this restriction by a logarithmical mapping of the
filter onto the “past” only [12]. However, the sinusoidal sensi-
tivity curve of the temporal Gabor filter becomes logarithmical
hence not suitable for frequency measurements. We reparame-
terize the temporal Gabor filter to optimize it for the local and
online measurement of temporal frequency. We introduce color
to increase discriminative power when measuring the reoccur-
rence of a particular surface.

In this paper, we derive an online temporal frequency filter
and demonstrate the filter to respond faster and decay faster than
Gabor filters. Additionally, we show the online filter to be more
selective to the tuned frequency than Gabor filters (Section II).
In color video, the filter detects and identifies the periodicity of
natural motion. Further, we determine the velocity of moving
gratings in a real world example (Section III). We demonstrate
the general applicability of the proposed filter. Consequently, we
do not attribute specialized topics that analyze motion of specific
kinds in depth, such as motion-based recognition [1], [8], [9].
The experiments include a) stable and changing periodic motion
of b) stationary and nonstationary objects with c) smooth and
regularly textured surfaces.

II. TEMPORAL FREQUENCY FILTER

A. Derivation

We consider color video to be an energy distribution over
space, wavelength spectrum and time. A spatiospectral energy
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distribution is only measurable at a certain spatial resolution and
a certain spectral bandwidth [13], [14]. Analogously, the tem-
poral energy distribution is only measurable at a certain tem-
poral resolution. Hence, physical realizable color video mea-
surements inherently imply integration over spectral, spatial and
temporal dimensions. Based on linear scale space assumptions
[11], we consider Gaussian filters and their derivatives to mea-
sure color video. We generally define an th order Gaussian
derivative filter probing a variable at scale and lo-
cation

(1)

where the th order Hermite polynomial with respect to
, determines the shape of the th order

Gaussian derivative filter. For orders , the Hermite
polynomials are given by

. For notational conve-
nience, we omit the scale and location parameters where pos-
sible.

An object’s surface is defined by its reflectance function
at a spatial location , where denotes the

wavelength [13]. Furthermore, the temporal periodicity of the
object is measured in time [15]. The temporal frequency
measurement hence requires a simultaneous measurement of
these variables to determine whether an object’s surface has re-
occurred at a certain spatial location. The periodic reoccurrence
of an object’s surface at a constant time period is defined as

(2)

with the measurement of the color video signal and
the translation of the point due to object movement relative to
the camera. In the sequel, we consider the temporal frequency
measurement at a spatial location , and correct for the ob-
ject’s translation by tracking the object. The temporal frequency
measurement of the color video signal
is performed by a filter , yielding

(3)

with the convolution operator as we consider linear mea-
surements.

For convenience, we first concentrate on the measurement of
the wavelength distribution. To measure wavelength in color
video, we consider the advantage to separate the luminance
from the color channels. The opponent color system used in this
paper is formalized by measuring with three spectral Gaussian
derivative filters [14]: . The zeroth order derivative filter
measures the energy over all wavelengths (the luminance),
whereas the first order derivative filter compares the first half
(blue) and second half (yellow) of the spectrum and the second
order derivative filter compares the middle (green) and two
outer (red) regions of the spectrum. To obtain colorimetry with
human vision, the Gaussian filters are to be tuned such that
the filters span the same spectral subspace as spanned by the
CIE 1964 XYZ sensitivity curves. The location and scale

of the Gaussian spectral filters are optimized such that

approximate colorimetry is obtained by setting the parameters
to nm, and nm [14]

(4)

See Fig. 1 for the sensitivity curves of the spectral filters. Spec-
tral derivative filters , , and yield, respec-
tively, the measurements , , and . In practice, the values
are obtained by a linear combination of given RGB sensitivities
[14]

(5)

Color can only be measured by integration over a spatial area
and a spectral bandwidth. Hence, a color measurement requires
a combination of the spectral filter (4) and a spatial filter. For
simplicity, we select a zeroth order, isotropic two-dimensional
(2-D) spatial filter [11]

(6)

where indicates the spatial extent of the filter. To measure
elongated shapes, we refer to oriented anisotropic spatial fil-
ters [16]. Alternatively, spatial Gabor filters [7] can be applied.
Combining the spectral filters (4) and the spatial filter (6), we
construct the spatiospectral filter [14] to probe the object’s re-
flectance

(7)

We consider the online measurement of temporal frequency,
hence we cannot access information about the “future.” Con-
sequently, only a half axis is available: , with the
present moment. Measuring in the domain violates
causality; a temporal Gaussian filter has infinite extent and,
consequently, is only causal over a complete axis. A repa-
rameterization of the time axis is required, such that
the filtering of the domain with a Gaussian is uniform
and homogeneous [12]. The requirement of uniform and ho-
mogeneous sampling should be independent of the unit of
time. Therefore, sampling in the -reparameterized time axis
should be uniform and homogeneous for both clocks and

, where is a constant representing a different time scale.
Now consider a periodic generator of events, of which the
periodicity is estimated in the two time scales and .
Beforehand, no periodicity was more likely than any other.
In other words, the probability density function (pdf) of
periodicities as a function of the reparameterized time
in a finite time window is a constant: . Further,
we require the pdf in the domain, , and the pdf
in the domain, to be equal: ,
or, applying the substitution rule when swapping variables:

. From the latter equa-
tion, it follows that the mapping function must be loga-
rithmic [12]:

, thus equals except for a
shift . Requiring implies that both pdfs are
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Fig. 1. Sensitivity curves of the spectral probes G (�),
G (�) and G (�), approximately
colorimetric with the CIE 1964 XYZ sensitivity curves hence with RGB
sensitivities [14].

constant. Hence, the reparameterization satisfies
the real-time requirement. Note that we do not single out any
position or visible wavelength in the spatiospectral measure-
ments. In analogy, we do not single out any range of time.

For temporal frequency analysis, it is natural to turn
to the Fourier domain. With the logarithmic rescaling

of the time dimension , the Fourier transform of a
periodic function in , becomes in the domain:

, where is the inverse of
, . Locally weighing the function with a kernel

, to obtain a joint representation in time and temporal fre-
quency, results in: ,
where is the logarithmically rescaled Gaussian filter
from the domain. The Fourier transform can thus be
rewritten: , with a
Gaussian function. Thus, in the domain, we get a con-
volution of the transformed periodic signal with a
kernel . Translating back to the time do-
main , the kernel results in the temporal frequency filter:

. In full
form, we get the temporal frequency filter

(8)

with the present moment and where scales the logarithmic
reparameterization hence determines the position of the max-
imum of the temporal frequency filter. The scaling of the filter
determines its extent and is given by . The shape of the ob-
tained filter resembles auditory temporal frequency filters [10],
[17], [18]. Fig. 2 depicts the temporal frequency filter, together
with its logarithmically rescaled Gaussian envelope.

The combination of the spatiospectral filters (7) and the on-
line temporal frequency filter (8) yields the online temporal fre-
quency filter for color video

(9)

The spatial scale parameter of the filter determines its
spatial extent. Although dependent of the distance between the
camera and the object, we will in general consider the object’s
surface at a coarse scale. The temporal frequency selectivity of
the filter depends on the frequency tuning parameter . We

Fig. 2. Reparameterized temporal Gabor component of the temporal
frequency filter. Tuning the parameters � and � determine the shape of the
temporal component; we leave the temporal frequency parameter unchanged.
Note that (a) has a smaller delay than (b), but a larger temporal extent. The
filter parameters are: (a) t = 0, � = 5=4 frames, � = 2 frames, u = 1=20
c/f, and (b) t = 0, � = 3=4 frames, � = 4 frames, u = 1=20 c/f.

do not change the time unit: for the temporal scale parameter
we simply choose frame. As a consequence, the

other temporal scale parameter, , can be directly related to
the tuned temporal frequency. We select the temporal scale a
multiplicative of the inverse temporal frequency:
frames, with a constant. As a result, the temporal shape of the
filter does not depend on the tuned temporal frequency. Further,
the effective temporal extent of the filter directly relates to
the temporal frequency, based on the Nyquist theorem that
frequency can only be determined if a period of the signal can
be resolved.

B. Properties

For color video that is integrally available, the temporal
frequency filter is not restricted to a half time axis. As a con-
sequence, the temporal frequency filter does not have to be
reparameterized and periodicity can be measured by a temporal
Gabor filter [see Fig. 3(b)]. We consider the properties of the
offline and online temporal frequency filters, which have dif-
ferent shapes (see Fig. 3; the filters have identical parameters).

The temporal frequency measurement is a local correlation of
the periodical color video signal and the temporal Gabor filters.
The response of the online filter is asymmetric in time with a fast
rise and a slow decay. The online filter hence provides a better fit
to an onset of a periodic event in the video data than the offline
filter. Fig. 4 demonstrates that the online temporal frequency
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Fig. 3. (a) Online and (b) offline temporal frequency filters for u = 1=20
c/f. (a) The time windows of the online and offline filter differ due to the delay
� = 2 frame of the online filter. Note the resemblance in the shapes of the online
and offline filter for the past time axis, while the constraint of online filtering is
fulfilled. The integral of the filters is normalized to unity, which for the online
filter yields a maximum of approximately twice the maximum of the offline
filter. Consequently, the online filter will have a faster and higher response than
the offline filter.

filters respond faster and decay faster than the offline filters.
The online filters respond and decay approximately after one
period of the signal plus the delay of the filter , see indication
at cycles/frame (c/f) frames/period in Fig. 4.
In contrast, the offline filters respond and decay approximately
after 2.25 periods, being 45 frames at c/f. Hence, the
online filter reacts significantly faster than the offline filter.

To determine the temporal frequency selectivity of the filters,
we turn to the Fourier domain. See Fig. 5 for the Fourier trans-
forms of the online and offline filter. The online filter is not well
localized in the Fourier domain. As a consequence, the online
filter yields a low response to higher frequencies than the fre-
quency it is tuned to. However, the Fourier transform of the on-
line filter shows a narrow peak at the tuned frequency. Hence,
the online filter is more narrowly tuned to frequencies than the
offline filter.

The narrow frequency selectivity of the online filter is demon-
strated in Fig. 6. The online filter bank is tuned to dense tem-
poral frequencies. We relate the discrimination quality of the
filter bank to the variance of its responses. The variance of the
online temporal frequency filter bank is lower than the variance
of offline filter responses.

Fig. 4. Response delays (thick lines) and decays (thin lines) of online (solid
lines) and offline (dotted lines) temporal frequency filters tuned to signals with
various frequencies. The online filters respond and decay approximately after
one period of the signal plus the delay of the filter � , see indication at u =

0:05 c/f � 20 frames/period. In contrast, the offline filters respond and decay
approximately after 2.25 periods, being 45 frames at u = 0:05 c/f. Hence, the
online filter reacts significantly faster than the offline filter.

Fig. 5. Fourier transforms of the online (a) and offline (b) temporal frequency
filters from Fig. 3. Note the narrow peak and the heavy tail of the online filter,
compared to the Gaussian shape of the Fourier transformed offline filter.

Fig. 6. Frequency selectivity of the online (solid bars) and offline (dotted bars)
filter. Frequency selectivity is derived from the variance of the responses of a
bank of online and offline filters tuned to dense frequencies (the bars indicate a
magnification of 200 times the variance of responses).

We conclude that the online temporal frequency filter
achieves higher acuity as it 1) responds and decays faster and
2) can be narrowly tuned to a particular frequency.

C. Algorithm

In the sequel, we define the online temporal frequency mea-
surement for a particular color channel as the mag-
nitude of the complex response of the filter. Filter responses to
different color channels are combined by considering their mag-
nitude

(10)
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We consider multiple temporal frequency filters, tuned to dense
but fixed frequencies, ranging from 1/75 to 1/7 cycles per frame.
To prune the filter bank, for instance to a range of temporal
frequencies that was observed last, a gradient ascent method
may be used, taking a filter’s response (., its correlation with the
signal) as input. Further, the filter is parameterized with a spatial
scale. In the experiments, we will preselect a particular spatial
scale dependent of the size of the object and the ‘‘smoothness’’
of its motion. Alternatively, the scale of the spatial filter may be
derived from scale selection. A common practice is to select the
scale according to the maximum of the Laplacian filter [19].

The response of the temporal frequency filter is inherently de-
layed, depending on the temporal shape of the filter. Responses
of filters tuned to lower temporal frequencies are longer delayed.
In the experiments, we will both illustrate the delays of different
filters and responses where we have aligned filter response de-
lays. The temporal frequency filters primarily respond at half pe-
riods of the periodic motion, with alternating magnitudes. We,
therefore, integrate the filtering result over a past time window
of one period of the filter. Further, we normalize this integration
for the size of the time window. We assume the reoccurring sur-
face to have a large spatial extent. Therefore, we spatially pool
the responses of the temporal frequency filter. The pooled mea-
surements are thresholded to determine periodicity detection.
We identify the frequency as the tuned frequency of the filter
that, after spatially pooling by summation, yields the maximum.
As a consequence, we constrain ourselves to the periodic mo-
tion of one object. Further, we assume that the maximum spa-
tially pooled response is representative of the periodicity of the
object under investigation. Segmenting a frame based on spa-
tially localized responses of temporal frequency filters would
overcome the problem of measuring motion periodicity of mul-
tiple objects. In the experiments, we will constrain ourselves to
demonstrating the robustness of the temporal frequency filter for
both stationary and nonstationary single objects moving period-
ically and quasiperiodically.

III. APPLICATION TO COLOR VIDEO

In this section, we apply a bank of temporal frequency filters
to color video of natural scenes. We consider: (a) stable and
changing periodic motion of (b) stationary and nonstationary
objects with (c) smooth surfaces and regularly textured surfaces
(gratings). For all experiments, the color video is recorded by a
RGB digital video camera (JVC GR-D72) at 768 576 pixels
video frame transfer sampled at 25 frames/s.

A. Periodic Zoological Motion

In this experiment, we detect the temporal frequency of the
periodic motion of two (stationary) anemones.

Fig. 7 shows a fragment of color video of the periodic motion
of a large anemone and a small anemone. The frames are shown
in increasing order, from left to right, indicating quarter-periods
of the motion of the large anemone. The frames are represented
by the three color channels (a) , (b) , and (c) . The large
anemone is located in the center and visible in all color channels
(a)–(c). The small anemone is located in the lower left region,

Fig. 7. Color video of the periodic motion of a large anemone and a small
anemone. The frames are shown in increasing order, from left to right,
indicating quarter-periods of the motion of the large anemone. The frames are
represented by the three opponent color channels (a) ^E , (b) ^E , and (c) ^E .
The large anemone is located in the center and visible in all color channels
(a)–(c). The small anemone is located in the lower left region, and is only
visible in the “green-red” opponent color channel ^E [(c), indicated with
a circle]. The large anemone moves periodically at 1/18 cycles per frame,
whereas the small anemone moves periodically at 1/8 cycles per frame. Note
that the areas over which the anemones move are marginal, which makes the
detection of the anemones’ periodic motion nontrivial.

and is only visible in the “green-red” opponent color channel
[(c), indicated with a circle]. The large anemone moves pe-

riodically at 1/18 cycles per frame, whereas the small anemone
moves periodically at 1/8 cycles per frame. Note that the area
over which the anemones move are marginal, which makes the
detection of the anemones’ periodic motion nontrivial.

We analyzed the frequencies of the anemones’ periodic mo-
tion at a spatial scale pixels to moderately smooth the
signal.

Fig. 8 again depicts a fragment of the color video of the pe-
riodic motion of the large anemone and small anemone. The
frames cover one period of the motion of the large anemone.
The frames are represented by the color channel (a), which
has most discriminative power. Responses of temporal filters
tuned to various frequencies are shown (b)–(g). The filter in (d)
is tuned to the frequency of the large anemone. Its response is
higher than the responses of filters tuned to temporal frequen-
cies that are slightly lower [(b) and (c)] and higher [(e) and (f)].
We emphasize the inherent delays of the filter: a filter tuned to a
lower frequency has a longer delay. The response shown in (d)
is higher than the threshold set to determine periodicity. This is
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Fig. 8. Color video of the periodic motion of a large anemone and a small anemone. The frames cover one period of the motion of the large anemone. The frames
are represented by the color channel ^E (a), which has most discriminative power. Responses of temporal filters tuned to various frequencies are shown (b)–(g),
where high responses are indicated in white. The filter in (d) is tuned to the frequency of the large anemone. Its response is higher than the responses of filters
tuned to temporal frequencies that are slightly lower [(b) and (c)] and higher [(e) and (f)]. The response shown in (d) is higher than the threshold set to determine
periodicity. We emphasize the inherent delays of the filter: a filter tuned to a lower frequency has a longer delay. The response of the filter tuned to the periodicity of
the small anemone [(g), indicated] is higher than the threshold set to determine periodicity. Despite the isoluminance and weak contrast between the small anemone
and its background in the color video fragment (a), the proposed filter strategy was able to detect and identify its periodicity. The frequency parameters are: (b)
u = 1=14 c/f; (c) u = 1=16 c/f; (d) u = 1=18 c/f; (e) u = 1=20 c/f; (f) u = 1=22 c/f; (g) u = 1=8 c/f.

also the case for the response of the filter tuned to the period-
icity of the small anemone [(g), indicated]. Despite the isolu-
minance and weak contrast between the small anemone and its
background, the proposed filter strategy was able to detect and
identify its periodicity. Note that the filter responds to the peri-
odic motion of both the large and small anemone. The ambiguity
in the filter’s response is caused by the approximate harmonics
formed by the frequencies of the motion of the two anemones.

In the description of the algorithm (Section II-C), we men-
tioned the integration of filter responses over a small time
window. As the temporal frequency filter responds maximally
at half periods of a periodic event, integration over a half period
provides a stable response. In the sequel, we consider integrated
responses. For convenience of display, we will align the filter
delays with the present moment such that the responses can
be compared at single time instances. Fig. 9(a) shows frames

at full periods of the periodic motion of the large anemone.
Fig. 9(b) and (c) depict the integrated and aligned responses of
the filters tuned to the frequencies of the large and the small
anemone, respectively. Integrating the responses of a filter over
a half period of the filter provides stability, as demonstrated by
the detection of the periodicity of motion in Fig. 9(b) and (c).

The spatial extent over which the two anemones move, pops
out from the responses of the filters tuned to their periodic mo-
tion. The high responses of the temporal frequency filters evi-
dently reflect the periodicity of the objects under investigation.

B. Periodic Animal Motion

In this experiment, we identify the temporal frequency of the
periodic motion of a flying bird. The frequency of the bird’s
wings are a measure of its velocity. Fig. 10 shows a fragment of
color video of the periodic motion of a flying bird. The frames



1578 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

Fig. 9. Color video of the periodic motion of a large anemone and a small
anemone. The frames are randomly selected and represented by the color
channel (a) ^E . Two temporal filters [(b) and (c)] are tuned to the respective
frequencies of the large and small anemone, respectively, u = 1=20 c/f and
u = 1=8 c/f. For convenience of display, we have aligned the longer delay
(b) and smaller delay (c) of the filter responses with the moment at which the
frames were presented. Integrating the responses of a filter over a half period of
the filter provides stability over frames within this half period, as demonstrated
by the detection of periodicity at randomly selected frames. The spatial extent
over which the two anemones move is detected. See “Supplemental Material”
for the original color video plus overlayed responses. .

cover one period and are represented by the intensity channel ,
which contains most discriminative power. Note the variation in
the location of the bird.

The bird’s motion inherently causes a translation. To correct
for the bird’s translation in subsequent frames, we apply kernel-
based tracking with scale adaptivity [20]. We thus exploit a prior
model of the bird. For approaches that include automatic motion
segmentation we refer to [9], [21], and [22]. The bird’s distance,
hence, its perceived size, is normalized by a scaling of the tracked
kernel regions, before applying the online temporal frequency
filter to the obtained regions. We emphasize that the following
experiment’s robustness to, for instance, clutter and occlusion,
heavily depends on the tracking of the object. However, tracking
objects is not our primary concern here, and, therefore, we will
not elaborate on this part of the experiment. Fig. 11 shows the
tracking results at half periods of the bird’s motion.

In the frames that differ exactly one period in time (for ex-
ample, images 1 and 3), the bird has not the same pose. The
“misalignment” of the bird’s wings is caused by the low sam-
pling rate compared to the high frequency of its moving wings.
Due to the misalignment of the bird’s wings, the problem of
identifying the temporal frequency of the bird’s motion is not
trivial.

Fig. 10. Color video of the periodic motion of a flying bird. The frames cover
one period and are represented by the intensity channels Ê , which contains most
discriminative power. Note the variation in the location of the bird.

Fig. 11. Normalized frames as a result of tracking the bird. The frames are
taken at half periods of the periodic motion.

In the sequel, we only depict the zeroth order spectral deriva-
tive measurement (i.e., the luminance) for display convenience.
Further, due to the relatively large spatial extent of the bird, we
analyzed the temporal frequency of its surface at a fairly large
spatial scale . The advantage of the spatial ex-
tent of the filter is that contextual information is incorporated,
making the filter robust to the “misaligned” pose of the bird (see
“Supplemental Material”).

Fig. 12(a) shows frames at full periods of the flying bird. The
temporal frequency of the bird’s periodic motion changes within
these samples, i.e., the motion is quasiperiodic. We annotated
the temporal frequencies at the full periods. Note that the fre-
quencies differ only one frame per period. At the full periods, we
measured and identified the temporal frequency of the periodic
motion. The responses depicted in Fig. 12(c) and (d) identify al-
ternatively the temporal frequency of the bird’s motion, see the
indication. Due to the small differences in the actual frequencies
apparent in the bird’s motion, the responses do not differ much.
Nonetheless, the identification resembles the annotation. Lower
responses of filters tuned to slightly different temporal frequen-
cies are included in Fig. 12(b) and (f).

C. Velocity of Moving Gratings

In this experiment, we measure the velocity of a moving
grating. A moving grating may be characterized by its orien-
tation, spatial frequency and temporal frequency. The grating
velocity is determined by its temporal frequency divided by its
spatial frequency [2]. We, therefore, identify both the temporal
and spatial frequency.

Analogously to the temporal frequency filter derivation, we
analyze spatial frequency in the Fourier domain. When trans-
lating back to the spatial domain, we obtain the 2-D spatial
Gabor filter [7]

(11)
with the frequency in cycles per pixel for two dimen-
sions. The radial center spatial frequency is given in
cycles per pixels and represents the orientation
of the filter.

We substitute the spatial component of the spatiospectral filter
(7) by the spatial frequency component

(12)

For a particular color channel, we obtain the spatial frequency
measurement by considering the magnitude of the
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Fig. 12. Color video of the periodic motion of a flying bird. The frames
represent full periods of the motion. (a) The frames are represented by the
intensity channel ^E. The frequency of the motion changes throughout the
represented fragment. We annotated the frequency in a time window around
the frames, respectively, 1/7 cf, 1/8 cf, 1/7 cf, 1/8 cf, and 1/7 c/f. Responses
of temporal filters tuned to various frequencies 1/6 cf, 1/7 cf, 1/8 cf, and 1/9
cf are, respectively, shown in (b)–(e). The filters in (c) and (d) are tuned to
two frequencies present in the fragment. At frames 1, 3, and 5, the filter tuned
to the annotated frequency of 1/7 c/f responds maximally (c). Its response is
slightly higher than the responses of filters tuned to temporal frequencies that
are slightly lower (b) and higher [(d) and (e)] (see indications). At frames 2
and 4, the filter tuned to the annotated frequency of 1/8 c/f responds maximally
(d). Again, its response is slightly higher than the responses of filters tuned to
temporal frequencies that are slightly lower [(b) and (c)] and higher (e) (see
indications). For the identification of temporal frequency of the bird’s motion
in color video, we refer to “Supplemental Material.”

complex filter response. Note that the spatial frequency mea-
surement does not incorporate time as we consider it at a partic-
ular moment.

The color video contains waves propagating through water.
Let us define the velocity of the waves as the ratio of the mea-
sured temporal frequency and the measured spatial
frequency . Consequently, for a particular lo-
cation with reflectance at time , we obtain the ve-
locity

(13)

The propagation of the waves has an orientation of approx-
imately 284 , see the fragment of color video in Fig. 13(a).
Therefore, we tuned the spatial frequency filter to an orientation
of , such that the frequency parameters

and yield a radial center frequency of cycles
per pixel. Further, we selected a spatial scale of ,
to cover a sufficient area to robustly measure the occur-
ring frequencies, which are approximately in the range of

cycles per pixel. Responses of the oriented
spatial frequency filter responses to this grating are shown in
Fig. 13(b)–(g). In analogy to temporal frequency identification,
the identified frequency corresponds to the frequency of the
filter with a maximum spatially pooled response, see indica-
tions. For instance, the filter response in Fig. 13(f) to the second
frame is higher than filters tuned to slightly different frequen-
cies in Fig. 13(e) and (g). Assigning a maximum response to the
first frame is more ambiguous: filter responses in Fig. 13(b)–(d)
seem very similar. For the first frame, the algorithm appointed
Fig. 13(c) as the maximum response, whereas for the third
frame (e) gives the maximum response.

Combining the identified spatial and temporal frequency of
these moving gratings, we obtain the velocity of the grating (see
Table I for randomly selected frames).

The velocity measurements confirm that the velocity of the
grating changes gradually. The spatial frequency of the water,
and the temporal frequency of its speed change throughout the
video. However, the velocity measurements in random frames
reflect that the velocity is more or less stable throughout the
video fragment (mean and standard deviation

, whereas for the whole video fragment
and ).

D. Temporal Frequency as an Attentional Attribute

This final experiment illustrates the periodicity of an object’s
motion to be an attentional attribute. Motion periodicity, like
flicker, is a probable attribute to guide visual attention [4]. De-
bate exists whether only luminance polarity or both luminance
and color polarity draws the attention toward the object [4].
Therefore, we only consider temporal regularity apparent in the
luminance channel. Recall that the zeroth order spectral deriva-
tive filter measures the luminance.

We analyzed a color video fragment showing both stochas-
tically moving leaves in the wind and one periodically moving
leaf. The temporal regularity in the latter leaf guides the atten-
tion toward that leaf (see “Supplemental Material”). In Fig. 14,
frames depict half periods of the periodically
moving leaf. The initial amplitude of the leaf is indicated by
dashed vertical lines. Frames 0–40 show 4.5 periods of the
moving leaf, thus the leaf moves approximately at a frequency
of 1/10 cycles per frame. We overlayed the response of the
temporal frequency filter tuned to c/f. The high-
lighted regions in Fig. 14 indicate the detection of periodicity.
Note that the temporal frequency filter responds well after one
period, that is, after frames 0–5 have occurred. Frames 45–55
are included to illustrate the immediate decay in the filter’s
response after the leaf starts to move slower and with less
amplitude.
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TABLE I
VELOCITIES OF THE MOVING GRATINGS

Fig. 13. Color video of waves propagating through water. The frames are
randomly selected and represented by the intensity channel ^E (a). The spatial
frequency of surface of the water changes throughout the represented fragment.
Responses of spatial filters tuned to various frequencies (in cycles per pixel) are
shown (b)–(g). In analogy to temporal frequency identification, the identified
frequency corresponds to the frequency of the filter with a maximum spatially
pooled response, see indications. For instance, the filter response in (f) to the
second frame is higher than filters tuned to slightly different frequencies in (e)
and (g). Assigning a maximum response to the first frame is more ambiguous:
filter responses in (b)–(d) seem very similar. For the first frame, the algorithm
appointed (c) as the maximum response, whereas for the third frame (e) gives
the maximum response.

Since the leaves themselves only differ in their motion, and
not in luminance, color, shape, size, texture, or velocity [4], and
the object of attention is not in the center of the color video,
we conclude that the attention is only due to the object’s tem-
poral regularity. Hence, when temporal regularity is considered
in isolation, temporal frequency detection draws the focus of at-
tention.

Real-Time Performance: The filter was applied to color
video using a Pentium XEON processor at 2.4 GHz. The com-
putation time of the recursive spatial convolutions described in
[23] and [24] is independent of the scale and relates only
to the recursion order of the filter and the dimensions of the
video. We set the recursion order to 3. For the European PAL
and American NTSC MPEG video standard, the dimensions
are: 720 578 pixels at 25 Hz and 720 480 pixels at 30 Hz,
respectively. Spatial convolutions for PAL (NTSC) consume 21
(17) ms/frame. Computing three periods spanning 3 s in total,
the temporal convolution consumes an additional 18 (15) ms.
Total computation thus takes 40 (33) ms, achieving real-time

Fig. 14. Color video of the periodic motion of one leaf, in the midst of
stochastically moving leaves. The images represent half periods of the periodic
motion at every five frames and are represented by the intensity channel ^E .
The subscripts denote the frame offset from the first frame that is displayed.
The maximum response among different temporal frequency filters detects the
temporal regularity (filter frequency: u = 1=10 c/f) and is overlayed as a
highlight area. When temporal regularity is considered in isolation, temporal
frequency detection draws the focus of attention [4]. Hence, the periodically
moving leaf hence guides the attention toward itself. See “Supplemental
Material” for the original color video plus overlayed responses.

performance. However, these real-time results were obtained
for one filter with a large temporal extent. To meet the real-time
requirement for multiple and simultaneous filters as described
in Section II-C, parallel computation [25] is required.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have derived an online, real-time temporal
frequency filter. The filter measures in space and wavelength
spectrum to estimate the object’s surface reflectance. The filter
measures temporal frequency to determine the periodicity of the
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reoccurrence of the surface. Embedded in the scale-space para-
digm, the measurement boils down to a four-dimensional filter,
representing a Gaussian filter in the spatiospectral domain and
a Gabor filter in the temporal domain. When measuring online,
only the past information can be accessed. We, therefore, have
applied a reparameterization of the temporal filter to deal with
this constraint. We have introduced color to increase discrimi-
native power to determine the reoccurring surface. Additionally,
we introduced spatial extent thereby incorporating local infor-
mation. We have demonstrated that with moving objects that do
not periodically exhibit exactly the same pose, spatial contex-
tual information makes the filter more robust. The constructed
online temporal frequency filter measures both frequency iden-
tification (‘what’) and frequency detection (“when”).

For simplicity, we have assumed that the spectrum that is re-
flected from the object does not change under object movement.
In general, this assumption does not hold for a moving object.
A translation of the object relative to the light source causes pri-
marily shadow and shading deviations. Under the Lambertian
reflection model [13], the color video signal may
be decomposed into an intensity component and the
spectral distribution representing the color at each
location: . A local normal-
ization of the simultaneous measurement of color and temporal
frequency and by the intensity mea-
surement are robust against shadow and shading [14], [26].

In our experiments, we have restricted ourselves to the mea-
surement of temporal frequency of periodic events and the ve-
locity of periodic motion. We demonstrated the general applica-
bility of the proposed filter. Further, we have demonstrated that
the online temporal frequency filter is more selective for fre-
quency measurements than the offline filter, as it responds and
decays faster.

We have left specialized topics that analyze motion of spe-
cific kinds in depth out of consideration. We consequently have
not attributed motion-based recognition and gait analysis. The
experiments incorporate both the detection and identification
of temporal frequency of stationary and nonstationary objects
moving periodically and quasiperiodically. In color video, the
proposed filter has proven to robustly measure the periodicity
of natural motion of objects isoluminant with their background
hence only visible in color. The filter has shown to segment the
periodically moving object from its background. Although dy-
namic texture algorithms [6] do not extract explicit frequency
information, these algorithms are very efficient in detecting tem-
poral regularity. Hence, dynamic texture segmentation [27] may
be useful to determine initially a region of interest to initialize
the spatial parameters of the temporal frequency filter. Further,
we demonstrated the filter, in combination with a spatial fre-
quency filter, to estimate the velocity of moving gratings well.
The estimation of velocity from the periodicity of an object’s
motion is robust due to its invariance to the object’s distance.
Although with varying distance the spatial scale of the filter has
to be updated by either scale selection or tracking kernel nor-
malization, the frequency of the object does not change. On the
contrary, motion estimation from optical flow varies with an ob-
ject’s distance. Further, we illustrated the attentional attribute
of periodic motion. Determining the focus of attention is im-

portant as it may detect targets for surveillance video. Finally,
we provided examples where periodical events are direct con-
sequences of harmonic mechanical systems in equilibrium. The
measurement of an object’s periodic motion hence may enable
a vision system to estimate parameters of the harmonic mecha-
nism under investigation.
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