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Abstract

Texton models have proven to be very discriminative for the recognition
of grayvalue images taken from rough textures. To further improve the dis-
criminative power of the distinctive texton models of Varma and Zisserman
(VZ model) (IJCV, vol. 62(1), pp. 61-81, 2005), we propose two schemes
to exploit color information. First, we incorporate color information directly
at the texton level, and apply color invariants to deal with straightforward
illumination effects as local intensity, shading and shadow. But, the learning
of representatives of the spatial structure and colors of textures may be ham-
pered by the wide variety of apparent structure-color combinations. There-
fore, our second contribution is an alternative approach, where we weight
grayvalue-based textons with color information in a post-processing step,
leaving the original VZ algorithm intact.

We demonstrate that the color-weighted textons outperform the VZ tex-
tons as well as the color invariant textons. The color-weighted textons are
specifically more discriminative than grayvalue-based textons when the size
of the example image set is reduced. When using 2 example images only,
recognition performance is 85.6%, which is an improvement over grayvalue-
based textons of 10%. Hence, incorporating color in textons facilitates the
learning of textons.

1 Introduction
The appearance of rough 3D textures is heavily influenced by the imaging conditions
under which the texture is viewed [3, 7]. The texture appearance deviates as a conse-
quence of a change of the recording setting. Among others, the imaging conditions have
an influence on the texture shading, self-shadowing and interreflections [3], contrast and
highlights. Texture recognition [7, 8, 1] and categorization [6] algorithms have been pro-
posed to learn or model the appearance variation in order to deal with varying imaging
conditions. In this paper, we consider the challenge of recognizing textures from few ex-
amples [8], for which discriminative models are needed to distinguish between textures,
but also invariance of models is required to generalize over texture appearances. Note
that texture recognition differs from texture categorization [6], where also generalization
is needed over various textures belonging to one category.

Texture recognition methods based on texture primitives, i.e. textons, have success-
fully learned the appearance variation from grayscale images [8]. Although color is a dis-
criminative property of texture, the color texture appearance model of [7] was tested on
the Curet dataset [3] and has been outperformed by the grayvalue-based texton model [8].
This can be explained partly from the use of color image features that are not specific



for texture, e.g. raw color values [7], and partly from using color features that are not
robust to the photometric effects that dominate the appearance variation of textures. In
this paper, we aim at describing robustly both spatial structure and color of textures to
improve the discriminative power for learning textures from few examples. Due to their
high discriminative power, we extend the texton models of Varma and Zisserman (VZ) [8]
to incorporate robustly color texture information.

Textons are typical representatives of filter bank responses. The MR8-filterbank [8],
on which VZ is based, is designed such that it describes accurately the spatial structure
of texture appearances [8]. A straightforward extension of the grayvalue-based MR8
filterbank would be to apply it to each channel of a multivalued image to describe the
spatial structure of color images. However, the true color variations and the appearance
deviations due to e.g. shading, interreflections and highlights are manifold. Hence, incor-
porating color information directly in the filter bank requires many examples to learn the
color textons well. Moreover, color textons that are learned directly from the data may not
be representative for all appearance deviations in the dataset, with the consequence that
the representation of each texture will become less compact. Color invariants (e.g. [4])
have provided means to capture only object-specific color information which simplifies
the learning and representation of appearances. However, this leaves one with a suitable
choice of color invariant features. This is a nontrivial problem as most color invariants
aim to disregard intensity information [4], which is a very discriminative property of tex-
tures [7, 8]. A change of the local intensity level is a common effect when textures are
viewed under changing settings of the illumination and camera viewpoint [7]. Our first
contribution is to propose color texture invariants that are largely insensitive to the local
intensity level, while maintaining local contrast variations.

The learning of representatives of the spatial structure and colors of textures may be
hampered by the wide variety of apparent structure-color combinations. An alternative
approach to incorporate color directly, would be to incorporate color information in a
post-processing step, leaving VZ intact. We propose a color-based weighting scheme for
the coloring of grayvalue-based textons. The weighting scheme is based on the character-
istics of color invariant edges, based on non-linear combinations of Gaussian derivative
filters [5]. The Gaussian filter provides robustness to image noise. The quality of the
color images may be poor, hence uncertainties are introduced in the extraction of color
edge information. We characterize locally the color edges by their magnitude and direc-
tion, where we propagate magnitude and direction uncertainties to obtain a robust color
edge model. We exploit this model to provide an efficient color-weighting scheme to
extend VZ to incorporate color information.

We consider the recognition of textures from few examples, for which challenging
datasets, containing a wide variety of appearances of textures, have been recorded. The
Curet dataset [3] contains color images of textures under varying illumination and viewing
direction. Recognition rates of 77% have been reported when textures are learned from
two images only [8]. In this paper, we improve VZ’s discriminative power to increase
recognition performance when learning Curet textures from few images.

The paper is organized as follows. In Section 2 we shortly overview the original
texton algorithm by Varma and Zisserman [8]. To incorporate color, we consider two
alternative modifications of the VZ algorithm, as introduced above. In Section 3, we repeat
the experiments of [8] to investigate the discriminative power of (a) the grayvalue-based
textons, (b) the grayvalue-based textons plus weighting, and (c) color invariant textons.



2 Combining Textons and Color Texture Information
2.1 VZ

Before we propose two alternative modifications of the original grayvalue-based texture
recognition algorithm of Varma and Zisserman (VZ) [8], we briefly overview it.

The VZ algorithm normalizes all grayvalue images to zero mean and unit variance.
The MR8-filterbank is convolved with a train set of grayvalue images. The filters are L2-
normalized and their outputs are rescaled according to Weber’s law. See [8] for details.

From the filterbank-responses, textons are learned by performing k-means clustering
(Euclidean distance), yielding a texton dictionary. The texton dictionary is found to be
universal: a different learn set achieves similar results.

Next, each image is represented as a texton model. To that end, each image is filtered
with the MR8 filter bank and at each pixel the texton that is closest in feature space is
identified. The texton model of an image is a histogram, where each bin represents a
texton and its value indicates the number of occurrences of the texton as it occurs in the
image.

2.2 VZ-color

As a first attempt to extend the VZ algorithm to use color information, we incorporate
color directly at the filterbank level [9]. Here, we extend the original MR8-filterbank [8]
to filter color channels directly, where we manipulate the color channels to obtain in-
variance to intensity changes. First, each image is transformed to opponent color space.
Using opponent color space, we benefit from the advantage that the color channels are
decorrelated. As a consequence, the intensity channel is separated from the color chro-
maticity values. The transformation from RGB-values to the Gaussian opponent color
model is given by [5]:





Ê(x,y)
Êλ (x,y)

Êλλ (x,y)



 =





0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.60 0.17









R(x,y)
G(x,y)
B(x,y)





, (1)

where Ê, Êλ and Êλλ denote the intensity, blue-yellow and green-red channel.
The VZ-algorithm has shown to deal with intensity information in a very robust man-

ner, by normalizing the grayvalue image first to zero mean and unit variance, thereby
obtaining a large degree of invariance to changes of the viewing or illumination settings.
We normalize the intensity channel in the same way.

We propose a physics-based normalization of the color values, such that the color
values are invariant to local intensity changes, we term this scheme VZ-color. Here, the
color values are rescaled by the intensity variation, but not normalized to zero mean to
avoid further loss of chromaticity information. We start with the model: for direct and
even illumination, the observed energy E in the image may be modelled by:

E(x,λ ) = i(x)e(λ )R(x,λ ), (2)

where i(x) denotes the intensity which varies over location x, effectively modelling local
intensity including shadow and shading. Further, e(λ ) denotes the illumination spectrum,
and R(x,λ ) denotes object reflectance depending on location x and spectral distribution
which is parameterized by λ . Depending on which parts of the wavelength spectrum



are measured, E(x,λ ) represents the reflected intensity, and Eλ (x,λ ) compares the left
and right part of the spectrum, hence may be considered the energy in the “yellow-blue”
channel. Likewise, Eλλ (x,λ ) may be considered the energy in the “red-green” channel.
The actual opponent color measurements of E(x,λ ), Eλ (x,λ ) and Eλλ (x,λ ) are obtained
from RGB-values by Equation 1.

A change of the region’s intensity level is a common effect when textures are viewed
under changing settings of the illumination and camera viewpoint. We consider manipu-
lations of E(x,λ ), Eλ (x,λ ) and Eλλ (x,λ ) to obtain some invariance to such appearance
changes. With the physical model from Equation 2, the measured intensity Ê can be
approximated by:

Ê(x,λ ) ≈ i(x)e(λ )R(x,λ ). (3)

For the spectral derivatives, we obtain the approximations:

Êλ (x,λ ) ≈
d

dλ
i(x)e(λ )R(x,λ ) = i(x) d

dλ
e(λ )R(x,λ ), (4)

Êλλ (x,λ ) ≈ i(x) d
dλλ

e(λ )R(x,λ ). (5)

We obtain the color measurements Êλ (x) and Êλλ (x) directly from RGB-values accord-
ing to Equation 1. The global variation in these color measurements due to variations of
illumination intensity, shadow and shading is approximated by i(x). The intensity mea-
surement Ê(x), also directly obtained from Equation 1, is a direct indication of the inten-
sity fluctuation. Therefore, the standard deviation of Ê over all pixels is used to normalize
globally each of the color measurements Êλ (x) and Êλλ (x), thus dividing by σ(Ê), to
obtain better estimates of the actual color variation. We do a global normalization here,
and not per pixel, as local intensity variation in the color channels is considered impor-
tant texture information. Finally, the MR8-filterbank is applied to these 3 color invariant
signals.

2.3 VZ-dipoles

As an alternative to incorporating color at the level of the filterbank, the VZ algorithm
is extended by a post-processing step where textons are weighted according to the color
edge at the location of a particular texton. Color edges are measured by color gradients,
of which the magnitudes and directions are used to characterize texture edges (subsection
2.3.1). The directions of color gradients are taken relative to the direction of the intensity
gradient. Weights are computed to determine to which degree the color gradient direction
corresponds to the intensity direction. The weights are combined to obtain an indication
of the color transition at the location of a particular texton (subsection 2.3.2), with which
the texton is weighted when adding it to the texton histogram (subsection 2.3.3). This
process is outlined in Figure 1.

2.3.1 Color Invariant Gradients

To exploit color information in a robust fashion, we base ourselves on noise-robust Gaus-
sian image measurements. From these measurements, we extract color invariant gradients
that are robust to changes of the intensity level [5], to achieve the same level of invari-
ance as in the previous subsection. We overview shortly the derivation of color invariant
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Figure 1: The color dipole framework. The three images denote the color representation
of a color texture. For each color channel, the gradient is computed, depicted by the
arrows. The direction of the opponent color gradients (dλ and dλλ ) are taken relative
to the direction of the intensity gradient (d). For both the same (+) and opposite (−)
direction, weights are determined. The smaller the weight gets for one direction, the larger
it gets for the opposite direction. To obtain a combined weight for each combination of
directions, the weights are multiplied.

gradients. First, we consider the transformation of RGB-values to opponent color space,
yielding opponent color values E, Eλ and Eλλ to represent the intensity, blue-yellow and
green-red channel, respectively, likewise the previous subsection (Equation 1) . From the
opponent color values, spatial derivatives in the x-direction are computed by convolution
with Gaussian derivative filters Gσ

x (x,y) with scale σ :

Êσ
x (x,y) = E(x,y)∗Gσ

x (x,y), (6)
Êσ

λx(x,y) = Eλ (x,y)∗Gσ
x (x,y), (7)

Êσ
λλx(x,y) = Eλλ (x,y)∗Gσ

x (x,y), (8)

where (∗) denotes convolution. The spatial derivatives of opponent color values, Êσ
x , Êσ

λx
and Êσ

λλx, are transformed respectively into color invariants Ŵ σ
x , Ŵ σ

λx and Ŵ σ
λλx providing

robustness to changes of the intensity level by normalizing by the local intensity Êσ :

W
σ

x (x,y) =
Êσ

x (x,y)
Êσ (x,y)

, W
σ

λx(x,y) =
Êσ

λx(x,y)
Êσ (x,y)

, W
σ

λλx(x,y) =
Êσ

λλx(x,y)
Êσ (x,y)

. (9)

This normalization may become unstable for low pixel values, but with the local smooth-
ing some robustness to noise is obtained.

The color invariant features are computed at multiple scales to obtain scale invari-
ance. We compute each scale-normalized invariant at 3 scales (σ ∈ {1,2,4} pixels)



and select the scale of the invariant that maximizes the response. Next, the color in-
variant gradients are computed. The gradient magnitude is determined from: Ŵλ iw =
√

Ŵλ ix(x,y)2 + Ŵλ iy(x,y)2, whereas its direction is determined from: arctan(
Ŵλ iy(x,y)
Ŵλ ix(x,y)

).

We obtain per pixel the color and scale invariant gradients Ŵw, Ŵλw and Ŵλλw. After
application of the color invariants to the image set that is used for training (see Exper-
iments), we learn their standard deviation. We normalize each invariant by its standard
deviation, which effectively boosts color information.

2.3.2 Color Dipoles

An edge in a color image may be characterized by measuring for each color channel the
energy gradient, as outlined in [10]. In order to exploit the a-priori structure in texture im-
ages, we investigate the correlation between intensity edges and color edges. Therefore,
we determine at each pixel the orientation of intensity and color gradients, and measure
the correlation between the orientations of intensity and color gradients over all pixels in
the Curet dataset [3]. To measure the correlation between orientations at edge locations
only, we determine the weighted correlation, where weights are provided by the total gra-
dient magnitude at a particular pixel, measured by

√

Ww(x,y)2 +Wλw(x,y)2 +Wλλw(x,y)2.
The orientations of intensity and color gradients are strongly correlated: r(Ww,Wλw) =
0.77, r(Ww,Wλλw) = 0.81 and r(Wλw,Wλλw) = 0.82.

We have observed that edges are largely characterized by color gradient magnitudes,
and whether these gradients are directed in the same or opposite direction as the inten-
sity gradient. The characterization of a color edge by a dichotomic framework is termed
a color dipole. An example of a color dipole is displayed in Figure 1. The figure also
displays poor image quality, indicating that robust modelling of color information is re-
quired.

We start with the alignment of the color dipole framework to the direction of the in-
tensity gradient Ww. The direction of Wλw is compared to the direction of Ww. Two
Gaussian kernels in direction-space measure the certainty that the direction is the same
or opposite to the intensity gradient direction, see Figure 2. The choice of the size of
the kernels has no significant effect on texture recognition results (data not shown). The
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Figure 2: Two Gaussian kernels in direction-space measure the certainty that the direction
is the same or opposite to the intensity gradient direction.

kernels in direction-space yield 2 direction weights, one for the same direction as the in-
tensity gradient and one for the opposite direction. The more the direction and opposite
direction differ with respect to the direction and opposite direction of the intensity gradi-



ent, the lower the weight. Also, the smaller the weight gets for one direction, the larger
it gets for the opposite direction. Analogously, two direction weights are determined for
the gradient Wλλw.

In total, we obtain for each feature two direction weights per pixel, which for two
features yields 2 × 2 = 4 combinations. For each of the four combinations, we obtain
a single weight by multiplying the two corresponding feature direction probabilities, see
Figure 1. For each of the four dipole possibilities, we have obtained a single weight
representing the probability that the edge under investigation is characterized by it.

To ensure that the feature directions are stable, we weight the dipole framework per
pixel by the total edge strength

√

Ww(x,y)2 +Wλw(x,y)2 +Wλλw(x,y)2 at that pixel. We
normalize the sum of all weights over the image to unity. The dipole framework provides
robustly the probability for each of the four color dipoles per pixel.

2.3.3 Color-weighted Textons

The color-weighting scheme only extends the VZ-algorithm in the way in which the oc-
currences of grayvalue-based textons contribute to the histogram bins of the texton model.
Rather than accumulating a unity weight for each occurrence of a particular texton, we
add weights according to the dipole measured at the location of interest. Since we have
four weights, each of the original histogram bins of VZ are split into four, such that each
of the four weights per texton can be added to the four bins that correspond to the par-
ticular texton. Like VZ, the histograms are normalized to unity, and compared using the
χ2-statistic.

In recapitulation, the VZ-dipole algorithm affects only the cardinality of the texton
model. Hence, VZ-dipole is a low-cost strategy to obtain colored textons, while avoiding
the introduction of essentially different textons for the learning and representation of tex-
tons in the image. The color invariant textons, VZ-color-norm, affects the cardinality of
the filterbank. In addition, the learning of textons from the color-based VZ-color-norm

filterbank requires a learn set that is both representative of the texture shape primitives in
the dataset as well as their colors. Table 2 summarizes the proposed modification of and
extension to the original grayvalue-based texture recognition VZ algorithm [8].

Table 1: Characteristics of the VZ algorithm and proposed modifications of VZ.

Texton learn set representative of Size of fil-
terbank

Size of represen-
tation

VZ texture shape primitives 8 # textons
VZ-color texture shape primitives and colors 24 # textons
VZ-dipoles texture shape primitives 8 4×# textons



3 Texture Recognition Experiment
In this section, we demonstrate the discriminative power of colored textons for texture
recognition. We follow the experimental setup of Varma and Zisserman [8] to classify
the 61 textures of the Curet dataset [3]. Textons are learned from the same 20 textures
as used in [8] and [2]. For each texture, 13 random images are convolved with the MR8-
filterbank [8], from which all responses are collected and 10 cluster means are learned to
obtain 10 textons. Hence, using 20 textures to learn textons from, 200 textons are learned;
this is the texton dictionary. For each of the 61 textures in the Curet dataset, 92 images
have been selected by [8] to obtain a total of 5612 images. Each image is represented by
a histogram of grayvalue-based texton frequencies [8].

For the recognition of textures, we also follow [8]. To classify textures, each texture is
represented by 46 models obtained from alternating images in the total of 92 images per
texture. These 46 models are the learning set; the remaining 46 images are test images.

3.1 Baseline Performance
We consider the recognition of only 20 textures as used in [8] and [2], based on all 46
models. The VZ algorithm, termed VZ, based on grayvalue-textons achieves a recognition
performance of 97.8%. With the physics-based normalization of opponent color values,
exploited in VZ-color, the results are better: 98.4%. With the dipole-weighted textons,
VZ-dipoles, the highest performance is achieved: 98.7% of the 20 textures is classified
correctly.

Due to their improvement in recognition performance over grayvalue-based textons,
we consider VZ-color and VZ-dipoles in comparison to VZ for the recognition of all
61 textures from the Curet dataset. As a baseline, with VZ, the accuracy of classifying all
61 textures is: 96.4%.

With VZ-color, a recognition accuracy of 97.1% is achieved. This is a good result,
but we want to know the effect of the choice of the image set to learn textons from. To
that end, we have selected randomly alternative sets of images to learn the textons from.
We have conducted 10 trials, for each trial random images are taken from the textures
used in [8] and [2]. For VZ-color, the texture recognition results depend significantly
on the texton learn set: recognition accuracy varies from 92.7% to 97.1%, while for the
grayvalue-based textons the results vary mildly from 96.0% to 96.4%. We conclude that
the learning of discriminative color textons is more sensitive to the choice of the learn set.

Because for grayvalue textons the choice of the learn set is of much less importance,
the results obtained with VZ-dipoles are stable under the choice of the learn set: recog-
nition accuracy varies from 96.1% to 96.5%. It should be noted that 200 textons are used,
identical to the textons used in VZ, but with 4 weights attached to each texton. Increasing
the number of textons to 800 increases only very marginally the performance of VZ [8].

3.2 Reducing the Learn Set
To test the recognition accuracy when fewer models are incorporated in the learn set,
we start to decrease the number of learn models, likewise [8]. The learn set is reduced
by discarding models that contribute least to the recognition performance. Models were
discarded in each iteration step based on a greedy reduced nearest-neighbor algorithm.



We emphasize that, by reducing the number of models, first the noisy models are
discarded, improving the texture recognition performance. Here we consider the perfor-
mance of the algorithms VZ and VZ-dipoles, which have demonstrated most stable un-
der the choice of the texton learn set (see above). Experiments over all 61 textures, where
models are removed from the learn set by means of the reduced nearest neighbor rule,
the best recognition accuracy obtained with the color textons of VZ-dipoles is 98.3%.
Thus, the best results obtained with VZ-dipoles are somewhat lower than achieved by
Broadhurst: 99.2% [1]. Broadhurst modelled filterbank responses directly, i.e. without
the abstraction step of modelling textons, by a 26-dimensional Gaussian, which was sub-
sequently used in a Bayes recognition framework. It is interesting that the compact texton
models achieve a performance that is almost similar to the performance of the elegant
models proposed by Broadhurst.

It is interesting how the recognition accuracy decreases when using only few learning
models. When 2 models are used, the texture recognition performance increases from
77.1% (VZ) to 85.6% (VZ-dipoles) when including color information. We conclude that
exploiting color information facilitates the learning of texture appearances.

The results can be summarized as follows. VZ-dipoles outperforms consistently both
the original VZ textons as well as the color textons obtained from color invariant filterbank
responses, see Table 3. Interestingly, the results obtained with the color-weighted textons
(VZ-dipoles) are most stable over: (a) image sets to learn textons from, and, more
importantly, (b) image sets to learn textures from.

Table 2: Performance of the VZ algorithm and proposed modifications of VZ.
Textures: 20 61 61
Textons: 20 20 20
Models: 46 46 2

Algorithm best worse
VZ 97.8% 96.4% 96.0% 77.1%
VZ-color 98.4% 97.1% 92.7% −

VZ-dipoles 98.7% 96.5% 96.1% 85.6%

4 Conclusion
In this paper, we have proposed methods to incorporate robustly color information in VZ

textons [8] to model the appearance of textures. The textons are learned from filterbank
responses. First, we have incorporated color directly at the level of the filterbank. We have
shown that the learning of discriminative color textons that are representative of both the
textures’ shape primitives and colors is not trivial and the recognition accuracy is very
dependent on the set of images to learn the color textons from.



As an alternative to incorporate color directly at the filterbank, we have proposed a
color weighting scheme to weight grayvalue-based textons by the color edges that gener-
ate the texture. This framework captures robustly essential color texture information, is
efficient to compute, and provides a simple extension to the original texton model.

In the experiments, we have modelled color texture images from the Curet dataset by
the traditional textons and the color-weighted textons. With color-weighted textons, the
texture recognition performance is increased significantly, up to ten percent when only
two texton models per texture are used. Incorporating color in a robust manner by means
of the proposed dipole model adds discriminative power for texture recognition, which
facilitates the learning of color textures.
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