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Abstract. We report a six-stimulus basis for stochastic texture perception. Fragmentation of the scene by a chaotic
process causes the spatial scene statistics to conform to a Weibull-distribution. The parameters of the Weibull
distribution characterize the spatial structure of uniform stochastic textures of many different origins completely.
In this paper, we report the perceptual significance of the Weibull parameters. We demonstrate the parameters to
be sensitive to orthogonal variations in the imaging conditions, specifically to the illumination conditions, camera
magnification and resolving power, and the texture orientation. Apparently, the Weibull parameters form a six-
stimulus basis for stochastic texture description. The results indicate that texture perception can be approached like
the experimental science of colorimetry.
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1. Introduction

An object in front of us will fragment the field of view
into regions inside and outside the object. The region
outside the foremost object or detail may be fragmented
again by the presence of another object or another de-
tail behind it, and so on until in any direction the field
of view is bounded. When the scene is sufficiently
fragmented by objects or details, the scene becomes
stable and addition of a new object will not signifi-
cantly change its appearance. Then, the mixture of cast
shadows, edges and reflections result in an integrated
view we call texture. Our definition emphasizes a dif-
ferent aspect of texture than the definition by Julesz
(1981) which had the perception of the regular pat-
terns of textons as its prime target. We restrict to the
spatial stochastic aspect of texture, that is the statisti-
cal organization of the texture elements. The definition
captures both the spatial statistics of the composition
of a scene, and the stochastic structure of a material
surface observed as object texture.

Research has not yet lead to a suitable basis for tex-
ture perception. Julesz (1981) in this respect focused on
a single aspect of texture, the texture element or texton.
He was able to pinpoint one of the aspects of texture.
Nowadays, more research concentrates onto distinct
aspects of texture. Zhu et al. (2000) gives conditions
for a sufficiently rich statistical description of texture.
Dana et al. (1999) concentrates on the bi-directional re-
flectance aspects of three-dimensional textures (Dana
and Nayar, 1999; Cula and Dana, 2001). Liu and Tsin
(2004) concentrate on the spatial layout of regular tex-
tures, as modelled by invariant Frieze patterns. Suen
and Healey (2000) and Pont and Koenderink (2004)
examine the photometric and chromatic dependence of
observed texture on illumination and viewing angle.

We concentrate on the spatial statistics of stochastic
textures. We maintain that stochastic textures can be
observed on a basis similar to the tri-stimulus basis for
color. In the RGB-color representation by the human
sensory system, each of the three elements produces a
value as the outcome of an integration process over part
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of the spatial and wavelength spectrum. Similarly, we
define stochastic texture on an orthogonal basis, which
is the result of integrating over a spectrum of spatial
fragments.

Texture is a stochastic descriptor of the local spa-
tial size distribution as observed. Using an infinitely
precise sensor we would see the details around us at
extremely many scales, yielding a confusingly amount
of information useless to the observer. To escape the
influx of so much information, the spatial resolution of
sensors must be limited to a scale of detail. The largest
reduction in information is at the retina where the out-
side world is integrated over discrete sensory cells of
finite resolution. The finite cell size will impose spa-
tial coherence to the picture. In this reduction, as we
have analyzed in Geusebroek and Smeulders (2003),
the statistical distribution of the spatial size distribution
will generally deviate from the power-law of fractals
(Mandelbrot, 1983). The observation on the retina by a
receptive field with finite extent imposes a distribution
of the Weibull type in the observed texture.

In a Weibull type distribution, f (y) = C exp(−|(y−
µ)/β|γ ), the parameters µ, β, and γ represent the cen-
ter, width, and shape of the distribution, and C be-
ing a normalization constant. The shape parameter, γ ,
ranges from 0 to 2 (Gnedenko and Kolmogorov, 1968).
For γ = 2 the Weibull distribution is equivalent to the
normal distribution, and for γ = 1 a double exponen-
tial. For small values of γ , the distribution is close to
the symmetric power-law, given by f (y) = 1

2δ|y|−δ−1,
the exponent δ indicating the fractal dimension
(Mandelbrot, 1983). The fragmentation of the image,
generated by the edges between the objects in the scene,
set off the spatial statistics of the view on the scene.

The spatial statistics as such are the result of an image
formation process equivalent to the process generating
fragmentation in grained objects (Brown, 1989; Brown
and Wohletz, 1995). The sequential fragmentation pro-
cess is essentially the same process that distributes sur-
face details in homogeneous textures (Geusebroek and
Smeulders, 2002). As the visual field of view is frag-
mented by the opacity of objects and integrated over
the sensory receptive fields, we anticipate to observe a
Weibull distribution for any natural texture. Quantita-
tive evidence for the fragmentation process as generator
for natural image statistics is given in Geusebroek and
Smeulders (2003).

In this paper, we derive a 6-stimulus basis for tex-
ture perception from the statistical process of sequen-
tial fragmentation. We start our analysis by intro-

ducing the Weibull sequential fragmentation process
(Section 2) as derived in Geusebroek and Smeulders
(2002). Main contribution in this paper is the empirical
derivation of the perceptual significance of the Weibull
process (Section 3). We elaborate on the experimen-
tal investigation given in Geusebroek and Smeulders
(2003) on the marginal statistics of texture, and inves-
tigate the Weibull parameters as function of orienta-
tion in Section 4. As a consequence of the analysis
in Sections 3 and 4, we conclude that the spatial
stochastics of a two-dimensional texture is completely
characterized by the Weibull parameters. A second con-
sequence is a minimum dimensionality of nine param-
eters to describe stochastic texture, identical to the ex-
perimental result of Suen and Healey (2000), which is
indicated by the orthogonal Weibull parameters.

2. The Weibull Sequential
Fragmentation Process

As a direct implication of causality, we consider that
small details are occurring more often in an image than
large structures (Koenderink, 1984). Diffusion of nu-
merous small structures will result in fewer large struc-
tures. Inversely, increasing magnification at large struc-
tures will resolve many smaller structures. One may
rephrase the statement in that, when resolving power
increases, large structures will break-up into new struc-
tures, of which some of them are relatively large, but
most of them will be small details. Hence, the histogram
of contrasts for one structure typically shows a power-
law distribution,

f (x ′ → x) =
(

x

β

)γ−1

. (1)

where x ′ → x indicates the resolving of the structure
x ′ into smaller structures of size x . The parameter β is
related to the average structure contrast.

When more structures are added to the scene, the im-
age will be fragmented into various patches, each giv-
ing rise to an edge of varying contrast. The histogram
of the contrasts of the patches is the results of integrat-
ing over the various power-laws caused by every edge,
as derived in Geusebroek and Smeulders (2002),

n(x) = c
∫ ∞

x
n(x ′) f (x ′ → x) dx ′ (2)

where n(x) indicates the number of pixels with re-
sponse magnitude between x and x + dx , contributed
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by all edges with contrast x ′ > x . The integration over
a sufficient number of power-laws yields a Weibull dis-
tribution,

n(x) = 1

β

(
x

β

)γ−1

e− 1
γ

( x
β

)γ
. (3)

The Weibull shape parameter γ is related to the fractal
dimension of the image, D f = γ + 1 (Mandelbrot,
1983; Pentland, 1984). Note that D f is a strictly spatial
property of an image.

Mallat (1989), confirmed by Simoncelli (1999), em-
pirically found the generalized Laplacian,

P(c) = ze−| c
s |p

(4)

to fit to the marginal statistics of wavelet coefficients.
Here, c indicates the wavelet coefficient, and s indi-
cates the variance. The exponent p is related to γ in
Eq. (5). The generalized Laplacian is the integral form
of the Weibull distribution. In integral form, the Weibull
distribution given by

N (> x) =
∫ ∞

x
n(x) dx = e− 1

γ
| x
β
|γ (5)

indicates the relative amount of edges of (positive or
negative) contrast larger than x .

In conclusion, causality implies a Weibull distribu-
tion of structure size. Hence, we have given a physi-
cal explanation for the empirical results as obtained by
Mallat (1989) and Simoncelli (1999). A detailed exper-
imental investigation of the fragmentation process as
observed from natural images is given in Geusebroek
and Smeulders (2003).

3. Perceptual Significance of the Weibull Process

The parameters of the Weibull distribution completely
characterize the spatial layout of stochastically ergodic
textures. Furthermore, the Weibull parameters gener-
ate a complete orthogonal basis for stochastic textures.
The parameters of the Weibull distribution indicate the
contrast in the image (β), the grain size (γ ) relative to
resolving power, and the global shape of the object (µ)
as can be derived from shape from shading (Pentland,
1990). The perceptual meaning of these parameters is
yet to be discussed. We adapt the perceptual proper-

ties as put forward by Tamura et al. (1978), namely
regularity, coarseness or observation scale, contrast,
roughness, and directionality.

Regularity. When the texture is Weibull distributed,
the texture is stochastic of nature. If the Weibull hy-
pothesis is rejected, the spatial distribution can be ei-
ther power-law, or the distribution is generated by reg-
ular texture (Geusebroek and Smeulders, 2003). In
the case of a power-law statistic, the texture consists
of a clear foreground-background separation. In these
cases, “texture” may be considered the wrong term
for the image under consideration, we rather use “ob-
ject” and “background”. Alternatively, when the spatial
statistics is caused by interference between the recep-
tive fields and the spatial detail distribution, the ob-
served distribution is often multi-modal. The effect is
reflected in the maximum likelihood estimation for
the Weibull γ parameter (γ � 2), caused by over
fitting the tails of the distribution. In this case, the
texture exhibits regularity in the spatial distribution,
and more adequate analysis methods can be applied
(Liu and Tsin, 2004).

Coarseness, or the scale of observation of the texture.
We distinguish between magnification and resolving
power. Observing a texture patch at increased magni-
fication results in a coarser picture. In this case, scale-
invariance may be achieved by adapting the receptive
field size to the change in magnification. Hence, mag-
nification is directly related to the scale of observation
σ . Often an increase in magnification is accompanied
by an increase in resolving power, resulting in a picture
containing more (although magnified) of the small de-
tails of the texture than the original scene. Resolving
power affects the distribution of detail size in the ob-
served image. By increasing magnification while main-
taining resolving power, no new details will be added,
and the shape parameter γ will remain constant, see
Fig. 1. By increasing resolving power, new details will
be added. For pure fractal textures, a change in re-
solving power will not affect the spatial statistics. In
general, natural images can be thought of as a “piled”
set of fractals in fractals. Figure 2 depicts an example
of rice taken at various distances. For large distance, a
few grains of rice contribute to the local filter response,
resulting in a value of γ ≈ 1.5. Increasing resolving
power together with magnification by decreasing the
distance between preparation and lens will ultimately
result in the imaging of a single grain of rice. Hence,
the Weibull parameter will slowly converge towards
power-law. For the results shown in Fig. 2, power-law
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Figure 1. Weibull parameters as function of magnification without increasing resolving power (digital zooming). a. shows a rice image, b. the
3× zoomed version. The Weibull parameter estimates are shown in c. From 2.6× zoom, the γ -parameter remains constant. The β-parameter is
decreasing due to reduced contrast in the zoomed field of view.

Figure 2. Weibull parameters as function of real magnification by decreasing distance to the preparation. a. shows the original image, b. the
approximately 3× zoomed version. The variation in the Weibull parameters is shown in c. Note the difference with Fig. 1.

is not yet reached as magnification is not sufficient to
image a single grain of rice.

Contrast indicates the dynamic range of the gray-
levels of the texture. Variations are caused by illumina-
tion intensity, and by surface height variations. Light-
ing variations or global shape variations are reflected
in both the offset parameter µ and width parameter
β of the Weibull distribution. The angle of incidence
of the illumination, combined with approximately
Lambertian reflection by the texture, will cause con-
trast variations indicating the shape of the object, sim-
ilar to shape from shading (Pentland, 1990). The offset
parameters µ capture these variation in first order, indi-
cating a non-uniform illumination plane. Contrast dif-
ferences to detailed surface height variations are mainly
reflected in the width β of the Weibull distribution.
Hence, after correction for a non-uniform illumination
plane, the texture height variations are represented by
β, see Fig. 3.

Roughness is determined by the grain size the tex-
ture constitutes of. With roughness we indicate the
tactile properties of a surface, in our case as can be

derived from the visual characteristics. Before assess-
ing roughness, one has to correct for projective dis-
tortion (indicated by µ). Roughness is indicated by
both the coarseness of the texture, as measured by γ ,
and by the contrast of the texture, as obtained from
β. Where the contrast parameter β is indicative for
the height variations of the texture, the γ parameter
indicates the graininess of the texture. The combined
evaluation of these parameters indicates the roughness
properties of the texture. The entity may be related to
the (three-dimensional) textons of which the texture is
constructed (Julesz, 1981; Leung and Malik, 2001).

Directionality indicates the dominant orientation of
the texture, effectuated by both the stochastic process
placing the texture elements, and by the individual
shapes of the textons. The Weibull basis does not in-
clude texton shape, hence we concentrate on the di-
rectionality caused by placement of the textons, disre-
garding texton elongation. Anisotropy in the grain size
of the texture is reflected in the dominant direction θγ

in the graininess parameter γ . Anisotropy in the tex-
ture shadows or albedo, hence the contrast, is reflected
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Figure 3. Weibull parameters as function of illumination intensity a–c and illumination angle d–f. a. shows the rice image at 18 msec shutter
speed, saturating the white portions of the image. b. shows the rice image at 3 msec shutter speed, saturating the dark portions of the image.
The Weibull parameters as function of shutter speed are illustrated in c. Within the dynamic range of the camera, the β-parameter is clearly
linear with intensity. d. shows the rice image with frontal illumination, whereas e shows oblique illumination. Note the large variation in Weibull
parameters, shown in f.

in the dominant orientation θβ on the width β of the
Weibull distribution. Hence, textures may exhibit two
kinds of anisotropy, one caused by grain size, the other
caused by contrast variations, both orientations being
independent of each other (see Fig. 4). Consequently,
at least two parameters are necessary to describe ori-
entation, one for the principal direction of γ , and one
for the principal direction of β.

In conclusion, the proposed Weibull basis conforms
to previous results on the visual perception of texture
features. We concentrated on parameters related to spa-
tial texture layout rather than texton shape. We showed
that at least two parameters are necessary to describe
texture orientation, opposite to Tamura et al. (1978)
who proposed one dominant orientation for texture
perception.

4. Empirical Evaluation of a Stochastic
Texture Basis

In Geusebroek and Smeulders (2003), we established
for a collection of 50,000 images that the hypothe-
sized distribution of the intensity differences is indeed
of the Weibull type. Here, we are interested whether

the two-dimensional Weibull parameters are sufficient
in characterizing homogeneous, stochastically ergodic
textures. The Curet collection is a proper testing ground
(Dana et al., 1999). The collection consists of 61 mate-
rials, each taken under various illumination and view-
ing directions. The range of materials covers plas-
ter, styrofoam, straw, corduroy, paper, brick, fur, and
so on, effectively covering a range of materials with
Lambertian reflection, with polarized reflection with
highlights, to the mirror reflection of Aluminum foil.

Identical to the experimental setup in Geusebroek
and Smeulders (2003), the intensity differences in a pic-
ture are assessed by scale normalized Gaussian deriva-
tive filters measured in 72 directions. The effective res-
olution of the system is given by the sigma of the filter
coefficients, here set to correspond to a spatial obser-
vation resolution of 3 pixels at all experiments. The
values of the Weibull parameters are estimated using
the maximum likelihood method, and goodness-of-fit
is evaluated by the Anderson-Darling statistic at a sig-
nificance level α = 0.05 (Filliben et al., 2002).

The results described in more detail in Geusebroek
and Smeulders (2003) indicated the Weibull distribu-
tion to be present in 54 of the 61 Curet materials. The
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Figure 4. Weibull parameters as function of orientation. a. shows an
image of combed rice, of which the Weibull parameters as function
of filter orientation are shown in b. Both γ and β show an anisotropy
due to the overall rice orientation. c. shows the same image from a
45 degree viewing angle, in which case the rice grain size γ appears
isotropic, but shadow contrast β is not, as illustrated in d. The solid
lines represent the best fitting ellipse through the data.

Weibull parameter estimates vary over the illumina-
tion and viewing direction according to the apparent
size and directionality of the texture. When the texture
is not stochastic but regular, such that there is repe-
tition between the responses in an image, a Weibull
distribution will no longer be found. However, as we
are interested in the description of stochastic texture,
these materials can be ignored.

Now we are in a position to access the com-
pleteness of the Weibull parameters in characterizing
the spatial layout of stochastic textures. Previous re-
sults indicated the marginal statistics of texture im-
ages. Next we proceed with a full probability density.
To evaluate a parametric description of the spatial
stochastics of texture, we need to determine: (a) the
completeness of the Weibull parameters based on
the gradient filter, and (b) the consistency of the
Weibull distribution over orientation of the gradient
filter.

An important issue is whether the hypothesized
Weibull distribution is general for receptive field mea-

surements based on contrast. Hence, we experimen-
tally examined the histogram of the responses to higher
order Gaussian derivative filters. For the images con-
forming to a Weibull distribution of first-order deriva-
tive response, the statistics of a second-order deriva-
tive filter again is Weibull distributed. For the Curet
database, we investigated the correlation between the
Weibull parameters as function of derivative order. The
Weibull shape parameter γ showed a high correlation
between the first-order derivative and the estimate for
the second-order derivative (ρ = 0.96). Likewise, the
first- and third-order derivative yield a correlation co-
efficient of ρ = 0.93. Given the high correlation be-
tween the responses to various derivative filters, the
texture spatial statistics per orientation are sufficiently
exhausted by a single derivative filter. These findings
support the coding of natural images by edge filters
(Bell and Sejnowski, 1997), and empirically confirm
the theoretical result obtained by Zhu et al. (2000) stat-
ing that the marginal distribution of filter responses
characterize texture. We conclude that a single filter
type, although measured in different orientations, is
sufficient to assess the spatial statistics of stochastic
textures.

The free parameters of the Weibull distribution have
been evaluated as a function of orientation. The orbit
of the shape parameter γ as function of the orientation
of the derivative filter is found to be close to ellip-
tic in all cases of uniform stochastic textures, with the
aspect ratio indicating anisotropy in material rough-
ness. This illustrates that the maximum and minimum
γmax,min parameters are orthogonal descriptors of tex-
ture roughness indicative for detail size and the isotropy
therein, see Fig. 5. The dominant orientation of the tex-
ture is indicated by θγ , the orientation of the elliptic or-
bit of γ . The intensity contrast of the texture is captured
by the Weibull distribution width parameters βmax,min,
representing height variations in the grains generating
the texture. Again, it is observed that the β param-
eters of uniform texture describe closely an ellipse,
indicating independence while they describe texture.
The direction of anisotropy in contrast is indicated by
θβ .

The parameters γ and β are computed from local in-
tensity derivatives orthogonal to the intensity-based µ

parameter. In fact, the µmax,min and θµ parameters of the
Weibull distribution, together with the local intensity
values completely characterize the intensity along the
object’s surface. In addition to this information about
the local shape of the object (Pentland, 1990), the six
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Figure 5. Plot of the six-parameter bases for a. sponge, b. shrub, and c. straw. The polar plot of γ for the sponge (a) shows an isotropic
grained texture with γ = 0.9. The plot of β, indicating the texture contrast, is dominated by the cast shadows at the pores. For this case the
longest axis indicates the direction of illumination. The shrub plot (b) for γ exhibits some anisotropy, yielding a longest axis of γmax = 1.27
in the 30◦direction and γmin = 1.20 in the 120◦direction (coarse grain size in that direction). The anisotropy is caused by the depth variation
in the 120◦direction. The plot for β exhibits anisotropy in the −12◦ direction, which is approximately perpendicular to the direction of
growth of the prominent twigs in the shrub. The more regular texture of straw c is rejected as being Weibull distributed in the y-direction, hence
does not satisfy the six-parameter basis. The polar plots show the x-direction to conform to the Weibull process. When changing orientation
toward the y-direction, the regular structure of the straw causes interference, and the Weibull parameters are over-estimated causing cusp’s in
the polar plots.

γ - and β-parameters form a basis to describe the spa-
tial structure of homogeneous, stochastically ergodic
texture.

Not all dimensions of the γ - and β-basis contain
equally much information. The maximum value γmax

is proportional to the smallest grain size dimension, in-
dicating texture roughness. The maximum value βmax

is proportional to the largest grain height, measured
as texture contrast. The aspect ratio γmax/γmin indi-

cates anisotropy in the grain size distribution, where θγ

indicates the corresponding orientation. Furthermore,
the aspect ratio βmax/βmin indicates the anisotropy in
the texture contrast, in the direction of θβ . The two
anisotropies as well as their orientations are observed
as independent in many cases. The basis describes the
remaining degrees of freedom for texture when the tex-
ton is the invariant. Compared to the experimental work
by Suen and Healey (2000), for the case of the Curet
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Table 1. Weibull basis for the Curet dataset.

Material γmax γaspect θγ βmax βaspect θβ

Felt 2.04 0.87 5 1.45 0.67 90

Polyester 1.95 0.93 15 0.97 0.86 90

Terrycloth 1.72 0.97 25 3.64 0.74 80

Rough plastic 2.10 0.88 115 4.81 0.50 95

Leather 1.99 0.82 60 0.38 0.83 300

Sandpaper 2.07 0.87 235 1.07 0.77 260

Velvet 2.10 0.89 115 0.74 0.94 110

Pebbles 2.23 0.77 95 4.87 0.57 275

Frosted glass 2.11 0.91 85 0.18 0.86 80

Plaster a 2.09 0.85 85 4.84 0.54 270

Plaster b 1.95 0.90 40 6.21 0.57 270

Rough paper 2.15 0.90 85 0.73 0.48 85

Artificial grass 1.83 0.88 95 4.78 0.73 95

Roof shingle 1.54 0.92 155 2.44 0.87 90

Aluminum foil 1.34 0.87 135 6.12 0.76 300

Cork 2.00 0.86 30 2.39 0.77 85

Rough tile 1.73 0.83 0 0.60 0.72 100

Rug a Rejected

Rug b 1.63 0.96 45 2.52 0.77 85

Styrofoam 1.30 0.97 110 0.86 0.74 100

Sponge 0.94 0.96 145 1.70 0.69 90

Lambswool 2.09 0.80 210 1.06 0.64 75

Lettuce leaf 1.24 0.69 35 1.57 0.74 50

Rabbit fur 1.98 0.84 100 2.43 0.64 95

Quarry tile 1.96 0.82 80 0.29 0.56 85

Loofa 1.91 0.87 0 2.71 0.67 90

Insulation 1.27 0.92 135 2.29 0.59 95

Crumpled paper 1.65 0.78 50 4.76 0.50 75

Polyester zoomed 1.93 0.91 50 1.32 0.78 85

Plaster b zoomed 1.88 0.85 10 6.10 0.60 90

Rough paper zoomed 2.24 0.87 80 1.12 0.43 80

Roof shingle zoomed 1.34 0.93 80 3.17 0.76 85

Slate a 1.61 0.88 45 0.66 0.88 135

Slate b 1.45 0.97 90 0.37 0.81 40

Painted spheres Rejected

Limestone 0.96 0.91 120 0.68 0.75 85

Brick a 1.85 0.94 75 2.52 0.75 95

Ribbed paper Rejected

Human skin 1.48 0.95 0 1.38 0.85 75

Straw Rejected

Brick b 1.39 0.96 5 0.69 0.79 100

(Continued on next page.)
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Table 1. (Continued ).

Material γmax γaspect θγ βmax βaspect θβ

Corduroy Rejected

Salt crystals 1.58 0.89 90 3.28 0.68 95

Linen 1.78 0.89 85 0.89 0.53 85

Concrete a 1.80 0.86 75 6.09 0.59 265

Cotton 2.19 0.84 0 1.07 0.79 95

Stones 2.01 0.84 55 7.51 0.73 70

Brown bread 1.75 0.92 120 2.98 0.69 85

Concrete b 1.78 0.89 115 3.27 0.62 95

Concrete c 1.71 0.88 55 4.30 0.60 265

Corn Husk Rejected

White bread 1.25 0.91 50 1.42 0.65 85

Soleirolia plant 1.36 0.92 110 4.51 0.70 95

Wood a 1.47 0.87 5 1.35 0.94 0

Orange peel Rejected

Wood b 2.00 0.71 75 2.06 0.26 80

Peacock feather 0.89 0.82 30 1.49 0.66 230

Tree bark 1.52 0.84 0 3.33 0.85 160

Cracker a 1.84 0.86 0 2.96 0.87 110

Cracker b 1.14 0.96 80 1.24 0.76 90

Moss 1.04 0.95 20 1.97 0.78 75

See the pictures on http://www.cs.columbia.edu/CAVE/curet/

database, the provided basis can be considered as de-
scribing the 3D variation after 2D texture effects have
been corrected. Hence, we theoretically confirm their
result of 9 remaining degrees of freedom for 3D texture.
Table 1 gives values for the six parameters as estimated
on the Curet database.

5. Conclusion

In a world full of fractal objects and with observation by
discrete cells on the retina, the dominant distribution of
texture statistics follows the Weibull distribution. We
have experimentally verified that the Weibull distribu-
tion characterizes spatial statistics for ergodic stochas-
tic textures. Next to the intensity, color, and the three µ

parameters for the shape of the object, the parameters
γ and β of the Weibull distribution span a complete
and orthogonal six-stimulus basis for uniform stochas-
tic texture perception. The basis provided indicates that
research on texture perception can be approached in a
similar way as the experimental science of colorimetry.
The metamers in our basis are formed by the absence of
the texton (Julesz, 1981), as the basis only describes the

spatial distribution of elements, hence is independent
of the element shape.

We provide a minimum dimensionality to describe
spatially ergodic stochastic textures. For a uniform tex-
tured region, a complete spatial description is obtained
by the nine parameters discussed above. If the texture
is isotropic, and after correction of a non-uniform il-
lumination, five parameters are sufficient to describe
the spatial characteristics. This theoretically derived
minimum dimensionality corresponds well to the em-
pirical work by Suen and Healey (2000), who found
nine dimensions to capture the 3D variations in mate-
rial textures.

The proposed six-stimulus basis is the result from the
fragmentation of the image by edges between objects.
Although we confirmed our theory for Gaussian inten-
sity receptive fields, the fragmentation is anticipated for
color receptive fields as proposed in Geusebroek et al.
(2001). Future work includes the assessment of the six-
stimulus parameters for color invariant descriptions.
We intent to use the Weibull distribution to parameter-
ize local image structure in large pictorial databases.
Similarity between textures may now be expressed by
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similarity between the Weibull parameters, accelerat-
ing retrieval performance.
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