
User Transparent Parallel Processing of the 2004 NIST TRECVID Data Set

F.J. Seinstra, C.G.M. Snoek, D. Koelma, J.M. Geusebroek, andM. Worring
ISLA, Informatics Institute, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{fjseins, cgmsnoek, koelma, mark, worring}@science.uva.nl

Abstract

The Parallel-Horus framework, developed at the Univer-
sity of Amsterdam, is a unique software architecture that al-
lows non-expert parallel programmers to develop fully se-
quential multimedia applications for efficient execution on
homogeneous Beowulf-type commodity clusters. Previously
obtained results for realistic, but relatively small-sized ap-
plications have shown the feasibility of the Parallel-Horus
approach, with parallel performance consistently being
found to be optimal with respect to the abstraction level of
message passing programs. In this paper we discuss the
most serious challenge Parallel-Horus has had to deal with
so far: the processing of over 184 hours of video included
in the 2004 NIST TRECVID evaluation, i.e. the de facto in-
ternational standard benchmark for content-based video re-
trieval. Our results and experiences confirm that Parallel-
Horus is a very powerful support-tool for state-of-the-art
research and applications in multimedia processing.

1. Introduction

Even though many multimedia applications are ideally
suited for parallel implementation [9, 10, 12, 14, 27, 29, 32],
most researchers in multimedia do not benefit from the
many commodity clusters available around the world today.
This problem is primarily due to the lack of tools that can
effectively help non-expert parallel programmers in the cre-
ation of high performance multimedia applications [18, 22].
Existing tools (e.g. message passing libraries) generallyre-
quire non-expert users to identify the available parallelism
at a level of detail that is beyond their skills. For this reason
we have recognized that the key to effective high perfor-
mance multimedia application development by non-experts
in parallel computing lies in the availability of a familiar
sequential (i.e. user transparent) programming model [22].

Parallel-Horus, a research and development project un-
dertaken at the University of Amsterdam [21, 22, 23, 24],
is a unique attempt to allow non-expert parallel program-

mers to developfully sequentialmultimedia applications for
efficient execution on Beowulf-type clusters. To enhance
sustainability of the developed framework without compro-
mising on the efficiency of execution, focus of the project
is on the integration of algorithmic patterns for parallel im-
age and video processing [24], automatic parallelization and
optimization [23], and domain specific performance model-
ing [21, 24]. Earlier results have shown the feasibility of the
Parallel-Horus approach, with parallel performance consis-
tently being found to be optimal with respect to the abstrac-
tion level of message passing programs [22, 23].

This paper discusses the most serious problem Parallel-
Horus has had to deal with so far: i.e. the processing of over
184 hours of video included in the 2004 NIST TRECVID
data set [16, 25, 26]. TRECVID is the de facto internation-
al standard benchmark for content-based video retrieval,
which aims at evaluating approaches to finding semantic
concepts (e.g. roads, airplanes, etc) in archives of digitized
news episodes from (e.g.) ABC and CNN. While we esti-
mate that the processing of the entire data set would have
taken around 250 days on the fastest sequential machine
at our disposal, application of Parallel-Horus in combina-
tion with a distributed set of Beowulf-type commodity clus-
ters significantly reduced the processing time to less than 60
hours. These performance gains were obtained without any
parallelization effort whatsoever, thus playing an important
role in the realization of our top-ranking TRECVID results.

This paper is organized as follows. Section 2 introduces
the Parallel-Horus framework. In Section 3 the TRECVID
evaluation is explained. Section 4 discusses our sequential
solution to the semantic concept detection problem. The au-
tomatic parallelization of the developed application is dis-
cussed in Section 5. Section 6 presents an evaluation of re-
sults. Section 7 compares with related work. Future work is
discussed in Section 8. Conclusions are given in Section 9.

2 Parallel-Horus: A Brief Overview

The core of the Parallel-Horus architecture consists of an
extensive software library of data types and associated op-

erations commonly applied in multimedia processing. To
match the architecture’s programming model with the ex-
pertise of the multimedia processing community, the li-
brary’s application programming interface is made identical
to that of an existing sequential library: Horus [11]. More
specifically, rather than implementing a completely new li-
brary from scratch, the parallel functionality is integrated
with the Horus implementation, such that all existingse-
quentialcode remains intact. Apart from reducing the re-
quired parallel implementation effort, this approach has the
major advantage that the important properties of the Horus
library (i.e., maintainability, extensibility, and portability)
to a large extent transfer to Parallel-Horus as well.

Similar to other frameworks described in the litera-
ture [6, 14], the sequential Horus library is based on the
abstractions of Image Algebra [20], a mathematical nota-
tion for specifying image and video processing algorithms.
Image Algebra is an important basis for the design of a
maintainable and extensible multimedia processing library,
as it recognizes that a small set ofalgorithmic patternscan
be identified that covers the bulk of all commonly applied
functionality. In Horus each such pattern is implemented
as ageneric algorithm, using the C++ function template
mechanism[28]. Any operation that maps onto the func-
tionality as provided by such algorithm is obtained by in-
stantiating the generic algorithm with the proper parame-
ters, including the function to be applied to the individual
data elements. For years the following set of generic algo-
rithms has been available in Horus: (1)unary pixel opera-
tion, e.g. negation, absolute value, (2)binary pixel opera-
tion, e.g. addition, threshold, (3)global reduction, e.g. sum,
maximum, (4)neighborhood operation, e.g. percentile, me-
dian, (5)generalized convolution, e.g. erosion, gauss, and
(6) geometric transformations, e.g. rotation, scaling. Re-
cently, additional and commonly used generic algorithms
have been be introduced, including iterative and recursive
neighborhood operations.

To ensure portability of Parallel-Horus to Beowulf-type
commodity clusters, and to have full control over all com-
munication behavior (and thus: efficiency), all parallel ex-
tensions have been implemented using MPI [13]. Also, to
sustain a high maintainability level, each parallel operation
contained in the library is implemented simply by concate-
nating data communication routines with fully sequential
code blocks that are separately available in Horus. In this
manner the source code for each sequential generic algo-
rithm is fully reused in the implementation of its parallel
counterpart, thus avoiding unnecessary code redundancy as
much as possible [24].

For highest efficiency of full applications we have imple-
mented all parallel operations such that they are capable of
adapting to the performance characteristics of the parallel
machine at hand, i.e. by incorporating run-time flexibility

in the partitioning of data structures [21, 24]. More impor-
tantly, we have realized that it is not sufficient to consider
parallelization of library operationsin isolation. Therefore,
we have extended the library with a surprisingly simple,
but very efficient, run-time system for communication min-
imization [23]. This system ensures that the actual parallel
code that is being executed is 1)efficient, often compara-
ble to optimal hand-coded implementations, 2)legal, such
that the program is deterministic and can never end in dead-
lock, and 3)correct, such that it produces output identical
to the original sequential program. Hence, the system au-
tomatically parallelizes afully sequentialprogramat run-
timeby inserting communication primitives and additional
memory management operations whenever necessary. This
approach, referred to aslazy parallelization, is based on a
simple finite state machine (fsm) specification. One of two
fsm ingredients is a set of states, each corresponding to a
valid internal representation of a distributed data structure
at runtime. The other is a set of state transition functions,
each of which defines how a valid data structure represen-
tation is transformed into another valid representation. A
detailed description of the finite state machine, as well as
an explanation of the fsm-based parallelization and opti-
mization process, can be found in [23]. Finally, it is im-
portant to note that extensive experiments have shown that
the Parallel-Horus system delivers close-to-optimal parallel
performance for many state-of-the-art multimedia applica-
tions [22],

3 The 2004 NIST TRECVID Evaluation

TREC is a conference series sponsored by the National
Institute of Standards and Technology (NIST) with addi-
tional support from other U.S. government agencies. The
goal is to encourage research in information retrieval by
providing a large test collection, uniform scoring proce-
dures, and a forum for organizations interested in compar-
ing their results. Since 2003 an independent evaluation
track is being organized, devoted to research in automatic
segmentation, indexing, and content-based retrieval of dig-
ital video streams: TRECVID [16].

The 2004 NIST TRECVID evaluation defines four main
tasks, at least one of which must be completed to participate
in the evaluation. The tasks are as follows:

• shot boundary determination

• story segmentation

• high-level feature extraction

• search.

The University of Amsterdam participated in TRECVID
2004 by completing the feature extraction task, as well as

Figure 1. Example frame from the 2004 NIST TRECVID data set (left) and labeled segmentation results (right).

the search task. In the remainder of this paper we will focus
on the feature extraction task only.

The feature extraction task was defined as follows [16]:
Given the 2004 NIST TRECVID video data set, a com-
mon shot boundary reference for this data set, and a list
of feature definitions (see below), participants must return
for each feature a list of at most 2000 shots from the data
set, ranked according to the highest possibility of detecting
the presence of that feature. Each feature is assumed to be
binary, i.e. it is either present or absent in a shot.

The 2004 NIST TRECVID video data set consisted of
over 184 hours of digitized news episodes from ABC and
CNN, an example of which is shown in the left half of Fig-
ure 1. In addition, ten feature definitions were given:

• Boat/ship: segment contains video of at least one boat,
canoe, kayak, or ship of any type.

• Bill Clinton : segment contains video of Bill Clinton.

• Madeleine Albright : segment contains video of
Madeleine Albright.

• Train : segment contains video of one or more trains,
or railroad cars which are part of a train.

• Beach: segment contains video of a beach with the
water and the shore visible.

• Airplane takeoff : segment contains video of an air-
plane taking off, moving away from the viewer.

• People walking/running: segment contains video of
more than one person walking or running.

• Physical violence: segment contains video of violent
interaction between people and/or objects.

• Road: segment contains video of part of a road, any
size, paved or not.

• Basket scored: segment contains video of a basket-
ball passing down through the hoop and into the net to
score a basket — as part of a game or not.

4 Generic Semantic Concept Detection

Our approach to the feature extraction problem is based
on the so-called Semantic Value Chain (SVC), a novel
method for generic semantic concept detection in multi-
modal video repositories [26]. The SVC extracts seman-
tic concepts from video based on three consecutive analysis
links, i.e. the Content Link, the Style Link, and the Semantic
Context Link. The Content Link works on the video data it-
self, whereas the Style Link and the Semantic Context Link
work on higher level semantic representations.

In the Content Link we view video documents from the
data perspective. In general, three modalities can be iden-
tified in video documents, i.e. the auditory, textual, and vi-
sual modality. In our approach, detectors are first applied to
individual modalities. The results are then fused into an in-
tegrated Content Link detector. Based on validation experi-
ments the best-off hypothesis for a single concept serves as
the input for the next link. In the remainder of this paper we
focus on the processing of the visual modality, as this is by
far the most time-consuming part of the complete system.

inputVideo = openFile(videoFileName);
semanticConcepts = readFile(conceptsFileName);
svMachine = initSupportVectorMachine(semanticConcepts);
WHILE (NOT endOfVideo(inputVideo)) DO

inputFrame = getNextFrame(inputVideo, skipFrames = 15);
invFeatureVector = buildInvariantFeatureVector(inputFrame);
labeledFrame = doSVMlabeling(invFeatureVector, svMachine);
rankHistogram = getHistogram(labeledFrame);
writeFile(rankHistogram);

OD

Listing 1. Pseudo code for SVM-based visual analysis.

4.1 Visual Analysis

The visual modality is analyzed at the image (or video
frame) level. Our approach is presented in highly simpli-
fied pseudo code in Listing 1. After obtaining video data
from file, for each 15th video frame visual features are ex-
tracted by using Gaussian color invariant measurements [7].
RGB color values are decorrelated by transformation to an
opponent color system. Successively, acquisition and com-
pression noise is suppressed by Gaussian smoothing. By
varying the size of the Gaussian filtersσ = {1, 2, 3.5} a
color representation is obtained consistent with variations
in target object size. Global and local intensity variations
are suppressed by normalizing each color value by its in-
tensity, resulting in two chromaticity values per color pixel.
Furthermore, rotationally invariant features are obtained by
taking Gaussian derivative filters, and combining the re-
sponses into two chromatic gradient magnitude measures.
These seven features, calculated over three scales, yield a
combined 21-dimensional feature vector per pixel. This se-
quence of operations is represented in Listing 1 by a single
call to buildInvariantFeatureVector . It should
be noted that this single operation boils down to a sequence
of unary and binary pixel operations, and generalized con-
volutions, as referred to in Section 2.

The obtained invariant feature vector serves as the in-
put for a multi-class Support Vector Machine [4, 30] that
associates each pixel to one of the predefined regional
visual concepts. In Listing 1 this is performed by the
doSVMlabeling operation. As before, this operation
represents a sequence of unary and binary pixel operations.
The SVM labeling results in a weak semantic segmenta-
tion of a video frame in terms of regional visual concepts
(see Figure 1 for an example). This result is written out to
file in condensed format (i.e.: a histogram) for subsequent
processing.

The described segmentation of video frames into re-
gional visual concepts at the granularity of a pixel is com-
putationally intensive. This is especially so if one aims to
analyze as many frames as possible. In our approach the vi-
sual analysis of a single video frame requires around 16 sec-

onds on the fastest sequential machine at our disposal (i.e.: a
3.2 GHz Pentium IV with 1 GByte of RAM). Consequently,
when processing two frames per second at a frame rate of
30, the required processing time for the entire TRECVID
data set would be around 250 days. Clearly, for the initial
visual analysis phase of our complete system parallel exe-
cution is highly desired.

5 Parallel Execution

As Parallel-Horus shields all parallelization issues from
the user, the sequential pseudo code of Listing 1 directly
constitutes a program that can be executed on a Beowulf
cluster as well. Performance optimization and communica-
tion minimization are taken care of by the integrated finite
state machine-based run-time system [23]. Here we should
note that, as of yet, we can not make publicly available
the actual code of our TRECVID application. However,
an initial proof-of-concept implementation (inC) of the
Parallel-Horus framework, as well as several small-sized
example applications, are freely available for inspectionat
http://www.science.uva.nl/˜fjseins/ParHorusCode/.

For this particular sequential application, the resulting
parallel execution involves only three different communica-
tion steps per video frame. Initially, each input frame ob-
tained from file is scattered throughout the parallel system
(note: our architecture does not support parallel I/O). Next,
in the generation of the invariant feature vector, the required
generalized convolutions (e.g. Gaussian smoothing) cause
neighboring nodes in the logical CPU grid to exchange their
image borders (orshadow regions). In all cases, the ex-
tent of the border in each of the image’s dimensions is half
the size of the Gaussian kernel in that dimension minus
one pixel. Finally, before the resulting histogram is writ-
ten out to file, all partial histograms are gathered to a single
processing unit. Apart from these communication opera-
tions, all processing units run fully independently, in a data
parallel manner. As such, the program executes in exactly
the same way as would have been the case for a hand-coded
data parallel version implemented in MPI. In other words,
the resulting parallel execution is optimal with respect tothe
abstraction level of message passing programs.

6 Results

In this section we give an evaluation of the results
obtained by applying Parallel-Horus in the 2004 NIST
TRECVID evaluation. First we will discuss our view on
the importance of Parallel-Horus in the overall feature de-
tection results generated by the University of Amsterdam
(UvA). This is followed by a discussion of the parallel per-
formance obtained automatically with Parallel-Horus.

Feature UvA Rank Nr. Participants
People walking 1st 7
Physical violence 1st 6
Boat/ship 2nd 7
M. Albright 2nd 8
B. Clinton 2nd 11
Airplane takeoff 2nd 7
Road 2nd 6
Train 3rd 6
Beach 7th 9
Basket scored 8th 10

Table 1. Per feature ranking of the UvA system.

6.1 Application of Parallel-Horus in TRECVID

The 2004 NIST TRECVID feature extraction task was
completed by several strong international competitors, in-
cluding IBM Research [1], and the Informedia team from
Carnegie Mellon University [8]. The TRECVID feature ex-
traction task was an enormous challenge, which is reflected
in the fact that there were not more than 11 participating
teams. Moreover, in this field of 11 teams, only 6 teams
were capable of presenting results for the complete set of
10 predefined features (see Section 3). First, this is because
the detection of all 10 features in the entire TRECVID data
set was by far too time-consuming for many participating
teams. In addition, this is because the development of par-
allel solutions to the TRECVID problem would require ex-
pertise beyond the means of most participants.

The importance of applying Parallel-Horus in the UvA
TRECVID system can be seen from the fact that we have
been able to present results for all 10 predefined features.
In addition, the performance gains obtained from parallel
execution clearly played an important role in the realization
of our overall top-ranking results (see Table 1). Despite the
fact that Parallel-Horus was applied in the visual analysis
phase of the complete system only, it had a positive effect
on our TRECVID participation as a whole. While all func-
tionality was developed in a fully sequential manner, par-
allel performance was obtained entirely for free — thus al-
lowing for a more thorough comparison of alternative algo-
rithmic approaches in the research phase, for more accurate
parameter tuning in the development phase, and for more
in-depth scene analysis in the final processing phase.

6.2 Performance Evaluation

The visual analysis phase of our TRECVID system has
been executed on the Distributed ASCI Supercomputer 2
(DAS-2), a wide-area distributed computer located at five
different universities in The Netherlands [3]. DAS-2 con-

sists of five Beowulf-type clusters, one of which contains
72 nodes, and four of which have 32 nodes (200 nodes in
total). All nodes consist of two 1.0 GHz Pentium III CPUs,
at least 1.0 GByte of RAM, and are connected by a Myrinet-
2000 network. At the time of measurement, the nodes ran
the RedHat Linux 7.2 operating system. The Parallel-Horus
architecture was compiled usinggcc 3.2.2 (at highest level
of optimization) and linked with MPICH-GM, which uses
Myricom’s GM as its message passing layer on Myrinet.

Figure 2 presents measurements for the processing of
a single video frame from the TRECVID data set. As the
DAS-2 system is used for other research projects as well,
results are given here for a system of up to 64 CPUs only.
Also, it should be noted that these results present a lower
bound on the obtainable speedup for this application, as the
size of each video frame is small: 352×240 pixels (MPEG-
1 standard). In future TRECVID evaluations video streams
are expected to be encoded in the MPEG-2 format (with
frame-sizes of 720×576 pixels), resulting in a much higher
speedup potential per frame (as proven in [22] for several
other applications having similar parallel behavior).

From Figure 2 we can see that the execution time per
frame drops from more than 27 seconds on a single DAS-2
node to slightly over 1.5 seconds using 64 processing units.
This gives a speedup of 17.84 with an efficiency of 27.88
on the maximum number of CPUs used in this evaluation.
These speedup figures were of great importance in the re-
search and development phases of the UvA system, as these
allowed immediate evaluation of different algorithms, anda
thorough tuning of algorithmic parameters.

In the final processing phase we manually applied all five
clusters of the DAS-2 system in parallel, executing multi-
ple runs on each individual cluster in parallel as well. To
have a good trade-off between the number of parallel tasks
that needed to be supervised and managed1, and the ob-
tained speedup as discussed above, each individual task (i.e.
the processing of a single video) was given a total of 16
dual CPUs. Given the execution time of around 27 sec-
onds for a single frame as given in Figure 2, we estimate
that the processing of the whole TRECVID data set would
have taken more than one year on a single DAS-2 node
(and around 250 days on the fastest sequential machine at
our disposal). Application of Parallel-Horus in combination
with the five DAS-2 clusters significantly reduced the pure
processing time to less than 60 hours, resulting in an overall
speedup of around 172 on the complete DAS-2 system. We
would like to stress again that these results were obtained
without any parallel programming effort whatsoever.

1the TRECVID data set could not be made accessible in its entirety at
once, thus requiring manual copying of video data and resultsto and from
the individual DAS-2 clusters

time (s)

64

40
48

32
24

8

56

4

16

2
1

CPUs

1.538
1.588
1.715
1.901
2.223

7.145

2.685
3.388
4.777

12.883
27.443

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
Parallel-Horus

Figure 2. Performance (left) and speedup characteristics (right) for the SVM-based visual analysis, for a single video
frame of size 352×240 pixels (MPEG-1 video data).

7 Comparison with Related Work

In [22] we have made a performance comparison be-
tween the Parallel-Horus architecture and several related
tools described in the literature. The comparison is based
on a well-known stereo vision application [17] which — in
its parallel behavior — is comparable to the visual analy-
sis phase of our TRECVID system. The following briefly
presents the main results of the comparison.

First, a comparison is made with results obtained for the
stereo vision application written in a specialized parallel
programming language (SPAR [19]), which was executed
on a single DAS-2 cluster. Also, the codes generated by the
SPAR front-end and that of Parallel-Horus were compiled in
an identical manner. Measurements showed Parallel-Horus
to provide superior sequential performance of about a factor
5, and better speedup — clearly indicating that the overhead
the Parallel-Horus approach is much smaller than that of the
SPAR run-time system.

Second, a comparison is made with results obtained for
an implementation in the Adapt parallel image processing
language [31]. A true comparison with this work turned out
to be difficult, however, as the results were obtained on a
significantly different machine (i.e., a set of iWarp proces-
sors, with a better potential for obtaining high speedup than
the DAS-2). Even so, our software architecture showed su-
perior performance (of about a factor 2) with comparable
speedup characteristics over a large range of CPUs.

Most interesting, however, is the comparison withEasy-
PIPE [15], a library-based framework for parallel image
processing similar to Parallel-Horus. The most distinctive
feature of this architecture is that it incorporates a mecha-
nism for combining data and task parallelism. Also,Easy-
PIPE does not shieldall parallelism from the application
programmer. As a consequence from these differences,
Easy-PIPEhas the potential of outperforming our architec-

ture, which is fully user transparent, and strictly data par-
allel. However, performance and speedup characteristics
for the stereo vision application obtained on the DAS-2 ar-
chitecture show that our implementations far better exploit
the available parallelism thanEasy-PIPE. Part of the dif-
ference is accounted for by the fact thatEasy-PIPEdoes
not incorporate an explicit optimization mechanism for re-
moval of redundant communication steps. In addition, the
run time parallelization overhead ofEasy-PIPEturned out
to be much higher than that of Parallel-Horus.

8 Future Work

Parallel-Horus is an ongoing research and development
project. To enhance the user’s expressiveness, while pre-
serving access to the available multimedia functionality,we
are currently investigating alternative sequential program-
ming models. A promising starting point is our initial study
of functional programming models for multimedia process-
ing, in which the OCaml language [5] was identified as a
good candidate for interfacing with a Parallel-Horus back-
end [2]. Also, we are investigating alternative execution
scenarios that shield the user from platform specific pe-
culiarities related to the actual running of Parallel-Horus
programs. One desirable execution scenario is to have a
multimedia server running on a distributed set of (poten-
tially heterogeneous) resources, such that the availableMul-
timedia Servicescan be called directly from within a se-
quential program running on a local machine. Finally, due
to the emerging need for the processing of large image
and video archives, future multimedia applications have a
higher degree of inherent task parallelism than before. Ap-
plying an RPC-style execution model based on Multimedia
Services allows for a traditional sequential programming
model, while making possible the exploitation of integrated

data and task parallelism, i.e. by asynchronous (task) par-
allel invocation of services, each of which may run in data
parallel fashion. We expect the Parallel-Horus architecture
to move in this direction in the near future.

9 Conclusions

Parallel-Horus is a unique software architecture that al-
lows non-expert parallel programmers to develop fully se-
quential multimedia applications for efficient execution on
Beowulf-type commodity clusters. In this paper we have
described the application of Parallel-Horus in the low-level
processing of over 184 hours of video included in the
2004 NIST TRECVID evaluation, i.e. the de facto inter-
national standard benchmark for content-based video re-
trieval. While we estimate that the processing of the en-
tire data set would have taken around 250 days on the
fastest sequential machine at our disposal, application of
Parallel-Horus in combination with the 200-node Distrib-
uted ASCI Supercomputer reduced the processing time to
around 2.5 days. We have indicated that these performance
gains were obtained without any parallel programming ef-
fort whatsoever, thus playing an important role in the re-
alization of our top-ranking TRECVID results in a field of
very strong international competitors (a.o. including IBM
Research and Carnegie Mellon University).

The application of Parallel-Horus in the TRECVID eval-
uation proved to be very significant. Most importantly, it
allowed us to thoroughly process the enormous 2004 NIST
TRECVID video data collection virtually without effort. It
enabled us to develop all feature detection functionality in
a sequential manner, and to make full advantage of the au-
tomatically provided parallel performance. As a result, it
allowed for a more thorough comparison of alternative al-
gorithmic approaches in the research phase, for more ac-
curate parameter tuning in the development phase, and for
more extensive scene analysis in the final processing phase.

In conclusion: irrespective of the need for more research
as described above, our results and experiences confirm that
the current Parallel-Horus implementation is a very pow-
erful support-tool for state-of-the-art research and applica-
tions in multimedia processing. As such, Parallel-Horus
has an immediate and stimulating effect on the study of the
many computationally demanding problems in multimedia
processing. The described NIST TRECVID evaluation is
just one of these.

10 Acknowledgements

The authors would like to thank Kees Verstoep (Vrije
Universiteit, Amsterdam) for his support in setting up and
employing the Distributed ASCI Supercomputer 2.

References

[1] A. Amir, M. Berg, S. Chang, G. Iyengar, C.-Y. Lin, A. Nat-
sev, C. Neti, H. Nock, M. Naphade, W. Hsu, J. Smith,
B. Tseng, Y. Wu, and D. Zhang. IBM Research TRECVID-
2003 Video Retrieval System. InProceedings of the
TRECVID 2003 Workshop, Nov. 2003.

[2] A. Bagdanov. Style Characterization of Machine Printed
Texts. PhD thesis, Faculty of Science, University of Amster-
dam, The Netherlands, May 2004.

[3] H. Bal et al. The Distributed ASCI Supercomputer Project.
Operating Systems Review, 34(4):76–96, Oct. 2000.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a Library for
Support Vector Machines, 2001. Software available at
www.csie.ntu.edu.tw/˜cjlin/libsvm/ .

[5] G. Cousineau and M. Mauny.The Functional Approach to
Programming. Cambridge University Press, 1998.

[6] D. Crookes, P. Morrow, and P. McParland. IAL: A Parallel
Image Processing Programming Language.IEE Proceed-
ings, Part I, 137(3):176–182, June 1990.

[7] J. Geusebroek, R. van den Boomgaard, A. Smeulders, and
H. Geerts. Color Invariance.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(12):1338–1350,
2001.

[8] A. Hauptmann, R. Baron, M.-Y. Chen, M. Christel,
P. Duygulu, C. Huang, R. Jin, W.-H.Lin, T. Ng, N. Moraveji,
N. Papernick, C. Snoek, G. Tzanetakis, J. Yang, R. Yang,
and H. Wactlar. Informedia at TRECVID 2003: Analyzing
and Searching Broadcast News Video. InProceedings of the
TRECVID 2003 Workshop, Nov. 2003.

[9] L. Jamieson, E. Delp, C.-C. Wang, J. Li, and F. Weil. A
Software Environment for Parallel Computer Vision.IEEE
Computer, 25(2):73–75, Feb. 1992.

[10] Z. Juhasz and D. Crookes. A PVM Implementation of a
Portable Parallel Image Processing Library. InParallel Vir-
tual Machine - EuroPVM’96, Third European PVM Confer-
ence, pages 188–196, Munich, Germany, Oct. 1996.

[11] D. Koelma et al. Horus C++ Reference, Version 1.1. Tech-
nical report, ISIS, Faculty of Science, University of Amster-
dam, The Netherlands, Jan. 2002.

[12] C. Lee and M. Hamdi. Parallel Image Processing Applica-
tions on a Network of Workstations.Parallel Computing,
21(1):137–160, Jan. 1995.

[13] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard (version 1.1). Technical report, Univer-
sity of Tennessee, Knoxville, Tennessee, June 1995. Avail-
able athttp://www.mpi-forum.org .

[14] P. Morrow, D. Crookes, J. Brown, G. McAleese,
D. Roantree, and I. Spence. Efficient Implementation of a
Portable Parallel Programming Model for Image Processing.
Concurrency: Pract. & Exp., 11:671–685, Sept. 1999.

[15] C. Nicolescu and P. Jonker. EASY-PIPE - An Easy to Use
Parallel Image Processing Environment Based on Algorith-
mic Skeletons. InProceedings of the 15th International Par-
allel & Distributed Processing Symposium - Workshop on
Parallel and Distributed Computing in Image Processing,
Video Processing, and Multimedia, San Francisco, Califor-
nia, USA, Apr. 2001.

[16] NIST. TREC Video Retrieval Evaluation Homepage. URL:
http://www-nlpir.nist.gov/projects/trecvid/, Oct. 2004.

[17] M. Okutomi and T. Kanade. A Multiple-Baseline Stereo.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 15(4):353–363, Apr. 1993.

[18] C. Pancake and D. Bergmark. Do Parallel Languages Re-
spond to the Needs of Scientific Programmers?IEEE Com-
puter, 23(12):13–23, Dec. 1990.

[19] C. Reeuwijk, A. van Gemund, and H. Sips. Spar: A Pro-
gramming Language for Semi-Automatic Compilation of
Parallel Programs.Concurrency: Practice and Experience,
9(11):1193–1205, Nov. 1997.

[20] G. Ritter and J. Wilson.Handbook of Computer Vision Al-
gorithms in Image Algebra. CRC Press, Inc, 1996.

[21] F. Seinstra and D. Koelma. P-3PC: A Point-to-Point Com-
munication Model for Automatic and Optimal Decomposi-
tion of Regular Domain Problems.IEEE Transactions on
Parallel and Distributed Systems, 13(7):758–768, July 2002.

[22] F. Seinstra and D. Koelma. User Transparency: A Fully
Sequential Programming Model for Efficient Data Parallel
Image Processing.Concurrency and Computation: Practice
and Experience, 16(6):611–644, May 2004.

[23] F. Seinstra, D. Koelma, and A. Bagdanov. Finite State
Machine Based Optimization of Data Parallel Regular Do-
main Problems Applied in Low Level Image Processing.
IEEE Transactions on Parallel and Distributed Systems,
15(10):865–877, Oct. 2004.

[24] F. Seinstra, D. Koelma, and J. Geusebroek. A Software Ar-
chitecture for User Transparent Parallel Image Processing.
Parallel Computing, 28(7–8):967–993, Aug. 2002.

[25] C. Snoek and M. Worring. Multimodal Video Indexing: A
Review of the State-of-the-art.Multimedia Tools and Appli-
cations, 2005. (in press).

[26] C. Snoek, M. Worring, J. Geusebroek, D. Koelma, and
F. Seinstra. The MediaMill TRECVID 2004 Semantic Video
Search Engine. InProceedings of the TRECVID 2004 Work-
shop, Nov. 2004.

[27] J. Squyres, A. Lumsdaine, and R. Stevenson. A Toolkit for
Parallel Image Processing. InParallel and Distributed Meth-
ods for Image Processing II, Proceedings of SPIE, volume
3452, San Diego, California, USA, July 1998.

[28] B. Stroustrup.The C++ Programming Language, 3rd Edi-
tion. Addison-Wesley, 1997.

[29] R. Taniguchi, Y. Makiyama, N. Tsuruta, S. Yonemoto, and
D. Arita. Software Platform for Parallel Image Processing
and Computer Vision. InParallel and Distributed Methods
for Image Processing, Proceedings of SPIE, volume 3166,
pages 2–10, San Diego, California, USA, July 1997.

[30] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, USA, 2th edition, 2000.

[31] J. Webb. Implementation and Performance of Fast Parallel
Multi-Baseline Stereo Vision. InProceedings of the 1993
DARPA Image Understanding Workshop, pages 1005–1010,
Apr. 1993.

[32] H. Yoshimoto, D. Arita, and R. Taniguchi. Real-Time Image
Processing on IEEE1394-based PC Cluster. InProceedings
of the 15th International Parallel & Distributed Processing
Symposium - Workshop on Parallel and Distributed Comput-
ing in Image Processing, Video Processing, and Multimedia,
San Francisco, USA, Apr. 2001.

