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Abstract

In computer vision, measurement of image properties such as color or texture is essential. In this paper, we propose a

solid framework for the local measurement of texture in color images. We give a physical basis for the integration of the

well-known Gabor filters with the measurement of color. Our method implies that the color–texture is measured in the

wavelength-Fourier domain. The measurement filter in this domain boils down to a 3D Gaussian, representing a

Gabor–Gaussian in the spatial-color domain. In addition, the extended measurements invariant to shadow or shading can

be derived directly from the proposed method. We apply a simple segmentation algorithm to illustrate the performance of

our proposed color–texture measurement. The derived color–texture filter is demonstrated to be accurate in capturing

texture statistics. In addition, the method is compatible with the measurement of gray-value texture.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In image processing, the light as it bounces off
the scene is the result of many different causes. In
image retrieval and in many other tasks of image
processing, we are interested in the light response
of only one of them: the light-characteristics of the
object embedded in the scene. In this paper, we
summarize the causes for the purpose of separat-
e front matter r 2004 Elsevier B.V. All rights reserve
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ing the conditions intrinsic to the object’s appear-
ance from the accidental scene.
To handle the problem, one could model the

influence of the scene on the appearance of the
object, or one could try to capture the intrinsic
properties of the object in invariant features. At
any rate, modelling scene-specific circumstances
has to be bootstrapped by the second approach of
invariant characteristics. The invariant approach
has the advantage of being less complex at
the expense of throwing away essential informa-
tion. For a complete analysis, neither of the
two approaches can be missed. One or another
basic invariant observations will bootstrap a
model which may invoke more detailed invariant
d.

www.elsevier.com/locate/sigpro


ARTICLE IN PRESS

M.A. Hoang et al. / Signal Processing 85 (2005) 265–275266
descriptions. In turn, it will bootstrap a model of
the scene and so on. In view of this dichotomy, we
aim to advance object retrieval in broad domains
from tight invariant descriptions.
The aim of invariant descriptions is to identify

objects at the loss of the smallest amounts of the
information content. If two objects or two
appearances of the same object ti are equivalent
under a group of transformations G they are said
to belong to the same equivalence class

t1�
G

t2()9g 2 G : t2 ¼ g � t1: (1)

A property f of t is invariant under G if and only if
f t remains the same regardless of the unwanted
condition expressed by G,

t1�
G

t2¼)f t1
¼ f t2

: (2)

In general, a feature with a very wide class of
invariance looses the power to discriminate among
essential differences. The size of the class of images
considered equivalent grows with the dimension-
ality of G. In the end, the invariance may be so
wide that little discrimination among objects is
retained. The aim is to select the tightest set of
invariants suited for the expected set of non-
constant conditions. Hence, in the context of
image retrieval, the invariant conditions are to be
specified (indirectly) by the user as they reflect the
intentions of the user. The oldest work on
invariance in computer vision has been done in
object recognition. Invariant description in image
retrieval is relatively new, but quickly gaining
ground. This presentation feeds on the much
larger [7,21].
In this paper, we consider the invariant assess-

ment of color and texture in combination. Much
work on texture measurement has been done, of
which we consider as most important the work on
Gabor filters [2] and Gaussian derivative filters
[5,17]. These measurements are often referred to as
textons [14]. Measurement of color and texture in
combination, rather than color or texture alone,
would provide better discriminating power.
The combination of color and texture has
attracted attention in recent literature. In
Mirmehdi and Petrou [19], color–textured images
are roughly segmented based on a spatial color
model [25]. The assumption underlying their
approach implies that texture can be characterized
by its color histogram over a region. The
drawback here is that the spatial structure of the
texture is not considered since only first order
statistics, the histogram, is taken into account.
Thai and Healey [22] propose measuring
color–texture by embedding the Gabor filters into
an opponent color representation. Hall et al. [10]
apply Gaussian derivative filters to an opponent
color space to describe colored texture. Both
methods provide a useful structural representation
for color–texture. However, the combination of
Gabor filtering and opponent color space is put
forward as an empirical result. The methods are
not well-defined from a physical point of view.
We aim at a well-founded integrated color–texture
method for the local measurement of color–
texture. To achieve this, we adopt the scale-space
framework as the theory of local measurement.
We give a solid physical basis for the integration of
well-known texture measurements and the mea-
surement of color. We demonstrate the perfor-
mance of the proposed measurement in
segmentation of both synthetic and natural
images.
The outline of this paper is as follows. Section 2

presents our approach to the measurement of
color–texture. Section 3 gives further extension of
the measurements, which are invariant to cast
shadows. In Section 4, we briefly describe a
practical method for estimating color conforming
to our measurement scheme. In this section, we
put forward a simple scheme for color–texture
segmentation to illustrate the method. We con-
clude in Section 5.
2. Measuring of color–texture

A color image is observed by integrating over
some spatial extent and over a spectral bandwidth.
Before observation, a color image may be regarded
as a three-dimensional energy density function
Eðx; y; lÞ; where ðx; yÞ denotes the spatial coordi-
nate and l denotes the wavelength. Observation of
the energy density Eðx; y; lÞ boils down to correla-
tion of the incoming signal with a measurement
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probe pðx; y; lÞ;

Q̂ðx; y; lÞ ¼
Z Z Z

Eðx; y; lÞpðx; y; lÞdxdydl:

(3)

For a linear spatially shift invariant imaging
system, correlation boils down to convolution

Q̂ðx; y; lÞ ¼
Z

Eðx; y; lÞ n pðx; y; lÞdl: (4)

The yet unknown measurement function pðx; y; lÞ
estimates quantities of the energy density
Eðx; y; lÞ: In case of texture, we are interested in
the local spatial frequency characteristics of
Eðx; y; lÞ: These properties are better investigated
in the domain of spatial frequency. Thus, it is
appropriate to represent the joint color–texture
properties in a combined wavelength-Fourier do-
main Eðu; v; lÞ; where l remains the wavelength of
the light energy, and ðu; vÞ denotes the spatial
frequency,

Q̂ðu; v; lÞ ¼
Z

Eðu; v; lÞPðu; v; lÞdl: (5)

Scale space theory suggests that the probe should
have a Gaussian shape in order to prevent the
probe from adding extra details to the function
when observed at a coarser scale [16]. Therefore,
the Gaussian function is chosen to probe the signal
Eðu; v; lÞ along its three axes. The measurement of
the signal Eðu; v; lÞ at a given spatial frequency
ðu0; v0Þ and wavelength l0 is obtained by a 3D
Gaussian probe centered at ðu0; v0; l0Þ at a
frequency scale sf and wavelength scale sl

M̂ðu; v; lÞ ¼
Z

Eðu; v; lÞGðu 
 u0; v 
 v0;

l
 l0; sf ;slÞdl: ð6Þ

Note that the Gaussian probe is a separable
function, we can rewrite Eq. (6) as

M̂ðu; v; lÞ ¼
Z

Eðu; v; lÞGðu 
 u0; v 
 v0; sf Þ

� Gðl
 l0; slÞdl: ð7Þ

Frequency selection is achieved by tuning the
parameters u0; v0; and sf ; and color information is
captured by the Gaussian specified by l0 and sl:
In physic based vision, the use of filter functions
for probing the input spectrum has been presented
in many works in literature [1,4,7,8]. In Geuseb-
roek et al. [6], it is shown that color measurements
can be achieved by probing with Gaussian
derivative apertures, combined with the Gaussian
aperture for luminance or intensity measurement.
These derived measurements fit well into the scale-
space framework, in that no extra detail is created.
More importantly, the measurements correspond
well with the opponent color theory for human
vision [11]. Here, the first-order Gaussian deriva-
tive probe compares the blue region at the color
spectrum with the yellow part, whereas the second-
order measurement compares the middle green
part with the outer (magenta) regions. More
formally, we write

ÊlðnÞ ðx; yÞ ¼

Z
Eðx; y; lÞGnðl
 l0; slÞdl; (8)

where ÊlðnÞ ðx; yÞ; n ¼ 0; 1; 2; . . . is the color
measurement of Eðx; y; lÞ obtained by sampling
with a nth order Gaussian derivative. In
practice, it is sufficient to take up to the second-
order derivative since higher derivatives do not
affect color as observed by the human visual
system [6]. We will use Êðx; yÞ; Êlðx; yÞ;
and Êllðx; yÞ for ÊlðnÞ ðx; yÞ with n = 0, 1, 2,
respectively.
We now transform Eq. (7) back to the wave-

length-spatial domain ðx; y; lÞ; taking the Gaussian
derivative probes into account. The multiplication
with the shifted Gaussian Gðu 
 u0; v 
 v0; sf Þ in
Eq. (7) is equivalent to the convolution with a
Gabor filter in the spatial domain [2,12]. There-
fore, the combined color–texture measurement in
the ðx; y; lÞ domain at wavelength l0 is

M̂ðx; y; lÞ ¼ hðx; yÞ n

Z
Eðx; y; lÞGnðl
 l0; slÞdl

(9)

or for short

M̂ðx; y; lÞ ¼ hðx; yÞ n ÊlðnÞ ðx; yÞ; (10)

where

hðx; yÞ ¼
1

2ps2s
e
ðx2þy2Þ=2s2s e2pjðUxþVyÞ (11)
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is the 2D Gabor function at the radial center
frequency F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V 2

p
(cycles/pixel) and the

filter orientation tanðyÞ ¼ V=U ; and j2 ¼ 
1:
Furthermore, the color probes are given by the
Gaussian derivatives

Gnðl
 l0; slÞ ¼
sn
lffiffiffiffiffiffiffiffiffiffi
2psl

p
@n

@ln e
ðl
l0Þ
2=2s2l : (12)

The probe functions in Eq. (9) are illustrated in
Fig. 1.
We have achieved our goal of integrating texture

and color measurement. The color–texture mea-
surement is obtained by sampling the wavelength-
Fourier domain with a three-dimensional Gaus-
sian probe. This leads to the use of Gabor filter on
Fig. 1. The 3D probe functions: (a) the color–texture probe in the w

lightness in the aperture indicates the value of the probe function. (b

ðx; y; lÞ: This is a product of a 2D Gabor in the spatial domain and a
derivatives in the wavelength domain.
the opponent color representation, as empirically
derived by Jain and Healey [13].
3. Shadow and shading invariant

Within a single texture patch, the value of the
Gabor filter response varies proportionally to the
local intensity of the texture. The darker region
has a smaller response value than the value of the
brighter one. Therefore, the shadow effect may
compromise the post processing such as segmenta-
tion or region interpretation. In this section, we
present an approach to correct the shadow and
avelength-Fourier domain having a 3D Gaussian aperture. The

) The probe for color–texture in the wavelength-spatial domain

Gaussian in the wavelength domain. (c) and (d) the Gaussian
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shading effect with the assumption that the camera
is not saturated.
3.1. Colored illumination and matte dull surfaces

Consider an image before observation Eðx; y; lÞ:
Under the Lambertian reflection model, it may be
decomposed into a component eðx; yÞ denoting
variations of the incoming illumination spectrum,
and a component R1ðx; y; lÞ representing the
material reflectance at each location, resulting in
Eðx; y; lÞ ¼ eðx; yÞR1ðx; y; lÞ: Here, R1ðx; y; lÞ
bears the color–texture information of the object.
The goal is to remove the undesired varying
illumination spectrum eðx; yÞ from the observed
image Êðx; yÞ:
To factor out the intensity changes across the

extent of the image plane, we take the approach
similar to homomorphic filtering method [23], in
which we first apply the log function to transform
the signal from multiplicative form into additive
form. Applying the high-pass filtering on the
additive form of the signal assures that the low
frequency part is factored out, since in this case the
form remains additive in the frequency domain.
Transforming the multiplicative image formation
into the log domain,

log Eðx; y; lÞ ¼ log eðx; y; lÞ þ log R1ðx; y; lÞ
(13)

yields an addition of a smoothly varying illumina-
tion spectrum component and a high frequency
surface texture component. Since most of the
incoming spectra in the real world are smoothly
varying functions of the wavelength l; or in
other words R1ðx; y; lÞ is smoothly varying along
the l-axis, sampling R1ðx; y; lÞ with a Gaussian
aperture centered at l0 provides well approximate
measurement of R1ðx; y; l0Þ: We can therefore
write

log Êðx; yÞ � log eðx; y; l0Þ þ logR1ðx; y; l0Þ:
(14)

High-pass filtering of log Êðx; yÞ suppresses the
influence of eðx; y; l0Þ: Hence, the application of
the Gabor filters on the log-transformed image
yields a shadow and shading invariant result,

Sðx; yÞ ¼ Gaborflog Êðx; yÞg

� Gaborflog R1ðx; y; l0Þg: ð15Þ

The color channels El and Ell are obtained by
differentiating E with respect to l once and twice.
In order to incorporate the color information
while avoiding eðx; y; lÞ; we differentiate Eq. (13)
with respect to l once and twice, and apply the
Gabor filtering, which results in,

Slðx; yÞ ¼ Gabor
Êl

Ê

( )
; (16)

Sllðx; yÞ ¼ Gabor
ÊÊll 
 Ê

2

l

Ê
2

( )
: (17)

The measurements Êl=Ê and ðÊÊll 
 Ê
2

lÞ=Ê
2

conform to the suggested invariant measurements
in Geusebroek et al. [7]. From Eqs. (15)–(17) we
achieved our goal of measuring color–texture with
regard to shadow and shading invariant.

3.2. White but uneven illumination and matte dull

surfaces

A more special case can be considered in which
the pre-observed color–texture image Eðx; y; lÞ is
the multiplication of the incoming white illumina-
tion iðx; yÞ and the material reflectance R1ðx; y; lÞ

Eðx; y; lÞ ¼ iðx; yÞR1ðx; y; lÞ: (18)

The log domain of Eq. (18) has the form

log Eðx; y; lÞ ¼ log iðx; yÞ þ logR1ðx; y; lÞ: (19)

Again, under the assumption that iðx; yÞR1ðx; y; lÞ
is smoothly varying along l-axis, we derive the
following approximation:

log Êðx; yÞ � log iðx; yÞ þ log R1ðx; y; l0Þ: (20)

As iðx; yÞ is slowly varying over the scene, shadow
and shading invariant may be obtained by apply-
ing Gabor filtering,

Sðx; yÞ ¼ Gaborflog Êðx; yÞg

� Gaborflog R1ðx; y; l0Þg: ð21Þ

With similar reasoning, and note that iðx; yÞ is
constant over l-axis, we derive the invariant result
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for color channels,

Slðx; yÞ ¼ Gaborflog Êlðx; yÞg

� GaborflogR1lðx; y; l0Þg; ð22Þ

Sllðx; yÞ ¼ Gaborflog Êllðx; yÞg

� GaborflogR1llðx; y; l0Þg: ð23Þ

Therefore, in the special case of white illumination,
we obtained the measurements for shadow and
shading invariant from Eqs. (21)–(23).
Principle Components Analysis

K means clustering and region merging

Reduced Dimensionality
Feature Images

Segmented Image

Fig. 2. The color–texture segmentation scheme.
4. Experiments

Up to this point, we have established a unified
framework for color–texture measurement. Since
the probe functions (Fig. 1) are decomposable,
they can be represented as a product of three one-
variable functions of l; x and y. The measurement
is carried out in two steps: color measurement with
the Gaussian color model and then texture
measurement with Gabor filters. We employ a
simple segmentation algorithm with a scheme
similar to Jain and Farrokhnia [12] to illustrate
the performance of our proposed color–texture
measurement. The overall scheme is depicted in
Fig. 2.

4.1. Implementation of color–texture measurement

A camera is developed to capture the same color
space as humans, hence we assume the RGB-
sensitivities to span a similar spectral bandwidth
and to have a similar central wavelength. When
camera response is linearized, a RGB-camera
approximates the CIE 1964 XYZ basis for
colorimetry by the linear transform [3]. Note that
we try to achieve derivative filters in the spectral
domain by transforming the spectral responses as
given by the RGB-filters. The transformed filters
may be imperfect, but are likely to offer accurate
estimates of differential measurements. When the
spectral responses of the RGB-filters are known, a
better transform can be obtained.
Gaussian color measurements are obtained by

tuning the parameters l0 and sl: Using the
expressions describing similarity between different
subspaces [9], we compare the subspace of the
Gaussian color model with the human visual
system by using the XYZ color matching function.
Hence, parameters for the Gaussian color model
may be optimized to capture a similar spectral
subspace as spanned by human vision. Let the
Gaussian color matching functions be given by
Gðl
 l0; slÞ: We have two degrees of freedom in
positioning the subspace of the Gaussian color
model: the mean l0 and scale sl of the Gaussian.
We wish to find the optimal subspace that
minimizes the largest principal angle between the
subspaces. An approximate solution is obtained
for l0 ¼ 520 nm and sl ¼ 55 nm [6]. For a RGB-
camera, we can find the best linear transform from
RGB to the Gaussian color model as shown in
Geusebroek et al. [6]. The desired implementation
of the Gaussian color model in RGB terms is
given by

Ê

Êl

Êll

2
64

3
75 ¼

0:06 0:63 0:31

0:19 0:18 
0:37

0:22 
0:44 0:06

0
B@

1
CA

R

G

B

2
64

3
75:

Color–texture measurements are obtained by
applying a set of Gabor filters on each channel
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Ê; Êl and Êll (Eq. (9)). Each measurement results
in two terms: the magnitude response rðx; yÞ
and the phase response pðx; yÞ: The magnitude
is computed from the real and imaginary part of
Ê by

rðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê
2

re þ Ê
2

im

q
: (24)

The magnitude response emphasizes texture re-
gions, which are in tune with the chosen frequen-
cies of the filter. While the phase response
describes the texture transitions. In this paper,
we are only interested in the magnitude responses
and use them as the output of measurement.
Methods for designing an efficient set of Gabor
filters can be found in Jain and Farrokhnia [12],
Weldon et al. [24], Manjunath and Ma [18]. In our
experiment, we use 20 Gabor filters built from five
scales ss ¼ 4; 3.5, 2.95, 2.35, 1.75, corresponding
to five center frequencies F ¼ 0:05; 0.08, 0.14, 0.22,
0.33 (cycles/pixel), and four orientations y ¼

0;�p=4; p=2: These values of scale and center
frequency are calculated based on the method
proposed by Manjunath and Ma [18]. We there-
fore obtain 60 filtered response images from which
we consider the magnitude, rnðx; yÞ; n ¼ 1; . . . ; 60:
Each image pixel ðxi; yjÞ is now represented by a
60-dimensional feature vector whose nth compo-
nent is denoted by rnðxi; yjÞ: Pixels in one color–
texture homogeneous region will form a cluster in
the feature space, which is compact and may be
discriminated from clusters corresponding to other
regions.

4.2. Segmentation

The segmentation algorithm is based on cluster-
ing pixels using their associated feature vectors.
For preprocessing, every filtered magnitude image
rnðx; yÞ is smoothed by a Gaussian kernel to
suppress the variation of the feature vectors within
the same color–texture region. Since the feature
vectors are highly correlated, we apply the
principal components analysis (PCA) [15] to
reduce the feature space dimensionality down to
four. The 4-dimensional feature vectors are used as
the input for clustering. The clustering algorithm
has two steps. In the first step, the k-means
algorithm with large number of k is applied on
the feature space to derive the initial clusters. In
the second step, a region merging method is used
to combine adjacent clusters which are statistically
similar (Fig. 2).
The region merging is done in an agglomerative

manner where in each iteration the two most
similar regions are merged. We employ a region
similarity measure analogous to the one proposed
in Nguyen et al. [20]. The similarity between
regions Ri and Rj is given by

Si;j ¼ ðmi 
 mjÞ
>
½Si þ Sj�


1ðmi 
 mjÞ; (25)

where mi; mj are the mean vectors and Si; Sj are the
covariance matrices computed from feature
vectors of regions Ri and Rj ; respectively. The
formula recalls the Mahalanobis metric with
an extension. Here, Si;j measures the distance
between two sets. If one of the two reduces to a
single point, Si;j becomes the Mahalanobis
distance. The advantage of this measure is that
the uncertainty of the vectors mi and mj as
expressed by their respective covariances Si;j

is taken into account. The two regions Ri and Rj

are merged if the value of Si;j is under a thres-
hold. In our experiment, the similarity threshold t

in the range of [6..9] produces almost the
same result for every test image. Therefore, we
fix the similarity threshold at t ¼ 7:5 for all our
experiments. Finally, a simple post-processing
technique is utilized to remove small-sized isolated
regions.
The segmentation results are illustrated in

Fig. 3. The input image is created by combining
five sub-images of natural and artificial color–
texture. In this image, two patches on top are
chosen to be similar in texture but different in color.
The two patches on the left are chosen to be similar
in color but different in texture. The results in Fig. 3
show that five regions are correctly discriminated
when using the proposed measurement.
Results from the Corel database achieved by

using the method on over 40,000 examples showed
a remarkable good segmentation. Segmentations
of real images using the proposed method are
illustrated in Fig. 4. Furthermore, segmentation
results obtained by using invariant features are
shown in Fig. 5. In general cases, the results using
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Fig. 3. (a) Synthetic color–texture image with five different regions. (b) The segmentation result using only color features. The original

color image is smoothed by a set of Gaussian filters at different scales as in Mirmehdi and Petrou [19]. Here, two regions with identical

color are merged. (c) Segmentation result using only gray-value texture. Note that the regions with identical texture but different color

are merged. (d) The segmentation result using the proposed color–texture features without shadow invariance. The regions are

correctly segmented, but affected by shadow. (e) The segmentation result using the shadow invariant color–texture feature. In this case,

all regions are correctly segmented. (f) Post-processing of the invariant segmentation result to remove small isolated regions.

M.A. Hoang et al. / Signal Processing 85 (2005) 265–275272
invariant features are worse since it has larger
distorted boundary between segmented regions.
The proposed algorithm takes about 8 s to segment
an image from the Corel database on a state-of-
the-art PC (Pentium III, 1GHz CPU).
5. Conclusion

We have proposed a framework for the local
measurement of texture in color images. Color–
texture is analyzed in wavelength-Fourier space.
We measure the spatial frequency by sampling the
incoming image with a shifted Gaussian in the
spatial frequency domain, and measure color by
sampling the signal with Gaussian in wavelength
domain. Therefore, color–texture measurement
implies the sampling with a 3D Gaussian in a
wavelength-Fourier space. This yields the decom-
position of the measurement into a spectral
Gaussian and a spatial Gabor filter. Hence, we
have derived a solid physical basis for the
integration of the Gabor texture measurement
with opponent color measurement.
The proposed filters are the extension of the

existing intensity Gabor filters to the combined
color–texture filtering. Hence, the methods can be
applied to both full color images and monochro-
matic images. We showed that the incorporation
of the physics of light reflection results in shadow
invariant texture segmentation. Therefore, robust-
ness against various illumination conditions and
cast shadows is achieved. When applying invar-
iance for content-based retrieval, the degree of
invariance should be tailored to the recording
circumstances. Clearly, a feature with a very wide
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Fig. 4. Segmentations of real images. (a), (b) Segmentations of bright-field images from Elsevier database. (c), (d), (e), (f), (g), (h)

Segmentations of natural images from Corel database. Note that all important objects are well identified.

M.A. Hoang et al. / Signal Processing 85 (2005) 265–275 273
class of invariants looses the power to discriminate
among essential differences. The aim is to select
the tightest set of invariants. What is needed is a
complete set of image properties with well-
described variant conditions that they are capable
of handling, see Geusebroek et al. [7].
In practice, the results for non-invariants can be

obtained by applying the Gabor filters directly to
RGB values. However, RGB values are strongly
correlated, hence smoothing or filtering would lead
to mixing artifacts. In this paper, the proposed
transformation of RGB to opponent derivative
sensitivities directly links physics–reflectance mod-
el-based approaches to the domain of color
imaging. Furthermore, invariant measures can be
explicitly derived from the model.
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Fig. 5. Segmentations of real images using invariant features. Note that the backgrounds with casting shadows are well segmented.

M.A. Hoang et al. / Signal Processing 85 (2005) 265–275274
Experimental results have shown that our
color–texture measurements provide robust dis-
criminating power. The algorithm has only one
tunable parameter, the merging threshold. The
choice for the value of this threshold was not
critical, and only one value was used for all our
experiments. Good segmentations have been
achieved for the various natural images.
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