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Abstract

This paper presents a method for object recognition once parts have been detected. The rec-
ognition task is formulated as a graph problem searching for the characteristic geographical
arrangements of (possibly missing) parts. The objective function is Bayesian maximum a pos-
teriori estimation, integrating the image likelihood as a posteriori probability of the part detec-
tors. The variability in the arrangement of object parts is captured by a Gaussian distribution
after translation normalization. By employing two special properties of a Gaussian distribu-
tion, we are able to deal with missing parts situation where the chosen origin is not detected.
We use an A* algorithm to find the optimal solution for the graph search problem. Experi-
ments are performed on both synthetic and real data to demonstrate good results and fast per-
formance of the recognition.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A major problem in computer vision is object recognition as the accidental
circumstances of the scene and the recording dominate the appearance of the ob-
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ject. Apart from the variability of the object, the variability of the light source
including its position and viewpoint, occlusion, noise, and clutter require careful
consideration. Despite advances of systems recognizing specific objects such as
[1], their use in real world applications is still limited, as these methods effectively
require standardized recording circumstances. Recently, the problem of recogni-
tion of object class has received considerable attention because it is useful in a
wide range of applications such as image retrieval, surveillance and robot navi-
gation. Here, we consider objects with uncertain geometry and uncertain appear-
ance. The uncertainty may come from individual object measurement error as
well as from membership of a particular category such as pedestrians or human
faces.

This paper investigates recognition using detectors of object parts. In this ap-
proach the object parts are first detected, then grouped to form objects according
to an explicit global spatial relationship among parts [2]. This approach aims to
overcome two problems of global description as of appearance-based methods
[3,4]. First, a single template is not able to represent many objects without the inclu-
sion of background where one wishes to detect objects and object parts without the
accidental background. Experimental study in [5] has showed that the background
affects adversely the performance of appearance-based recognition in a general con-
text. Second, a global template allows only rather fixed structures.

The idea of recognition by parts is not new. Grimson [6] provides a complete
account for methods that use geometrical constraints for describing the configura-
tion. Nevertheless, the use of geometrical constraints among parts is not suited for
describing the global variability of object configuration. Recently, developments in
statistical shape theory have proved to be useful in modeling the global configura-
tion [7–11] where the locations of parts (salient points) of an object are treated as
a feature vector and subsequently statistical analysis can be carried out for a col-
lection of vectors in this feature space. The work of Burl and Perona [2] is repre-
sentative for the class of methods using these types of global deformable
configuration to describe object structure. The method makes use of a shape
space, obtained from original space by normalizing for translation, rotation and
scale, in which the distribution can be expressed in a closed form, when the ori-
ginal space is Gaussian [12]. However, there is a difficulty in estimating the param-
eters of the distribution in their shape space. Another drawback of this method is
that there is no guarantee that the search procedure will lead to an optimal
solution.

We identify three issues in recognition by parts. The first issue is to determine the
interesting object parts and their detectors from a collection of examples. The second
issue is to integrate the part detection results as well as the variability of the config-
uration into a single model. Subsequently, the parameters of this model can be esti-
mated from examples. The third issue is to solve the computational problem of
finding the optimal solution according to the estimated model for object localization
in a new input image.

We do not address the first issue in this paper. Automatic part selection is a par-
allel track of research where for example [13] shows some promising results. For
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learning part detectors, one could make use of various techniques in the appearance-
based approach. For the purpose of this paper, we use the standard template match-
ing as a part detector.

We focus on the modeling and recognition problem given the part detectors.
The difficulty lies in the fact that the scene is cluttered, possibly occluded, and
part detectors are not reliable. Therefore, we will consider the issue of false
and missed detection of object parts. In addition, unlike appearance-based ap-
proach where it is possible to conduct an exhaustive search in the space of all
possible candidates, the hypothesis space in recognition by parts explodes very
quickly.

We propose a Bayesian approach to integrate the distinctiveness of the object
global configuration and the presence of its parts in a complex scene. The Bayes-
ian formulation has been used for the object recognition problem in [14–18]. The
advantage of Bayesian analysis is that prior knowledge can be incorporated into
the evaluation procedure. Our work differs from previous work in the model we
propose for the problem of recognition by parts. After normalized for translation,
the variation in configuration of an object is modeled as multivariate Gaussian
distribution. The performance of the part detectors is used to determine the rel-
ative weight of the parts. The performance parameters are the detection rate and
the false alarm rate, which can be estimated from a set of part and non-part
examples. Both the configuration and the weights are combined into a single
Bayesian objective function to rank object hypotheses. This criterion leads to a
difficult combinatoric problem because of the unconstrained covariance matrix
of the Gaussian distribution. The structure of our probabilistic model is neither
tree-based nor chain-based, which prevents the use of dynamic programming as
it has been done in previous works [19,20]. Nevertheless, we will show that opti-
mizing the new objective function can still be done efficiently with an A* search
algorithm [21], whereby an optimal solution is achieved with a novel, admissible
heuristic.

For the optimization of the posterior, stochastic optimization algorithms such as
simulated annealing and sampling have been successfully used by Refs. [22,23,16].
This class of algorithms is useful, but generally does not yet satisfy the computa-
tion time constraint [24]. A gradient descent method can be used to obtain a local
solution [14]. For the specific probabilistic model in [25], the authors present a tree
search procedure to optimize the posterior. This model is further studied in [24] in
relation with the A* search algorithm. Nevertheless, to use the A* algorithm with a
probabilistic model, one has to derive appropriate heuristics for that specific
model. In this respect, our solution to the problem of optimizing the posterior is
novel.

The organization of the paper is as follows. In Section 2 we present a Bayes for-
mulation of the problem. In Section 3 we derive the objective function and discuss
the estimation of its parameters. The subsequent section is devoted to the search
method for our objective function. Section 5 presents our experimental results on
both synthetic and real data. Finally, we discuss various issues for further investiga-
tion and conclude the paper in Section 6.
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2. Bayes formulation of the problem

Consider an object model consisting of two components: the parts and their loca-
tions. For a set of p parts, p is fixed a priori, we consider a spatial configuration x of
p locations in some configuration space X . Thus, x is a point in a 2p-dimensional
space describing the locations of p labeled parts.

Let {da|a = 1, . . . ,p} be a set of detectors corresponding to the set of parts.
When da is applied to an image I in some image space I , the response da (I ) is a
binary image, indicating any detected presence of part a. Let dv

aðIÞ denote the re-
sponse at location v 2 I, a value of 1 for the presence of part and 0 otherwise.
We assume that by local maximization of the response the detector provides one
location of a in a small neighborhood. In other words, each hit in da (I ) corre-
sponds to one detected part a.

We choose to use the maximum a posteriori (MAP) estimate in deriving the objec-
tive function. Given an image I 2 I , one would like to find the ‘‘most probable’’ ob-
ject. This can be formulated as

x� ¼ argmax
x

P ðxjIÞ ¼ argmax
x

P ðI jxÞP ðxÞ ð1Þ

It is often convenient to consider the log form of Eq. (1)

x� ¼ argmax
x

flogðPðI jxÞÞ þ logðP ðxÞÞg: ð2Þ

In other words, log (P (I |x)) + log (P (x)) is used as an objective function to evaluate a
hypothesis x.

In this model, P (I|x) is the likelihood measure that an image I is observed given
the presence of an object at some specified location x. The estimation of this measure
is related to statistics of natural images P (I ), where a set of filters is often used. In
that case, P (I ) is characterized by the distribution (or histogram) of the filter re-
sponses [26,27]. The method described in [16] also estimates the image (observation)
likelihood given an object by means of filter banks. These filter banks aim at captur-
ing the distribution of responses of both background and foreground. In Section 3.1,
we present our estimation method when only the performance statistics of the part
detectors is available.

The prior density distribution P (x) reflects our knowledge about the object. As an
example, suppose x consists of two components x = (xS,xT), denoting a translation-
normalized shape xS and a translation vector to position the object in the image xT.
Suppose that the two components are independent. Thus, one can write
P (x) = P (xS)P (xT). We model the prior knowledge about the object location via
P (xT), which is useful for datasets where objects of interest have a high or low prob-
ability of presence in some region. In this paper, we assume a uniform distribution
for P (xT), that is, no a priori knowledge about object location in an image. In Sec-
tion 3.2, we present a translation invariant density distribution for the global config-
uration, which does not assume a Gaussian distribution for the original space as in
[2]. This enables simple estimation of model parameters. The scale and rotation
invariant properties are not dealt with. When the scale and rotation of the object
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are involved, one needs to address those aspects not only for shape but also for part
detectors. This presents a significant additional complexity.

Finally, we address the optimization problem of Eq. (1). This problem is difficult
because of a large search space. In Section 4, we formulate the problem as a graph
search problem. We then present an admissible heuristic required to use the A* search
algorithm to find the optimal solution.

In summary, we are concerned with the two terms in Eq. (2) and the optimization
problem. In the context of this paper, we need to approximate the first term with the
information extracted from the part detectors. The second term should be modeled
in such away that captures the distinctiveness of the object global configuration. Fi-
nally, the optimization method should be efficient because a very large search space
is expected.
3. Learning an object model

We present the likelihood and the prior terms of the model in Eq. (2). We then
discuss the estimation of model parameters from training examples.

3.1. The likelihood

In this section, we estimate the likelihood P (I |x) that the image I is observed, gi-
ven an observation of object x. We use the performance statistics of part detectors
for our estimation, and hence the likelihood becomes P ({da (I )}16a6p|x), where p

is the number of object parts and da (I ) is the binary response image. For the purpose
of this paper, assuming the part detectors are independent, we have

P ðfdaðIÞg16a6pjxÞ ¼
Y

16a6p

P aðdaðIÞjxaÞ; ð3Þ

where xa is the vector of the true location of part a in x.
This assumption is not realistic because object parts might bear great similarity,

e.g., the left eye and the right eye of human faces. Despite of this fact, the assumption
is needed to reduce computational complexity.

For each part a and its detector da, let ca be the detection rate, that is
ca ¼ P ðdv

aðIÞ ¼ 1jv ¼ xaÞ, where v is a two-dimensional vector denoting an image
location. Thus, P ðdv

aðIÞ ¼ 0jv ¼ xaÞ ¼ 1� ca. Furthermore, let ba be the probability
that a background location is detected as a part (or false alarm rate), that is
ba ¼ Pðdv

aðIÞ ¼ 1jv 6¼ xaÞ. Thus, P ðdv
aðIÞ ¼ 0jv 6¼ xaÞ ¼ 1� ba. In addition, let d0

and d1 denote the number of non-responses and responses, respectively. Hence,
d0 + d1 is the size of image I.

We make a further assumption that the responses are independent given the true
location of parts. Again, this assumption is not strictly true, because object parts are
correlated with neighboring locations. Nevertheless, this assumption reduces the
model complexity greatly. The conditional probability distribution Pa (Æ | Æ) in Eq.
(3) can be expressed as
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P aðdaðIÞjxaÞ ¼ P ðdv
aðIÞjv ¼ xaÞ

Y
v 6¼xa

Pðdv
aðIÞjv 6¼ xaÞ

¼ cd
xa
a ðIÞ

a ð1� caÞ
1�dxaa ðIÞð1� baÞ

d0�ð1�dxaa ðIÞÞbd1�dxaa ðIÞ
a

¼ cað1� baÞ
ð1� caÞba

� �dxaa ðIÞ

ð1� caÞð1� baÞ
d0�1bd1

a

¼ cað1� baÞ
ð1� caÞba

� �dxaa ðIÞ

ca; ð4Þ

where ca is a value that does not depends on x. Substituting (4) into (3), we have

P ðfdaðIÞg16a6pjxÞ ¼
Y

16a6p

cað1� baÞ
ð1� caÞba

� �dxaa ðIÞ

ca ð5Þ

and in the log form

logðP ðfdaðIÞg16a6pjxÞÞ ¼ cþ
X
16a6p

dxa
a ðIÞ log cað1� baÞ

ð1� caÞba

� �
; ð6Þ

where c is a value that does not depend on x.
An intuitive interpretation of Eq. (6) is that a bonus value of logðcað1�baÞ

ð1�caÞba
Þ is

awarded if part a is detected. For the method to bias towards detected parts, this va-
lue should be greater than zero, which is equivalent to ca > ba. Informally, the detec-
tion rate should be greater than the probability that a background location is
detected as a part.

In short, Eq. (6) is our approximation of the image likelihood given an object.
When used in the objective function to evaluate different values of x, the constant
c can be ignored.

3.2. The prior

This section presents a model for the object configuration. First, we present a
translation invariant model by moving the object location to a new coordinate cen-
tered at an object part. The chosen object part is called the mapping point. We then
address the problem when this mapping point is not detected. Finally, we present our
solution to the problem of missed detection of other non-mapping points in the
configuration.

3.2.1. Translation invariance

Consider p ordered, labeled points ðX i; Y iÞ;X i; Y i 2 R; i ¼ 1; . . . ; p. A 2p-vector Z
can be constructed

Z ¼ ðX 1; . . . ;Xp; Y 1; . . . ; Y pÞ0:
A new vector Z * can be obtained from Z by mapping (X1,Y1) to the origin

Z� ¼ ðX 2 � X 1; . . . ;Xp � X 1; Y 2 � Y 1; . . . ; Y p � Y 1Þ0: ð7Þ
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We assume that the configuration after translation normalization Z* is jointly
Gaussian, denoted by Z� � N 2p�2ðl�;RÞ. We can approximate the density distribu-
tion of Z by Z*. Effectively, we have a translation invariant configuration space. The
density of Z* is given by

P ðZ�Þ ¼ ð2pÞ�
1
2ð2p�2ÞjRj�

1
2 exp � 1

2
ðZ� � l�Þ0R�1ðZ� � l�Þ

� �
ð8Þ

and in the log form

logðPðZ�ÞÞ ¼ k þ � 1

2
ðZ� � l�Þ0R�1ðZ� � l�Þ

� �
; ð9Þ

where k is a value that does not depend on x.
First, we review two properties of a multivariate Gaussian distribution that will be

needed.

Lemma 1. Let t be an ‘-vector and t � N ‘ðh;RÞ. Then for any r · ‘ matrix C,
Ct � N rðCh;CRC0Þ.

Consult [28] for the proof.

Lemma 2. Let t ¼ ðt01; t02Þ
0 � N ‘ðh;RÞ, that is vector t is decomposed into t1 and t2.

Let t1 and t2 be r- and (‘ � r)-vectors, respectively. Suppose the corresponding

partition of h and R are, respectively, given by

h ¼
h1

h2

� �
and R ¼

R11 R12

R0
12 R22

� �
;

where h1 is an r-vector and R11 is an r · r matrix. Then the conditional distribution

P (t1|t2) is

N rðh1 þ R12R
�1
22 ðt2 � h2Þ;R1�2Þ;

where

R1�2 ¼ R11 � R12R
�1
22 R

0
12

Again, consult [28] for the proof.
So far we have considered the case where all parts are detected. When some parts

are missed, we still need to approximate the density. A special case is when the part
used as mapping point is missed. First, we show that P (Z *) can be computed when a
different point is used as mapping point. Then we describe a procedure for estimating
P (Z *) when missing values occur.

3.2.2. Mapping point invariance

Consider a situation when point (Xi,Yi), i 6¼ 1, is mapped to the origin instead of
(X1,Y1). This is needed in case where the first part is not detected. In that case, a new
(2p � 2)-vector can be constructed

Z�
i ¼ ðX 1 � X i; . . . ; Y 1 � Y i; . . . Þ0: ð10Þ
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Vector Z�
i can be obtained from Z * via a linear transformation, that is Z�

i ¼ LiZ
�,

where the transformation matrix Li is defined as follows. The entries in the column
(i � 1) of Li are (�1)�s. In every other column j, there is only one value of 1 at row
(j + 1) for j < (i � 1), and at row j for j > (i � 1). All other entries are 0. An example
of a transformation matrix of size 8 is given below

Lð8Þ
4 ¼

0 0 �1 0 0 0 0 0

1 0 �1 0 0 0 0 0

0 1 �1 0 0 0 0 0

0 0 �1 1 0 0 0 0

0 0 �1 0 1 0 0 0

0 0 �1 0 0 1 0 0

0 0 �1 0 0 0 1 0

0 0 �1 0 0 0 0 1

2
66666666666664

3
77777777777775

Therefore, by Lemma 1, Z�
i � N 2p�2ðLil

�; LiRL0
iÞ. Moreover, P (Z*) is proportional

to P ðZ�
i Þ with a factor equal the absolute value of det (Li) which is 1 (the sub-matrix

obtained by the elimination of the first row and column (i � 1) is an identity matrix).
Thus, PðZ�Þ ¼ PðZ�

i Þ.

3.2.3. Approximation under missing parts
When a set of parts is left undetected, we assume that the missing parts are located

at their best locations for the sake of the global configuration. Note that given a fixed
state of detected and non-detected parts, the likelihood term of Eq. (2) does not
change. Therefore, we can maximize P (Z *).

When the first part is detected, an obvious choice for the mapping point is
(X1,Y1). Otherwise, because our computation does not depend on the choice
of the mapping point, we can map any detected point to the origin. For gener-
ality, let (Xo,Yo) be the mapping point. This results in a vector Z�

o of (2p � 2)
dimensions. This is a random vector distributed according to a multivariate
Gaussian distribution Z�

o � N 2p�2ðLol
�; LoRL0

oÞ, where Lo is given in Section
3.2.2.

We can decompose Z�
o into two parts t1 and t2 as in Lemma 2, where t2 denotes

the observed components and t1 denotes the missing parts. Further, we have
P ðZ�

oÞ ¼ Pðt2ÞP ðt1jt2Þ. Maximizing P ðZ�
oÞ is therefore equivalent to maximizing

P (t1|t2). According to Lemma 2, P(t1|t2) is also a multivariate Gaussian distribution;
therefore P (t1|t2) is maximal when t1 equals the mean of the distribution, which is
specified in Lemma 2. Given the value of t1, P ðZ�

oÞ can be computed easily, which
is also the value of P (Z *).

3.3. Parameter estimation

The final form of the objective function f (x) is obtained by substituting Eqs. (6)
and (9) into Eq. (2), ignoring the constant values
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f ðxÞ ¼
X
16a6p

dxa
a ðIÞ log cað1� baÞ

ð1� caÞba

� �
þ � 1

2
ðZ� � l�Þ0R�1ðZ� � l�Þ

� �
; ð11Þ

where Z * is obtained from x as in Eq. (7). Learning the object model involves the
estimation of the parameters {ca,la|1 6 a 6 p}, l*, and R.

When missing part occurs, we optimize f (x) as specified in 3.2.3. Rather than mar-
ginalizing over the missing part positions, we consider them being at their optimal
locations. This objective function reflects a tradeoff between detection and locations
of parts. To illustrate the point, consider a triangular object ABC with two parts A
and B detected in Fig. 1. The ideal location of C is indicated in the figure. The objec-
tive function favors the detected part C closest to this ideal location. However, if this
closest location is still two far (depending on detector performance of this part), it is
better to declare a miss because the penalty for geometrical distortion outweighs the
bonus for detected part.

One approach to parameter estimation is to label the training data manually for
object parts. From the labeled points, we extract image patches to serve as examples
for object parts. In addition, we extract randomly patches from the background to
serve as non-part examples.

The value of ca and ba can be estimated by applying the detector da on the training
set, then computing the detection rate and false alarm rate for part a. Alternatively,
we can define a certain class of detectors, and subsequently train detector da using the
training examples for part a. In this case, the values of ca and ba can be estimated in
various ways depending on the number of training examples available. One can em-
ploys the hold-out method by splitting the dataset further into training set and test
set. Another method is n-fold cross validation where the dataset is divided into n

approximately equal partitions. The training is carried out n times; each time
Fig. 1. An example of a triangular object where two parts A and B are detected and part C is uncertain.
The objective function favors detected part C closest to the ideal location, but only within certain extent.
For a specific covariance, the outside ellipse is the maximum extent for a detector with detection rate (c) of
0.9 and false alarm (b) of 0.01 (Cclosest is selected). The inside ellipse denotes the extent of a detector with
detection rate (c) of 0.5 and false alarms (b) of 0.1 (missing part is declared).
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n � 1 different partitions are used for training the one partition is used for testing.
The final estimation is the average of the estimation of the n runs.

The parameters for the Gaussian distribution l* and R are estimated from the
locations of the labeled points. In case there are missing points in the training exam-
ples, one can make use of the expectation maximization algorithm [29,30].
4. Searching for the optimal solution

Given Eq. (11) for the objective function, the next topic is how to find the optimal
solution efficiently. The geometric part of this objective function has no special struc-
ture. Because we impose no constraint on the covariance matrix and its inverse, this
term cannot be decomposed into chain-like sum of terms. This makes the optimiza-
tion of the objective function non-trivial. However, by exploiting two properties of
the Gaussian distribution (Lemmas 1 and 2), we propose an efficient optimization
method for this objective function with an A* search. We first review briefly the
A* search algorithm [21]. We then formulate the problem as a graph search problem,
and subsequently establish the necessary heuristic to use the A* search algorithm to
find the optimal solution.

The A* search is an algorithm to find an optimal path from a start vertex A to a
destination vertex B in a graph. We consider the maximum score problem. At each
vertex C, the algorithm estimates the score f (C) of the path from A to B going
through C. The score f (C) is the sum of the score of the real path from A to C

and an estimated score going from C to B (see Fig. 2). The algorithm stores all ex-
plored sub-paths in a priority queue, and iteratively expands the sub-path with the
highest estimated score f (C). The first path reaching B is the solution of the algo-
rithm. It is proved that if the estimated score (heuristic) is always greater than the
true score, the algorithm will lead to an optimal solution. The heuristic in that case
is called an admissible heuristic. The problem is to devise a heuristic for a particular
problem.

First we formulate the optimization problem as a graph search problem. For each
input image, we construct a directed weighted graph of ð2þ p þ

P
16a6pMaÞ nodes as

illustrated in Fig. 3, where Ma denotes the number of occurrences of part a. The con-
struction of the graph is as follows. There is one starting vertex and destination ver-
tex denoted by A and B, respectively. For each object part a, there is one vertex wai

for each detected location i, 1 6 i 6 Ma. In addition, there is one vertex wa0 denoting
the missing value. Every path from A to B specifies an object hypothesis and is
Fig. 2. At each vertex C, an estimate f (C) of the score going from A to B through C guides the exploration
of the A* search algorithm.
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associated with a score measure. This measure is computed by the objective function
(Eq. 11). The problem is to find a path from A to B with the highest score.

There are a total of �16a6p (Ma + 1) paths from A to B. This number is typically
very large. For example, in a test image in the experiment on real data, the number of
nodes in the constructed graph is 106 with 3483648 possible hypotheses. Hence, a
brutal force search approach is not feasible for a large number of parts in a cluttered
scene.

Fortunately, we can derive an estimate of the total score at each vertex along a
path. This estimation can be used as a heuristic in an A* search for the optimal
solution.

The derivation of the estimation is informally as follows. Suppose we are at vertex
wak, 0 6 k 6Ma, after traveling path qA!wak

. The vertices in qA!wak
, except A, deter-

mine the ‘‘best’’ possible configuration for the remaining vertices as in 3.2.3. Further,
imagine that at every ‘‘best’’ location in the unexplored path, there is a correspond-
ing part. It is clear that the score f * of this ideal path is an upper bound for any real
path from A to B with the sub-path qA!wak

. Thus, this heuristic is admissible.

Definition 1. Consider a path from A to wak. Construct a vector Zh after translation
normalization consisting of two parts t1 and t2, where t1 denotes the missing parts
and the unexplored parts, and t2 denotes the detected parts. The value of t1 is given
as in Section 3.2.3. The heuristic f *(wak) to estimate the score to complete the path
from A to B is

f �ðwakÞ ¼
X
16i6a

dxi
i ðIÞ log

cið1� biÞ
ð1� ciÞbi

� �
þ
X
a<j6p

log
cjð1� bjÞ
ð1� cjÞbj

 !

þ � 1

2
ðZh � l�Þ0R�1ðZh � l�Þ

� �
: ð12Þ
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Lemma 3. f * (wak) is admissible.

Proof. Consider any path completing the travel to B from wak. Let Z
r denotes the

vector after translation normalization. The real score is

f rðwakÞ ¼
X
1<i6p

dxi
i ðIÞ log

cið1� biÞ
ð1� ciÞbi

� �
þ � 1

2
ðZr � l�Þ0R�1ðZr � l�Þ

� �

¼
X
16i6a

dxi
i ðIÞ log

cið1� biÞ
ð1� ciÞbi

� �
þ
X
a<j6p

dxj
j ðIÞ log

cjð1� bjÞ
ð1� cjÞbj

 !

þ � 1

2
ðZr � l�Þ0R�1ðZr � l�Þ

� �
: ð13Þ

We have that the first sum of the true score is identical to that of the heuristic. As for
the second sum, recall that dxi

i ðIÞ is a binary value, hence

X
a<i6p

log
cið1� biÞ
ð1� ciÞbi

� �
P
X
a<i6p

dxi
i ðIÞ log

cið1� biÞ
ð1� ciÞbi

� �

As for the final term, Zr can be decomposed into two component tr1 and t2 where t2 is
the detected components as in Definition 1. This is possible because the path from A

to wak is fixed. As specified in Section 3.2.3, the value of t1 in Definition 1 is optimal
for the configuration given the observed value t2. Hence, the geometrical part of the
heuristic is not less than that of the true score.

Therefore, the heuristic f *(wak) always overestimates the true score, and hence it is
admissible. h

The A* search will explore the vertex with highest f * value. This strategy guaran-
tees that the first path exploring B is an optimal path [21].
5. Experiments

5.1. On synthetic data

The purpose of this experiment is to show the working of the objective function as
well as the efficiency of the search procedure.

The performance of the A* search is often judged by the number of sub-paths that
are in the search queue when the solution is reached. A small value for this number
indicates that the solution is reached quickly [21]. This value and the total number of
possible paths (of a brutal force search) will be used to evaluate the algorithm.

First, we create 10,000 samples of human figures. Each object consists of 11 parts.
The creation of objects is as follows. Basically, each object forms a tree, as shown in
Fig. 4. We fix the root of the tree, and the subsequent nodes are generated according
to pre-defined Gaussian distributions conditional on the previous node. Fig. 4 shows
fifteen examples of these figures.



Fig. 4. Fifteen examples of a human figure; each is an object consisting of 11 parts.
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Each object is then placed on an image of size 300 · 300 at a random position. For
each pair of image and object, we generate two types of noise as discussed in Section
3.1. For each part, the number of false alarms is drawn from a Poisson distribution
with a pre-defined mean.

The search method in Section 4 is applied to find an object in each image.
An example of the part detected image is given in Fig. 5A. The corresponding

search result is shown in Fig. 5B. The method is able to locate objects in case of
Fig. 5. An example where the object is correctly located in case of two missing parts denoted by asterisks
(*). (A) Part detection results. Parts are denoted by letters from a to k. The total number of possible paths
is close to 1014. (B) Search result. The total number of sub-paths in the queue when the optimal solution is
reached is 2437 only.
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missing parts and with the presence of clutter. When missing parts occur, the method
also approximates their locations.

The number of sub-paths that are in the search queue when the solution is reached
is very small in comparison with the total number of paths. This shows an excellent
performance of the search algorithm.

5.2. On real images

We use the Caltech face dataset [13]. The dataset consists of 450 images, each
containing a human face in a clutter background with various lighting condi-
tions. Upon examination of the dataset, we remove nine images (from image
328 up to 336) due to the small scale and three hand-draw images (image 400,
402, and 403). These images are significantly different from the rest of the data-
set. In total, there are 438 images of 28 people. The faces appear at different
locations in each image with a variety of facial expressions. The original images
are converted into grayscale images and downsampled by half to a resolution of
448 · 296 pixels.

We split the dataset into two partitions. The training set contains 216 images of 14
people. The test set contains 222 images of the remaining 14 people. For each train-
ing image, we manually labeled five object parts: the two eyes, the nose, and the two
corners of the mouth, each by one mouse click. The size of each part is 32 · 32 pixels.
There is no evidence why this decomposition is optimal, but for the purpose of this
paper, the choice is sufficient.

We use a simple form of object part detectors, namely template matching with
normalized cross correlation [31]. Given an input template u, the normalized cross
correlation q between object template ta and u is defined as

qðta; uÞ ¼
P

i taðiÞ ��tað Þ uðiÞ � �uð ÞP
i taðiÞ ��tað Þ2

P
i uðiÞ � �uð Þ2

� �1=2 ; ð14Þ

where i denotes the two-dimensional index vector, ta (i) and u (i) denote the pixel val-
ues of the templates at image location i, and �ta and �u denote the average pixel values
of the two templates. The template ta for each part a is the average of the training
examples aligned by the manually selected centers. Fig. 6 shows the five templates
obtained, as arranged according to the mean of the configuration model. An object
part is detected by applying its detector at all image locations, followed by a non-
max suppression operation on the responses.

A threshold value is needed to determine whether an image patch u is classified as
object part a. In this experiment, we set the false alarm rate for each detector at
approximately 10�2. To estimate the false alarm rate, we sample uniformly 20,000
patches of size 32 · 32 from the training images. The false alarm rate is rather unim-
portant for the purpose of this paper since we want to show that the method works
for various detectors and various uncertainties of the part detection. (We note that
we expect a correlation in the performance of the two eye detectors, distorting the
independence assumption.)



Fig. 6. Templates of the five selected parts of a human face. The templates are arranged according to the
average configuration.

T.V. Pham, A.W.M. Smeulders / Computer Vision and Image Understanding 99 (2005) 241–258 255
Fig. 7 shows the detection result of four images in the test set. The faces are cor-
rectly localized in a cluttered scene and there is some missed detection. Overall, the
method obtains a correct localization rate of 92% on the training set and 91% on the
test set. Fig. 8 shows two examples where the faces are not localized correctly. In
general, mistake happens in cases where the detection of many parts fails due to
Fig. 7. Example of the detection results. The search algorithm is able to locate the object in a cluttered
scene. It also works in case missed detection occurs. The asterisks (*) indicate the likely location of the
missed parts. The letters from a to e denote object parts.

Fig. 8. Example of incorrect object localization. In both cases the part detectors fail to find a reasonable
number of correct parts. In the image on the left only the left eye (denoted by letter b) is located correctly.
In the image on the right, only the nose (denoted by letter c) is located correctly.
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non-standard lighting conditions. Again, this is not the purpose of this paper. This
paper aims to lay down a method for spatially combining classifiers.

The recognition result depends on the composition of object parts. In our exper-
iment (data not shown), we are able to raise the correct localization rate from 91 to
96.5% on the test set using a more advanced part-labeling scheme. Thus, we consider
automatic part learning is an important track of research.

It is difficult to compare this result with the result of Burl and Perona [2] because
they use a different dataset. They obtain 94% correct localization on a dataset of 130
images of one person. However, on the training set with a variety of individuals, the
result is only 63%. Note that our test set consists of 14 individuals and is different
from the training set.

On average, the search space consists of 556848 hypotheses, but the search reaches
the optimal solution when there are about 360 sub-paths in the queue only. This
translates into approximately half of a second on a 1 GHz CPU with a simple Mat-
lab implementation. The main computational cost is the detection of the five object
parts, which take a few seconds.
6. Discussion and conclusion

In this paper we consider the recognition of an object once its parts have been de-
tected. The problem is how to encode the global configuration of an object and the
presence of its parts in a cluttered scene into an objective function in order to eval-
uate object hypotheses. In addition, an efficient search procedure is required for find-
ing the best hypothesis according to the objective function. This is because a
potentially large search space is anticipated.

We propose an objective function in the Bayesian framework. This criterion is
capable of encoding the global configuration, as well as information of the cluttered
scene using the performance statistics of the part detectors. An important character-
istic of the proposed objective function is that it allows a fast search algorithm,
namely the A* search. By deriving an upper bound on the final value of the objective
function, we effectively achieve an admissible heuristic for the A* search, which guar-
antees an optimal solution.

We performed experiments on both synthetic and real data. The experimental re-
sults show an excellent performance of the proposed heuristic for the search prob-
lem. The high recognition rate achieved also indicates that the objective function
is suitable model for the problem of recognition by parts.

Our recognition system is placed in a unified probabilistic framework. The prob-
abilistic model shows an interesting link between the recognition of objects and
performance of part detectors, detection algorithms and the cluttered scene. The
future research will focus on the recognition performance with respect to the per-
formance of the part detectors. This includes investigation into the independence
assumption among part detectors, the use of likelihood values returned by detec-
tors when available, and the combination of part detection and the statistics of
natural images.
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For a robust recognition system, the problems of self-occlusion and natural occlu-
sion need to be addressed, together with the study of various scene accidental con-
ditions. We also leave that for future investigation.

In conclusion, we propose a probabilistic framework for the object recognition
problem. The two important components of this framework are the objective func-
tion and the search method. The objective function is derived in a Bayesian ap-
proach, handling of the uncertainty of the part detection. It is able to encode the
object global configuration as well as the presence of clutter. In addition, a heuristic
is devised for the A* search, which achieves an optimal solution for recognition.
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